Licence de Mathématiques Fondamentales

CORRIGÉ DU PROBLÈME DE TOPOLOGIE

Questions préliminaires.

- a) Par récurrence. On a $\varphi(0) \geq 0$ et si $\varphi(n) \geq n$, alors $\varphi(n+1) > \varphi(n) \geq n$, d'où $\varphi(n+1) \geq n+1$. Il est alors clair que $\lim_{n\to\infty} \varphi(n) = +\infty$.
- b) Comme $\lim_{n\to\infty} \varphi(n) = +\infty$, on construit par récurrence une suite d'entiers $(n_k)_{k\in\mathbb{N}}$ telle que $\varphi(n_{k+1}) > \varphi(n_k)$ et $\varphi(n_{k+1}) \geq \varphi(k+1)$, de sorte que $\psi(k) := \varphi(n_k)$ définit une sous-suite et $\lim_{k\to\infty} x_{\psi(k)} = \lim_{n\to\infty} x_{\varphi(n)} = x$. On a bien alors que $x \in \operatorname{adh}(x_n)_{n\in\mathbb{N}}$.
- c) Si $M \in \mathbb{R}$, alors pour tout $\varepsilon > 0$, il existe $a \in A$ tel que $M \varepsilon < a \leq M$, donc l'intervalle $]M \varepsilon, M + \varepsilon[$ rencontre A, d'où $M \in \overline{A}$. Si $M = +\infty$, alors pour tout t > 0, il existe $a \in A$ tel que t < a, donc l'intervalle $]t, +\infty[$ rencontre A, d'où $M \in \overline{A}$.
- 1) a) Pour $x \in \mathbb{R}$, on prend $V_p =]x 2^{-p}, x + 2^{-p}[$, pour $x = +\infty$, on prend $V_p =]p, +\infty]$ et si $x = -\infty$, on prend $V_p = [-\infty, -p[$.
- b) Supposons que la suite $(x_n)_{n\in\mathbb{N}}$ est bornée. D'après le Théorème de Bolzano-Weierstrass, il existe une sous-suite qui converge donc $\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}\neq\emptyset$. Supposons que la suite $(x_n)_{n\in\mathbb{N}}$ n'est pas majorée, et posons $K=\{k\in\mathbb{N}:x_k=+\infty\}$. Si K est infini, alors il existe une sous-suite qui converge vers $+\infty$. Si K est fini, il existe donc n_0 tel que x_k est fini pour tout $k\geq n_0$. on peut suposer que la suite $(x_n)_{n\geq n_0}$ n'est pas bornée (sinon on est ramené au cas précédent). Il existe alors $\varphi(1)\geq n_0$ tel que $x_{\varphi(1)}>1$. Supposons connus $n_0\leq \varphi(1)<\varphi(2)<\cdots<\varphi(n)$ tels que $x_{\varphi(k)}>k$ pour tout $k\in\{1,\cdots,n\}$. Alors il existe $p>\varphi(n)$ tel que $x_p>n+1$, posons $\varphi(n+1)=p$ et on construit ainsi par récurrence une sous-suite qui converge vers $+\infty$. De même, si la suite $(x_n)_{n\in\mathbb{N}}$ n'est pas minorée, on construit une sous-suite qui converge vers $-\infty$.
- c) Soit $x \in \operatorname{adh}(x_n)_{n \in \mathbb{N}}$. Supposons qu'il existe un voisinage V de x, tel que l'ensemble $\{p \in \mathbb{N} : x_p \in V\}$ soit fini. Il existe donc un entier m_0 tel que $x_n \notin V$ pour tout $n \geq m_0$. Considérons alors une sous-suite $(x_{\varphi(n)})_{n \in \mathbb{N}}$ qui converge vers x. Il existe donc n_0 tel que $x_{\varphi(n)} \in V$ pour tout $n \geq 0$. Comme $\lim_{n \to \infty} \varphi(n) = +\infty$ (il suffit d'utiliser le fait que $\varphi(n) \geq n$ pour tout $n \in \mathbb{N}$), on aura $\varphi(n) \geq m_0$ pour au moins un $n \geq 0$, d'où la contradiction $x_n \in V$ et $x_n \notin V$.
- d) Considérons une base dénombrable et décroissante de voisinages de x tel que pour tout voisinage V de x, l'ensemble $\{p \in \mathbb{N} : x_p \in V\}$ est infini. Il existe alors $x_{\varphi(1)} \in V_1$. Supposons connus $\varphi(1) < \cdots < \varphi(n)$ tels que $x_{\varphi(k)} \in V_p$ pour tout $k \in \{1, \cdots, n\}$. Comme $\{p \in \mathbb{N} : x_p \in V_{n+1}\}$ est infini, il existe $p > \varphi(n)$ tel que $x_p \in V_{n+1}$. On pose alors $\varphi(n+1) = p$ et l'on définit ainsi par récurrence une sous-suite $(x_{\varphi(n)})_{n \in \mathbb{N}}$ telle que $x_{\varphi(n)} \in V_n$ pour tout n. Soit alors V un voisinage de x et soit $n_0 \in \mathbb{N}$ tel que $V_n \subset V$ pour tout $n \geq n_0$. On a donc $x_{\varphi(n)} \in V$ pour tout $n \geq n_0$, ce qui montre que $(x_{\varphi(n)})_{n \in \mathbb{N}}$ converge vers x donc $x \in \operatorname{adh}(x_n)_{n \in \mathbb{N}}$.
- 2) a) Soit $x = \lim_{n \to \infty} x_{\varphi(n)}$ et soit $(x_{\varphi(n)})_{n \in \mathbb{N}}$ une sous-suite qui converge vers x. Étant donné $p \in \mathbb{N}$, il existe $k_0 \in \mathbb{N}$ tel que $\varphi(k) \geq p$, pour tout $k \geq k_0$, soit $x_{\varphi(k)} \in \{x_n : n \geq p\}$ pour tout $k \geq k_0$, donc on a $x \in \{x_n : n \geq p\}$ pour tout $p \in \mathbb{N}$, d'où $x \in \bigcap_{p \in \mathbb{N}} \{x_n : n \geq p\}$.

- b) Supposons, par l'absurde, qu'il existe un $x\in\bigcap_{p\in\mathbb{N}}\overline{\{x_n:n\geq p\}}$ et un $n\in\mathbb{N}$ tel que l'ensemble $\{p\in\mathbb{N}:x_p\in V_n\}$ est fini où $(V_k)_{k\in\mathbb{N}}$ est une base de voisinages de x. Il existe donc $p_0\in\mathbb{N}$ tel que $x_p\notin V_n$ pour tout $p\geq p_0$. Il en résulte que $x\notin \overline{\{x_p:p\geq p_0\}}$, ce qui est absurde. On a donc montré, utilisant 1), d), que $\bigcap_{p\in\mathbb{N}}\overline{\{x_n:n\geq p\}}\subset \mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$. Combinant ce résultat avec a), on obtient $\bigcap_{p\in\mathbb{N}}\overline{\{x_n:n\geq p\}}=\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$, ce qui montre bien que $\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$ est fermé comme intersection de fermés.
- 3) a) Pour $p \leq q$, on a $\{n \geq q\} \subset \{n \geq p\}$ donc $\sup_{n \geq q} x_n \leq \sup_{n \geq p} x_n$ soit $y_q \leq y_p$ avec raisonnement analogue pour $z_p \leq z_q$. L'inégalité $z_p \leq x_p \leq y_p$ résulte du fait que $p \in \{n \geq p\}$.
- b) Comme la suite $(y_p)_{p\in\mathbb{N}}$ (resp. $(z_p)_{p\in\mathbb{N}}$) est décroissante (resp. croissante), sa limite est identique à sa borne inférieure (resp. supérieure). Par ailleurs, utilisant la question préliminaire, on remarque que $y_p \in \overline{\{x_n : n \geq p\}}$, donc, pour tout $p \in \mathbb{N}$ et pour tout $q \geq p$, on a $y_q \in \overline{\{x_n : n \geq p\}}$ d'où $y = \lim_{p \to \infty} y_p$ appartient à $\overline{\{x_n : n \geq p\}}$ et ce, pour tout $p \in \mathbb{N}$. On a donc

$$\limsup_{n \to \infty} x_n \in \bigcap_{p \in \mathbb{N}} \overline{\{x_n : n \ge p\}} = \operatorname{adh}(x_n)_{n \in \mathbb{N}}.$$

Raisonnement analogue pour $\liminf_{n\to\infty} x_n \in \operatorname{adh}(x_n)_{n\in\mathbb{N}}$.

c) Comme $\varphi(p) \geq p$ pour tout $n \in \mathbb{N}$, on a

$$y_p = \inf_{n \ge p} x_n \le x_{\varphi(p)} \le \sup_{n \ge p} x_n = z_p,$$

pour tout $p \in \mathbb{N}$, d'où

$$\lim_{p \to \infty} y_p \le \lim_{p \to \infty} x_{\varphi(p)} \le \lim_{p \to \infty} z_p,$$

soit $\liminf_{n\to\infty} x_n \le x \le \limsup_{n\to\infty} x_n$. On a vu que $\limsup_{n\to\infty} x_n$ (resp. $\liminf_{n\to\infty} x_n$) appartient à $\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$ et on vient de voir que tout élément de $\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$ est inférieur (resp. supérieur) où égal à $\limsup_{n\to\infty} x_n$ (resp. $\liminf_{n\to\infty} x_n$), donc $\limsup_{n\to\infty} x_n$ (resp. $\liminf_{n\to\infty} x_n$) est la plus grande (resp. petite) limite d'une sous-suite convergente de $(x_n)_{n\in\mathbb{N}}$.

- **4)** a) Supposons que la suite $(x_n)_{n\in\mathbb{N}}$ à valeurs dans $\overline{\mathbb{R}}$ converge vers $x\in\overline{\mathbb{R}}$. Il en résulte que $x\in\operatorname{adh}(x_n)_{n\in\mathbb{N}}$, donc $\liminf_{n\to\infty}x_n\leq x\leq \limsup_{n\to\infty}x_n$. Comme $\liminf_{n\to\infty}x_n=\limsup_{n\to\infty}x_n$, on obtient bien que $\liminf_{n\to\infty}x_n=x=\limsup_{n\to\infty}x_n$.
- b) Pour tout $p \in \mathbb{N}$, on a $y_p \le x_p \le z_p$. Il en résulte que si $\lim_{p\to\infty} y_p = \lim_{p\to\infty} z_p := x$, alors $\lim_{p\to\infty} x_p = x$.
- 5) a) Évident, car pour tout $p \in \mathbb{N}$, on a $\sup_{n \geq p} x_n \leq \sup_{n \geq p} y_n$ et $\inf_{n \geq p} x_n \leq \inf_{n \geq p} y_n$.
- b) On peut supposer que $\liminf_{n\to\infty}x_n>-\infty$ et $\liminf_{n\to\infty}y_n>-\infty$ car dans la cas contraire, le membre de droite de l'inégalité demandée vaut $-\infty$ donc elle est vérifiée. Soit alors $\lambda,\,\mu\in\mathbb{R}$ tels que $\lambda<\liminf_{n\to\infty}x_n$ et $\mu<\liminf_{n\to\infty}y_n$. Par définition de la borne supérieure, il existe des entiers p_0 et q_0 tels que $\lambda<\inf_{n\geq p}x_n$ pour tout $p\geq p_0$ et $\mu<\inf_{n\geq q}y_n$ pur tout $p\geq q_0$. Pour tout $p\geq \max(p_0,q_0)$, on a

$$\lambda + \mu < \inf_{n \ge \max(p_0, q_0)} x_n + \inf_{n \ge \max(p_0, q_0)} y_n \le \liminf_{n \to \infty} x_n + \liminf_{n \to \infty} y_n.$$

Faisant tendre (λ, μ) vers $(\liminf_{n\to\infty} x_n, \liminf_{n\to\infty} y_n)$, on obtient bien que

$$\liminf_{n \to \infty} (x_n + y_n) \ge \liminf_{n \to \infty} x_n + \liminf_{n \to \infty} y_n.$$
(1)

Dans le cas $x_n=(-1)^n$ et $y_n=(-1)^{n+1}$, on a $x_n+y_n\equiv 0$ donc $\liminf_{n\to\infty}(x_n+y_n)=0$, alors que $\liminf_{n\to\infty}x_n=\liminf_{n\to\infty}y_n=-1$, d'où l'inégalté (1) est stricte pour cet exemple.

Remarquant que $\limsup_{n\to\infty} x_n = -\liminf_{n\to\infty} (-x_n)$, on en déduit que

$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$

dès que la somme a un sens dans le membre de droite.

c) Remarquant que $x_n = (x_n + y_n) + (-y_n)$ et que

$$\limsup_{n \to \infty} (-y_n) = -\liminf_{n \to \infty} y_n = -\lim_{n \to \infty} y_n,$$

on déduit de b) que

$$\limsup_{n\to\infty} x_n \le \limsup_{n\to\infty} (x_n + y_n) - \liminf_{n\to\infty} y_n = \limsup_{n\to\infty} (x_n + y_n) - \lim_{n\to\infty} y_n,$$

donc

$$\limsup_{n\to\infty}(x_n+y_n)\geq \limsup_{n\to\infty}x_n+\lim_{n\to\infty}y_n.$$

Par ailleurs, on a

$$\limsup_{n\to\infty}(x_n+y_n)\leq \limsup_{n\to\infty}x_n+\limsup_{n\to\infty}y_n=\limsup_{n\to\infty}x_n+\lim_{n\to\infty}y_n,$$

d'où

$$\lim_{n \to \infty} \sup (x_n + y_n) = \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} y_n.$$

Démonstration analogue pour

$$\liminf_{n \to \infty} (x_n + y_n) = \liminf_{n \to \infty} x_n + \lim_{n \to \infty} y_n.$$

Question subsidiaire. L'ensemble $G:=\mathbb{Z}+2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R},+)$, il est donc de la forme $a\mathbb{Z}$ avec $a\in\mathbb{R}$ ou dense dans \mathbb{R} (voir par exemple [1]). Le premier cas est impossible car sinon, comme $1\in G$, on aurait $1\in a\mathbb{Z}$ donc $a\in\mathbb{Q}$ et $2\pi\in a\mathbb{Z}$, ce qui impliquerait la contradiction que $\pi\in\mathbb{Q}$. Comme G est dense, il existe deux suites $(\varphi(k))_{k\in\mathbb{N}}$ et $(\psi(k))_{k\in\mathbb{N}}$ d'éléments de \mathbb{Z} telles que $\lim_{k\to\infty}(\varphi(k)+2\pi\psi(k))=0$. Changeant éventuellement $\varphi(k)$ en $-\varphi(k)$ et $\psi(k)$ en $-\psi(k)$, on peut supposer que $\varphi(k)\in\mathbb{N}$ pour tout k assez grand (examiner les cas où $\{k\in\mathbb{N}:\varphi(k)\in\mathbb{N}\}$ est fini ou non). On a $\lim_{k\to\infty}\varphi(k)=+\infty$, car dans le cas contraire une sous-suite de la la suite $\varphi(k)_{k\in\mathbb{N}}$ encore notée $\varphi(k)_{k\in\mathbb{N}}$ serait majorée. Ce qui impliquerait que la suite $(\cos(\varphi(k))_{k\in\mathbb{N}})$ ne prend donc qu'un nombre fini de valeurs. Comme elle converge vers 1, il existerait donc des entiers $\varphi(k)$ pour lesquels on aurait $\cos(\varphi(k))=1$, ce qui est impossible car π est irrationnel. D'après la partie b) de la question subsidiaire, on obtient alors que $1\in \mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$. Comme $\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}\subset[-1,1]$, on obtient que 1 est la plus grand élément de $\mathrm{adh}\,(x_n)_{n\in\mathbb{N}}$, d'où $\limsup_{n\to\infty}\cos(n)=1$.

Références

[1] http://asoyeur.free.fr/fichiers_ps/2003/dl/dl_03_s_groupes_R.pdf