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A History of Lagrange's Theorem on Groups 
RICHARD L. ROTH 

University of Colorado 
Boulder, CO 80309-0395 

Introduction 

In group theory, the result known as Lagrange's Theorem states that for a finite 
group G the order of any subgroup divides the order of G. However, group theory had 
not yet been invented when Lagrange first gave his result and the theorem took quite a 
different form. Lagrange's Theorem first appeared in 1770-71 in connection with the 
problem of solving the general polynomial of degree 5 or higher, and its relation to 
symmetric functions. It was also anticipated by some results in number theory a few 
years earlier. 

In this article, we explain the historical setting of Lagrange's approach, and follow 
this train of thought into the twentieth century. Some general references on the history 
of group theory are Israel Kleiner's article "The Evolution of Group Theory: A Brief 
Survey" in this MAGAZINE [22] and H. Wussing's book, The Genesis of the Abstract 
Group Concept [31]. 

Preliminary Discussion 

Let us first review Lagrange's Theorem and its proof, as well as some other results 
relevant to our discussion. Recall that the order of a finite group is the number of 
elements in the group. 

THEOREM A (Lagrange's Theorem): Let G be a group of order n and H a subgroup 
of G of order m. Then m is a divisor of n. 

Sketch of Proof. Suppose we list the elements of G in a rectangular array as fol- 
lows: Let the top row be the list of the m elements of H: a, = e, a2, .. ., am. If 
b is some element of G not in H then let the second row consist of the elements 
bal, ba2, . .. , bam. If there is an element c not in the first two rows then the next row 
will be ca1, ca2, . .. cam. This is continued until the elements of G are exhausted. One 
must then check that the elements in any row are distinct and that no two rows have an 
element in common. It follows that n = km where k is the number of rows. m 

Early proofs of Lagrange's Theorem generally involved this "rectangular array" 
explicitly or implicitly. Note that the rows of the rectangular array are simply the left 
cosets of H in G. In fact, most current texts use the language of cosets to prove this 
theorem. One must show that the set of left cosets (or right cosets) forms a partition of 
the group G and that each coset has the same number of elements as H. Note that as an 
elementary consequence of Lagrange's Theorem we have that the number of cosets of 
H in G divides the order of G as well. This number is called the index and is denoted 
[G: H]. 

Frequently in algebra textbooks, the little theorem of Fermat is proved as a corollary. 
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FERMAT'S LITTLE THEOREM: If p is a prime and b is relatively prime to p, then 
bP-1 1_ (mod p). 

Proof. The nonzero elements of 7/p7 form a group of order p - 1 under multi- 
plication, called (Z/pZ)*. If the congruence class b in (Z/pZ)* has order m, then it 
generates a cyclic subgroup of order m. By Lagrange's Theorem, m divides p - 1; 
thus (b)P-l = (bm)k = 1, where p-I = mk, and the theorem follows. U 

Also relevant is Theorem B, given below. As we will see, it might be just as appro- 
priate to call this Lagrange's Theorem. 

THEOREM B: Let G be afinite group acting by permutations on afinite set S. Then 
the size of any orbit is a divisor of the order of G. 

Proof. Let b be an element of some particular orbit and H be the subgroup of G 
stabilizing b. If c is another element in this orbit then for some r in G, rb = c. If scH 
then (to)b = r(ob) = rb = c (in our notation it is the element o- in the stabilizer of b 
that acts first) and it is easily seen that the coset r H consists of precisely the elements 
mapping b onto c. Thus the elements of the orbit are in one-to-one correspondence 
with the left cosets of H, hence the size of the orbit equals the index [G : H], which, 
by our consequence of Theorem A above, must divide G. U 

Lagrange's version of the theorem 

In 1770-71, Lagrange published a landmark work on the theory of equations, "Re- 
flexions sur la resolution algebrique des equations" [23]. (Note: Katz gives a useful 
discussion of this paper in section 14.2.6 of [21].) His concern was the question of 
finding an algebraic formula for the roots of the general 5th degree polynomial and 
more generally for the nth degree polynomial for n > 4. The quadratic formula had, 
of course, been known for a very long time and the cubic and quartic equations had 
been solved in the sixteenth century by algebraists of the Italian school. However, for 
polynomials of degree greater than four this had remained an open problem for two 
centuries. Lagrange observed that the solutions for the cubic and quartic equations 
involved solving supplementary "resolvent" polynomials of lower degree whose coef- 
ficients were rational functions of the coefficients of the original polynomial. He found 
that the roots of these auxiliary equations were in fact "functions" of the roots of the 
original equation that took on a small number of values when the original roots were 
permuted in the formulas for these functions. 

For example, the quartic was solved using a cubic resolvent polynomial whose roots 
could be written as xlx2+x3x4 xlx3+x2x4 and XlX4?x2x3 where x1, X2, X3, X4 were the roots 
of the original polynomial. If the four roots X1, X2, X3, X4 are permuted in all 24 pos- 
sible ways, only these three different "values" typically occur. For convenience, we 
will omit the denominator 2 in what follows. We list below the result of operating 
on the function x1x2 + X3X4 by the 24 different permutations of the four variables. 
The stabilizer of the function is a group of 8 elements and the first row shows the 
seven other values that are equal to the original one. Underneath each value is the 
corresponding permutation. The second row shows the set of eight values arising from 
a different way of combining the four roots, all equal to x1x3 + x2x4; similarly for 
the third row. Underneath each value is the corresponding permutation. We note that 
in the second and third lines we have permuted the positions of the variables in the 
same manner as was done in the first line. This corresponds to the step in the proof of 
Theorem B above where the stabilizing permutation o- must act before the permutation 
t that changes the object. For example, referring to the first two equal functions in 
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X1X2 + X3X4 X2X1 + X3X4 X3X4 + X1X2 X1X2 + X4X3 X4X3 + XlX2 X3X4 + X2X1 X4X3 + X2X1 X2X1 + X4X3 

id (12) (13)(24) (34) (1423) (1324) (14)(23) (12)(34) 

X1X3 + X2X4 X3X1 + X2X4 X2X4 + X1X3 XlX3 + X4X2 X4X2 + X1X3 X2X4 + X3X1 X4X2 + X3Xl X3X1 + X4X2 

(23) (23)(12) (23)(13)(24) (23)(34) (23)(1423) (23)(1324) (23)(14)(23) (23)(12)(34) 
= (132) = (1243) = (234) = (143) = (124) = (14) = (1342) 

X1X4 + X2X3 X4X1 + X2X3 X2X3 + X1X4 XlX4 + X3X2 X3X2 + XlX4 X2X3 + X4X1 X3X2 + X4X1 X4X1 + X3X2 

(243) (243)(12) (243)(13)(24) (243)(34) (243)(1423) (243)(1324) (243)(14)(23) (243)(12)(34) 
= (1432) = (123) = (24) = (13) = (1234) = (134) = (142) 

o 
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rows 1 and 2, we have o- = (1 2), r = (2 3) and ro = (2 3)(1 2) = (1 3 2). We thus 
have a 3 by 8 rectangular array. The 3 "values" multiplied by 8 gives 24 = 4! = IS4 I. 

The 4th degree polynomial was solvable because there was a "function" of 4 vari- 
ables which took on 3 "values" when the 4 variables are permuted in all 24 = 4! ways. 
That is, these 3 "values" were the roots of a cubic polynomial (which it was known 
how to solve); these roots could be used to modify the original 4th degree polyno- 
mial so that it would factor into quadratic polynomials. Using the theory of symmetric 
functions, Lagrange proved that if a rational function of the n roots of a general poly- 
nomial of degree n takes on r "values" under the action of all n! permutations, then 
the function will be a root of a polynomial of degree r whose coefficients are rational 
functions of the coefficients of the original equation. 

Thus Lagrange reasoned that to solve a 5th degree polynomial, one should try to 
find a function in 5 variables that takes on 3 (or 4) different typical "values" when the 
variables are permuted in all 5! ways. This would lead to a cubic (or quartic) resolvent 
that might help to solve the original equation. A similar approach might apply for 
solving equations of degree n for n greater than 5. 

Lagrange was unable to determine if such functions exist. But he did come up with, 
in essence, the following theorem. 

THEOREM C: THEOREM OF LAGRANGE: If a function f (xI, ... , xn) of n vari- 
ables is acted on by all n! possible permutations of the variables and these permuted 
functions take on only r distinct values, then r is a divisor of n!. 

In fact, Lagrange stated his theorem in terms of the degree of the corresponding 
resolvent equation. Also, we note that if n = 5, then 3 and 4 are both divisors of n!, so 
the theorem of Lagrange doesn't answer the previous question as to whether or not a 
cubic or quartic resolvent exists for the 5th degree equation. 

Lagrange's proof of Theorem C consisted essentially of discussing some special 
cases; it is interesting to note that the treatment that he gave for the first case was 
partly wrong, although it did give the correct idea for a proof. He said: let us suppose 
that a function satisfies f (x', x", x"', xiv...) = f(x", x"', x x' .. .). Such a function 
satisfies f (xiv', xlll, x , x, ... ) ( x X X" ....), because we have permuted 
the first 3 variables in the same way; hence, he said, all the values will match up in 
pairs and the possible number of distinct values will be reduced to n'. However, the 
permutation involved is actually a cycle of length 3, so in fact in this example the 
number of values would be divided by 3, and not by 2. 

Lagrange then said that if the original function remains the same under 3 or 4 or a 
larger number of permutations, then the other values will also have that property, and 
the total number of distinct values will be "I or "', etc. 

Thus Lagrange's original Theorem C might be regarded as a special case of Theo- 
rem B, where the group G is the symmetric group Sn, the set S is the set of functions 
(or formulas) involving n variables formed by all permutations of the n variables and 
the group action is that which arises from permuting the variables in these functions. 

Coincidentally, in 1771 Vandermonde also wrote a paper ([28]) on the theory 
of equations that took an approach similar to Lagrange's. The alternating function 
H I<i<j<n (xi - xj) takes on exactly two values when the variables are permuted. In 
Vandermonde's paper we find this function for the case when n = 3. It is used today 
(for arbitary n) in contemporary abstract algebra books to study even and odd permu- 
tations; the set of permutations that stabilize it forms the alternating group. As can 
be seen from our paper, the use of polynomial functions is historically very much a 
part of group theory. The alternating function Hl<i<j<n(xi - xj) is actually equal to 
the Vandermonde determinant, and it is probable that the origin of the name comes 
from this reference, although Vandermonde (who elsewhere did do important work on 
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determinants) did not express it as a determinant. For the case of n = 5, Vandermonde 
gave a different example of a function taking on two values under permutations, and 
expressed the opinion that there does not exist such a function of five variables taking 
on either three or four values. 

Some later developments related to Lagrange's work 

Several decades later, Paolo Ruffini made further progress in Lagrange's approach to 
solving polynomial equations. His book of 1799 [25] included an informal proof (by 
example) of Lagrange's Theorem C. Further, Ruffini showed that there does not exist 
any function of 5 variables taking on three values or four values. Thus the "converse" 
to Theorem C is false. It seems appropriate to call this "Ruffini's Theorem." In modern 
terminology this shows that the converse to Lagrange's Theorem (Theorem A) is false 
because the symmetric group on 5 letters of order 120 has no subgroup of order 40 
or 30. 

Ruffini also claimed to have proved (as a consequence) that the 5th degree equa- 
tion (and in general the nth degree for n > 5) was not solvable. His work drew much 
criticism and even though he published several more versions, his proof is generally 
regarded as incomplete. (A more satisfactory proof would be given later by Abel in the 
1820s.) A friendly response came from Abbati in 1802 [1] who gave some suggestions 
to improve Ruffini's proof. Abbati's note included an extensive and thoughtful proof 
of Lagrange's Theorem C. According to Heinrich Burkhardt [5] this was the first time 
a complete proof was given. It resembled the proof of Theorem A given above, and 
presented a rectangular array of terms (as illustrated in our earlier discussion of the 
function X1X2 + X3X4). The given function was acted on by the n! permutations. The 
first row gave the list of functions (arising from permutations) that are equal to the 
original function. The next row started with a value that was not in the first row and 
consisted of all subsequent permutations of this function. Because the modem nota- 
tion used in the proof of Theorem B was not available, a lengthier discussion was used. 
Abbati took some care to explain that what mattered was the positions of the variables 
in the function and the way they were combined. Then, as in the proof of Theorem A, 
each row was shown to have the same number of elements, with no two rows having 
any element in common. 

Further developments were obtained with Cauchy's important 1815 paper [7], 
whose title roughly translated into English reads "Memoir on the number of values 
that a function can acquire (when one permutes in all possible ways the quantities 
it contains)." This paper launched permutation group theory as an independent topic 
even though the notion of a group did not appear in it. The paper was not concerned 
directly with the theory of equations. Cauchy included a proof of Theorem C similar 
to Abbati's, pointing out that the permutations fixing a function are to be applied to the 
positions of the variables and not their indices. He went on to generalize Ruffini's the- 
orem as follows: If the number of values of a non-symmetric function of n quantities 
is less than the largest prime divisor p of n then it must be 2. In the 1820s Abel cited 
and used this theorem from Cauchy's paper specifically for the special case that n = 5 
in his work on the unsolvability of the quintic (see [2, p. 31] of Oeuvres). Although 
Ruffini was not explicitly mentioned in Abel's paper, Abel's proof of the unsolvability 
of the 5th degree polynomial thus relied indirectly on the work of Ruffini. 

Galois introduced the term group for permutation groups in a paper on solutions of 
polynomials by radicals in 1831 [14, pp. 35-36]. He didn't explicitly mention either 
form of Lagrange's Theorem in any of his papers, but in the famous letter written 
the night before his death [15], he did include the suggestive equation for the coset 
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decomposition 

G = H + HS + HS'+ . (1) 

These works were not widely known until they were published in Liouville's Journal 
in 1846. 

Theory of permutation groups 

Almost 30 years after Cauchy's 1815 paper, Cauchy again took up the subject of 
permutation groups. His paper of 1844 [8] did not take the "values of a function" 
approach; rather it dealt directly with permutation groups. Keeping the older use of 
the word "permutation" to refer to an ordered arrangement of symbols, he used the 
term "substitution" to refer to a permutation, and "system of conjugate substitutions" 
(systeme de substitutions conjugees) to refer to a permutation group. This was defined 
here and in later works on the subject merely as a set of permutations closed under 
composition. This is of course sufficient to define a group: composition is associative, 
and since we are dealing with finite permutations, the existence of the identity and 
inverse operations will be necessarily implied. (It is perhaps unfortunate that in many 
modem books the definition of group only lists three axioms, namely associativity and 
the existence of the identity and inverse operations. The closure property, which was 
really the original property used to define permutation groups, is hidden in the term 
"operation" or "binary operation.") Cauchy then proved the following theorem (trans- 
lated into English): "The order of a system of conjugate substitutions on n variables 
is always a divisor of the number N of arrangements which one can form with these 
variables" [8, p. 207]; i.e. the order of a subgroup of the symmetric group Sn is a di- 
visor of n!. Thus we now had Theorem A (Lagrange's Theorem) for the case that G is 
the symmetric group. 

Cauchy's long paper of 1844 was followed by a series of shorter papers over the next 
couple of years that further developed the theory of permutation groups. They included 
showing the connection between Theorem A and Theorem C. In [9], he showed that 
the set of permutations fixing a function forms a permutation group (i.e. a subgroup 
of Sn, which today we call the stabilizer of that function) and that, conversely, for any 
such subgroup H of Sn there is a function whose stabilizer is precisely that subgroup. 
Given a subgroup H of Sn, we can build a function of n variables whose stabilizer 
is H in the following way. Let s = alxl + + anXn, where a,, .. ., an are distinct 
numbers. Let sI, 2, . .. , st be the images under the t elements of the subgroup H 
(note we may assume s = sl); then consider the product 5I52 ... St. With appropriate 
assumptions on the coefficients a,, a2, ... , an, this will be a function whose stabilizer 
is precisely H. Cauchy required these coefficients to be nonzero elements whose sum 
is not zero and his proof is a bit unclear, but if we require instead that the coefficients 
be a set of nonzero integers whose greatest common divisor is 1, then the result can 
be shown using the unique factorization property of polynomial rings over a unique 
factorization domain. 

Another example of a function whose stabilizer is H, also given by Cauchy, arises 
by taking s = xIx2x3 ... xn, and defining sI = s, S2, .. . ,St to be the images of s under 
the subgroup H; then the sum si + . + st is a function whose stabilizer is H. In a 
later note [10] he showed that if a function takes on m distinct values and the sub- 
group fixing the function has order M then mM = n!. Because every subgroup is the 
stabilizer of some function, this is a kind of "hybrid form" of Lagrange's Theorem in 
which Cauchy combined Theorem C and Theorem A for the case of G = S. In this 
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note he also laid the foundations for the idea of a group acting on a set (as in Theo- 
rem B above). In particular he showed that a group of permutations on the n variables 
xi, . . ., xn could also be regarded as acting by permutations on the set of functions that 
arise from a particular function of those variables under permutations of the variables. 

The next step in the development of Lagrange's Theorem was to see that Theorem 
A holds for any finite permutation group G. This result may be found in Camille 
Jordan's thesis, published in 1861 [19]. This is a rather lengthy and technical paper on 
permutation groups. In the introduction he cited Lagrange's Theorem, in the "hybrid" 
form just mentioned, calling it a theorem due to Lagrange and crediting his proof to 
Cauchy. Forty-five pages later in the midst of a complicated counting argument, he 
mentioned that he would need a generalization of the Lagrange's Theorem and proved 
that (in modem language) the order of a subgroup of any permutation group divides the 
order of the group. Lagrange's Theorem then appeared in this form in the 3rd edition 
of Serret's important algebra text Cours d'Algeibre superieure published in 1866 [27] 
(in a later chapter, the theory is applied to the topic of the number of values of a 
function of n variables). And it is also found in Jordan's influential 1871 book Traite 
des substitutions et des equations algeibriques [20]. 

Lagrange's Theorem C is essentially Theorem A for the case where G = Sn, as we 
have seen above: each function has its stabilizing subgroup of Sn and each subgroup 
of Sn may be regarded as the stabilizer of an appropriate function. The extension of 
Theorem A to the case of G, an arbitrary permutation group, was more general and 
might seem to have no analogue in terms of functions. However, it is interesting to note 
that in Netto's book of 1882 [24] he did give a translation into the function approach. 
"Lehrsatz VI" in chapter 3 states: If qo and 1 are two functions of the same n variables 
and the permutations leaving po fixed also leave * unchanged, then the number of 
values taken on by (o is a multiple of the number of values taken on by 1. 

Other directions in group theory 

While the theory of permutation groups played a major role in the development of 
general group theory, there were a number of other important sources of group the- 
ory including geometry and number theory. One connection to number theory, as we 
noted in the introduction, is Fermat's Little Theorem. Euler gave several proofs of this 
theorem. Of interest here is his paper whose title translated into English is "Theo- 
rems on residues obtained by division of powers," written in 1758-59 and published in 
1761 [11]. In it he gave a proof along the lines indicated in the beginning of this article. 
He proved Lagrange's Theorem in essentially the usual way (the rectangular array) for 
the case that G is (Z/pZ)* (the multiplicative group of the integers relatively prime to 
p, modulo p) and H is the cyclic subgroup generated by b. Thus one could argue that 
in some sense, Lagrange's Theorem appeared 10 years before Lagrange's work. The 
theorem of Fermat generalizes in two directions; if, instead of (Z/pZ)*, we consider 
(Z/nZ)*, the classes of integers relatively prime to n, then W _ 1 mod n (where so 
is the Euler function). This was shown by Euler in a paper written 1760-61, published 
in 1763 [12]. The other direction is to regard (Z/pZ)* as a finite field and to generalize 
this to Galois fields GF(pn), in which case we have xpn-l = 1, and this was done by 
Galois in 1830 [13]. Again, in both cases, the proofs implicitly involved a rectangular 
array approach to a special case of Lagrange's Theorem. 

The development of the abstract approach to groups is discussed in [22] and [31]: 
abstract groups generalized permutation groups, various groups arising in number the- 
ory (including those arising from modular arithmetic, as we've seen in the previous 
paragraph) and geometrical groups. The abstract approach to groups caught on in the 
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1880s. Of course Lagrange's Theorem (Theorem A) and its proof were by then eas- 
ily adapted to abstract groups. It is hard to pinpoint the first abstract version; but, for 
example, in a paper of Holder in 1889 [18] on Galois theory, an abstract definition 
for finite groups was given. Lagrange's Theorem was proved by merely displaying the 
familiar rectangular array. The theorem was not identified by Lagrange's name, but the 
rectangular array is credited to Cauchy's 1844 paper. 

In 1895-96, Weber's Lehrbuch der Algebra [30] was published in two volumes. 
This became the standard text for modem algebra for the next few decades. Volume 
1 (1895) was the more elementary of the two volumes. As for group theory it treated 
only permutation groups. It included Theorem A for permutation groups. The theorem 
was credited to Cauchy. The proof, however, was done using the terminology of cosets 
("nebengruppe"). It was shown that two cosets are either equal or disjoint, and stated 
that the size of any coset equals the order of the subgroup. Following the proof, the 
symbolic equation 

P = Q + Q7T1 + Q7T2 + + Q7rj-l (2) 

was displayed (where P is the group and Q is the subgroup) to give more insight 
into the proof, and this equation was credited to Galois. Note that Galois's version 
(equation (1)) did not specify a finite sum, however. This may have been the first time 
that the theorem was proved using the language of cosets. 

Weber's Volume 2 (1896) covered more advanced material than volume 1; it be- 
gan with abstract groups and proved Lagrange's Theorem again, this time for abstract 
groups, in section 2 of chapter 1. The proof was essentially the rectangular array ap- 
proach (without explicitly giving the array). The theorem and its proof were then used 
as motivation for introducing the concept of coset ("as in the special case of permu- 
tation groups") and a coset decomposition equation, similar to equation (2) was dis- 
played. 

Theorem C did not appear in Weber's book and the only consideration of the num- 
ber of values taken on by a function under permutations was the case of symmetric 
functions and the alternating function (discussed in volume 1). A proof of Fermat's 
Little Theorem appeared in volume 1 (proved without group theory); in chapter 2 of 
volume 2 the generalization of the Fermat Theorem for the integers modulo n was 
proved using group theory and Lagrange's Theorem. 

Twentieth century developments 

Increasingly in the twentieth century, coset terminology was used in the proof of La- 
grange's Theorem. It is not so different from the rectangular array approach, since the 
rows of the array are in fact the cosets. But it is a different style, and while the rectangu- 
lar array is usually credited to Cauchy, the coset approach seems to have been inspired 
by Galois's coset decomposition equation (1). We saw that these two historical threads 
were brought together in Weber's book. 

According to Wussing [31], the first monograph devoted to abstract group theory 
was that of DeSeguier, appearing in 1904 [26]. He showed that the double cosets form 
a partition of a group. Then as a special case, he got the coset decomposition of a 
group G and then simply mentioned that [G, A][A, 1] = [G, 1]. Here [G, A] denotes 
the index of a subgroup A in G so [G, 1] is the order of G. 

Although a number of authors credited the theorem to Lagrange, many did not 
mention Lagrange's name and it was some time before it became widely known as 
"Lagrange's Theorem." Van der Waerden's Moderne Algebra [29] was one of the most 
influential texts in algebra. It first appeared in 1930. The coset approach was used in 
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proving Lagrange's Theorem. Lagrange's name did not appear; however, in a footnote 
it was mentioned that the coset decomposition equation (1), which is frequently found 
in the literature, is due to Galois. In the "second revised edition" of 1937, the fact that 
any two cosets have the same number of elements was explicitly stated and proved, 
thus filling a gap in the first edition. In the English translation (of the second revised 
edition), appearing in 1949, the translator added a footnote stating that this theorem is 
also known as Lagrange's Theorem. 

We might compare two other books which also appeared in 1937. Albert's Modern 
Higher Algebra [3] used the language of cosets to prove the theorem; there was no 
mention of Lagrange or other historical references. On the other hand, in Carmichael's 
Introduction to the Theory of Groups of Finite Order [6], the proof was given using 
the rectangular array. Carmichael called the theorem "First Fundamental Theorem" 
(his chapter 2 contained five fundamental theorems) but there was a footnote stating 
"This has sometimes been called the theorem of Lagrange". 

In 1941, Birkhoff and MacLane's A Survey of Modern Algebra first appeared [4]. 
This book became a model for undergraduate modem algebra textbooks and helped 
to attach Lagrange's name firmly to the theorem. Section 9 of chapter VI is entitled 
"Lagrange's Theorem." It started with two lemmas showing that each coset has the 
same number of elements as the subgroups and any two distinct cosets are disjoint. 
This led up to "Theorem 18 (Lagrange): The order of a finite group G is a multiple 
of the order of every one of its subgroups." There were various corollaries including 
Fermat's Little Theorem. 

Some modem books apply the general theory of equivalence relations in connec- 
tion with cosets and Lagrange's Theorem (for example, see Herstein's Abstract Alge- 
bra [17]). One defines a relation on the group G by letting aRb if ab-1 H. It is proved 
that this is an equivalence relation and the right cosets are the equivalence classes. The 
right cosets thus form a partition of the group G. One of the earliest examples of this 
approach is found in a book of Hasse, published 1926 (see [16]). 
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Figure 1 Problem 5 from USA Mathematical Olympiad (p. 167) 
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