Exercice 1.

- 1. \mathcal{G} contient id_E donc est non vide. Il est évidemment stable par composition. Mais le fait qu'il soit stable par inverses n'est pas évident. Par contre on va prouver dans la suite que $\mathcal{G} = \operatorname{Sim}(E) = \mathbf{R}^{\times +}O(E)$ (qui, lui, est un sous-groupe). Montrons-le quand même "directement". Soient $u \in \mathcal{G}$ et $v \in O(E)$, il s'agit de prouver que $u^{-1}vu$ appartient à O(E), c'est-à-dire, pour $x \in E$ arbitraire non nul et $k = ||x||/||u^{-1}vu(x)||$, de prouver que k = 1. Posons $y = ku^{-1}vu(x)$, ainsi ||y|| = ||x|| donc il existe $w \in O(E)$ tel que y = w(x). Comme $u \in \mathcal{G}$, u(x) a même norme que son image par uwu^{-1} , qui est uw(x) = u(y) = kvu(x) donc (puisque $v \in O(E)$) a pour norme k||u(x)||. Ainsi, ||u(x)|| = k||u(x)||, d'où k = 1.
- 2. Soit $u = \lambda u_0$ avec $\lambda > 0$ et $u_0 \in O(E)$. Pour tout $v \in O(E)$ on a $uvu^{-1} = u_0vu_0^{-1} \in O(E)$. 3.
 - a) Puisque $x \perp y$, il existe F, G supplémentaires orthogonaux tels que $x \in F$ et $y \in G$ (par exemple F = le s.e.v. engendré par x et $G = F^{\perp}$). La symétrie orthogonale par rapport à un tel F répond à la question.
 - b) D'une part s est une symétrie, donc $s^2 = id$, donc le polynôme $X^2 1$ annule s, donc s est diagonalisable et ses valeurs propres appartiennent à $\{-1,1\}$, donc $F \oplus G = E$. D'autre part $s \in O(E)$ donc $\forall f \in F, \forall g \in G, \langle f, g \rangle = \langle s(f), s(g) \rangle = \langle f, -g \rangle = -\langle f, g \rangle$ donc $\langle f, g \rangle = 0$, donc $F \perp G$.
 - c) D'une part $u \in \mathcal{G}$ et $s \in O(E)$ donc (par définition de \mathcal{G}) $usu^{-1} \in O(E)$. D'autre part $(usu^{-1})^2 = us^2u^{-1} = uu^{-1} = id$ donc usu^{-1} est une symétrie. Donc s' est une symétrie orthogonale donc (cf b) F' et G' sont supplémentaires orthogonaux.
 - d) $\forall z \in E, s'(u(z)) = u(s(z))$. En particulier $\forall f \in F, s'(u(f)) = u(f)$ donc $u(F) \subset F'$ et $\forall g \in G, s'(u(g)) = u(-g) = -u(g)$ donc $u(G) \subset G'$.
 - e) D'après d), $u(x) \in F'$ et $u(y) \in G'$ donc d'après c), $u(x) \perp u(y)$. On a donc prouvé (pour tout $u \in \mathcal{G}$) que si $x \perp y$ alors $u(x) \perp u(y)$, i.e. que $u \in \text{Sim}(E)$. Donc $\mathcal{G} \subset \text{Sim}(E)$.
- 4. Puisque $s' = usu^{-1}$, on a $s = u^{-1}s'u$ donc (en remplaçant u par u^{-1} et échangeant les rôles de s et s' dans 3.d) $u^{-1}(F') \subset F$. La restriction de u, de F dans F', est donc un isomorphisme (dont l'isomorphisme réciproque est la restriction de u^{-1} , de F' dans F). Idem en remplaçant F, F' par G, G'.

Exercice 2.

- 1. 1+t=1+2t=0 n'a pas de solution donc $F\cap G=\emptyset$.
- 2. $Aff(F \cup G)$ est donc de dimension $1 + \dim(F) + \dim(G) = 1 + 2 + 1 = 4$, c'est donc \mathbb{R}^4 .

Exercice 3.

- 1. $A + x\overrightarrow{AB} + y\overrightarrow{AC} = B + x'\overrightarrow{BA} + y'\overrightarrow{BC} \Leftrightarrow (x 1 + x' + y')\overrightarrow{AB} + (y y')\overrightarrow{AC} = 0 \Leftrightarrow y' = y, x' = 1 x y$, donc l'ensemble des solutions est la droite d'équation 2x + y = 1 dans le premier repère.
- 2. $\overrightarrow{AM} = \beta \overrightarrow{AB} + \gamma \overrightarrow{AC}$, donc M est solution ssi $\overrightarrow{BM} = \beta \overrightarrow{BA} + \gamma \overrightarrow{BC}$, i.e. (puisque $\alpha = 1 \beta \gamma$) ssi les coordonnées barycentriques de M dans (B, A, C) sont (α, β, γ) , i.e. ssi $(\beta, \alpha, \gamma) = (\alpha, \beta, \gamma)$, i.e. ssi $\alpha = \beta$. Ceci équivaut à $(\alpha, \beta, \gamma) = (\frac{1-\gamma}{2}, \frac{1-\gamma}{2}, \gamma)$ i.e. $M = (1-\gamma)I + \gamma C$. L'ensemble des solutions est donc l'ensemble des barycentres de I et C, c'est-à-dire la droite (IC).

3. s envoie \mathcal{R} sur \mathcal{R}' donc pour tout point M, les coordonnées de s(M) dans \mathcal{R}' sont celles de M dans \mathcal{R} . Ces dernières sont donc égales aux coordonnées de M dans \mathcal{R}' ssi s(M) = M. Dans le repère $(C, \overrightarrow{CA}, \overrightarrow{CB})$, s est définie par x' = y, y' = x, donc l'ensemble de ses points fixes est la droite affine d'équation x = y, i.e. la droite $C + \mathbf{R}(\overrightarrow{CA} + \overrightarrow{CB}) = C + \mathbf{R}\overrightarrow{CI} = (CI)$.