Exercice 1. Soit \mathcal{E} un espace affine, \mathcal{F} un sous-espace affine de \mathcal{E} , et \mathcal{H} un hyperplan affine. Montrer que l'une des deux assertions suivantes est vérifiée :

- 1. $\overrightarrow{F} \subset \overrightarrow{H}$.
- 2. $\dim \mathcal{F} \cap \mathcal{H} = \dim \mathcal{F} 1$.

Exercice 2. Soit \mathcal{E} un espace affine de dimension n, d'espace vectoriel directeur \overrightarrow{E} .

- 1. Soit ϕ une application affine non constante de \mathcal{E} dans \mathbf{R} . Montrer que ϕ est surjective. Montrer que $\phi^{-1}(\{0\})$ est un sous-espace affine de \mathcal{E} de dimension n-1 (on précisera le sous-espace directeur en fonction de ϕ). Réciproquement, montrer que tout hyperplan affine de \mathcal{E} est de cette forme.
- 2. (a) Dans \overrightarrow{E} , montrer que, pour $1 \le d \le n$, tout sous-espace vectoriel de dimension n-d est intersection de d hyperplans.
 - (b) En déduire que tout sous-espace affine de \mathcal{E} de dimension n-d est de la forme $\bigcap_{i=1}^{d} \phi_i^{-1}(\{0\})$ pour $(\phi_i)_{i=1,\dots,d}$ une famille d'applications affines $\mathcal{E} \to \mathbf{R}$, c'est-à-dire est intersection de d hyperplans affines.
 - (c) Montrer que, dans ce cas, l'application affine produit $\times_i \phi_i : \mathcal{E} \to \mathbf{R}^d$ est surjective.
- 3. Réciproquement, montrer que si ϕ_1, \ldots, ϕ_d sont des fonctions affines telles que l'application affine produit est surjective, alors l'intersection $\bigcap_{i=1}^d \phi_i^{-1}(\{0\})$ est un sousespace affine de dimension n-d (on pourra procéder par récurrence sur d, et utiliser l'exercice 1).

Exercice 3. Soit \mathcal{E} un espace affine de dimension n, et (a_0, \ldots, a_n) un repère affine.

- 1. Montrer que pout tout i, il existe une unique application affine $\phi_i : \mathcal{E} \to \mathbf{R}$ telle que $\phi_i(a_j) = \delta_{i,j}$.
- 2. Exprimer l'image d'un point par ϕ_i en fonction de ses coordonnées barycentriques.
- 3. Montrer que l'ensemble $Aff(\mathcal{E}, \mathbf{R})$ est un sous-espace vectoriel de l'ensemble des applications de \mathcal{E} dans \mathbf{R} . Déduire de ce qui précède que sa dimension est au moins n+1.
- 4. Montrer que tout élément $\phi \in Aff(\mathcal{E}, \mathbf{R})$ s'écrit $\phi = \sum_i \phi(a_i)\phi_i$. En déduire la dimension de $Aff(\mathcal{E}, \mathbf{R})$.

Exercice 4. Soit \mathcal{E} un espace affine de dimension $n, \mathcal{H}_0, \dots, \mathcal{H}_n$ n+1 hyperplans affines tels que l'intersection $\bigcap_{i=0}^n \overrightarrow{H}_i$ des espaces vectoriels directeurs soit réduite au vecteur nul. Notons ϕ_i des fonctions affines telles que $\phi_i^{-1}(0) = \mathcal{H}_i$.

- 1. Montrer que l'application linéaire produit $\times_{i=0}^{n} \overrightarrow{\phi}_{i} : \overrightarrow{E} \to \mathbf{R}^{n+1}$ est injective. En déduire que la famille $(\overrightarrow{\phi_{i}})_{i=0,\dots,n}$ engendre l'espace des formes linéaires sur \overrightarrow{E} (indication : les relations de colinéarité de cette famille s'identifient à l'orthogonal de $\operatorname{Im}\left(\times_{i=0}^{n} \overrightarrow{\phi}_{i}\right)$ dans \mathbf{R}^{n+1} muni du produit scalaire canonique).
- 2. D'après la question précédente, on peut supposer que la sous-famille $(\overrightarrow{\phi_i})_{i=1,\dots,n}$ est une base. Montrer que l'intersection $\bigcap_{i=1}^n \mathcal{H}_i$ est réduite à un point O (on pourra utiliser l'exercice 2).
- 3. Montrer que les assertions suivantes sont équivalentes :

- (a) $\bigcap_{i=0}^n \mathcal{H}_i \neq \emptyset$.
- (b) la famille de fonctions affines $(\phi_i)_{i=0,\dots,n}$ est liée (dans l'espace vectoriel $Aff(\mathcal{E},\mathbf{R})$).
- (c) pour tout repère affine (a_0, \ldots, a_n) , la matrice :

$$\begin{pmatrix} \phi_0(a_0) & \dots & \phi_n(a_0) \\ \vdots & & \vdots \\ \phi_0(a_n) & \dots & \phi_n(a_n) \end{pmatrix}$$

n'est pas inversible.

Exercice 5. Soit \mathcal{E} un espace affine de dimension n. Soit $\mathcal{D}_0, \ldots, \mathcal{D}_{n-1}$ des droites toutes parallèles (\overrightarrow{u} un vecteur directeur). Montrer que les propositions suivantes sont équivalentes (on parlera de droites parallèles en configuration générique).

- 1. pour $1 \leq d \leq n$, tout d-uplet de ces droites engendre un sous-espace de \mathcal{E} de dimension d.
- 2. le sous-espace affine engendré par $\mathcal{D}_0, \dots \mathcal{D}_{n-1}$ est \mathcal{E} tout entier.
- 3. pour tout choix de $0 \le k \le n-1$, pour toute donnée de points $A_i \in \mathcal{D}_i$ $(0 \le i \le n-1)$, en posant $A_n = A_k + \overrightarrow{u}$, (A_0, \ldots, A_n) est un repère affine de \mathcal{E} .

Exercice 6. Soit \mathcal{E} un espace affine de dimension ≥ 2 , \mathcal{E}' un autre espace affine et f une application de \mathcal{E} dans \mathcal{E}' telle que : f envoie toute droite de \mathcal{E} sur une droite de \mathcal{E}' et induit une bijection entre ces droites ; et f envoie deux droites parallèles sur des droites parallèles.

- 1. Montrer que f est injective puis que $\dim \mathcal{E}' \geq 2$.
- 2. Montrer que l'image par f d'un parallélogramme est un parallélogramme.
- 3. Soit \mathcal{P} un plan affine dans \mathcal{E} , et \mathcal{D}_1 , \mathcal{D}_2 deux droites sécantes de \mathcal{P} . Montrer que $f(\mathcal{P})$ est inclus dans le plan engendré par $f(\mathcal{D}_1) \cup f(\mathcal{D}_2)$. Montrer que f définit une bijection entre ces deux plans.
- 4. Montrer que tout sous-espace affine de \mathcal{E} est envoyé bijectivement par f sur un sous-espace de \mathcal{E}' de même dimension.
- 5. Soit $O \in \mathcal{E}$. On définit \overrightarrow{u} application de \overrightarrow{E} dans $\overrightarrow{E'}$ par $\overrightarrow{u}(\overrightarrow{x}) = \overrightarrow{f(O)f(O+\overrightarrow{x})}$. Montrer que $\overrightarrow{u}(\overrightarrow{x}+\overrightarrow{y}) = \overrightarrow{u}(\overrightarrow{x}) + \overrightarrow{u}(\overrightarrow{y})$, pour tous \overrightarrow{x} , \overrightarrow{y} indépendants, puis pour x et y liés (on écrira dans ce cas $\overrightarrow{x}+\overrightarrow{y}=\overrightarrow{x}+\overrightarrow{z}+\overrightarrow{y}-\overrightarrow{z}$ pour un vecteur \overrightarrow{z} non lié aux deux autres).
- 6. Montrer que, pour tout $(\overrightarrow{x}, \lambda) \in \overrightarrow{E} \times \mathbf{R}$, il existe $\sigma(\overrightarrow{x}, \lambda) \in \mathbf{R}$ tel que :

$$\overrightarrow{u}(\lambda \overrightarrow{x}) = \sigma(\overrightarrow{x}, \lambda) \overrightarrow{u}(\overrightarrow{x}).$$

Montrer que σ est indépendant de \overrightarrow{x} . Montrer que c'est un automorphisme de corps de \mathbf{R} , et en déduire que \overrightarrow{u} est linéaire.

2