Corrigé des 2 exos du partiel de l'an dernier

Exercice 1.

- 1. Inutile de réduire, échelonner suffit. Par $L_2 \leftarrow L_2 + 2L_1$; $L_3 \leftarrow L_3 3L_1$, le système équivaut à 2x + z = a, -y + 3z = b + 2a, y 3z = c 3a. Puis par $L_3 \leftarrow L_3 + L_2$ il équivaut à 2x + z = a, -y + 3z = b + 2a, 0 = b + c a. Il est donc de rang 2.
- 2. Si $b+c-a \neq 0$, $S(a,b,c) = \emptyset$. Si b+c-a = 0, $S(a,b,c) = \{((a-z)/2, 3z-b-2a, z) \mid z \in \mathbf{R}\}$.
- 3. Si S(a,b,c) est un s.e.v. de \mathbf{R}^3 alors il contient le vecteur nul (0,0,0), donc b+c-a=0 et (a-0)/2=3.0-b-2a=0, donc a=2.0=0, b=-2a=0, c=a-b=0. Réciproquement, S(0,0,0) est bien un s.e.v. de \mathbf{R}^3 , car c'est l'ensemble des solutions d'un système linéaire homogène. (On peut même préciser : $S(0,0,0)=\{(-z/2,3z,z)\mid z\in\mathbf{R}\}=\mathcal{V}ect((-1/2,3,1))$ est une droite vectorielle).

Exercice 2.

- 1. $F_1 \cap F_2 = \{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \mid x, y, z, t \in \mathbf{R}, z = t = 0 \text{ et } y = z = 0 \} = \{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \mid x \in \mathbf{R} \} = \mathcal{V}ect(E_{1,1}) \text{ (où } E_{i,j} \text{ désigne la matrice qui comporte un 1 en ligne } i, colonne } j \text{ et des 0 partout ailleurs}). De plus, <math>E_{1,1} \neq 0$ donc $(E_{1,1})$ est libre. C'est donc une base de $F_1 \cap F_2$, qui est donc de dimension 1.
- 2. $F_1 + F_2 = \{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \mid \exists a, b, c, d \in \mathbf{R}, x = a + c, y = b, z = 0, t = d \} = \{ \begin{pmatrix} x & y \\ 0 & t \end{pmatrix} \mid x, y, t \in \mathbf{R} \} = \mathcal{V}ect(E_{1,1}, E_{1,2}, E_{2,2})$. De plus, $(E_{1,1}, E_{1,2}, E_{2,2})$ est libre (c'est un sous-système de la base canonique de E). C'est donc une base de $F_1 + F_2$, qui est donc de dimension 3.
- 3. Une matrice peut appartenir à $F_1 + F_2$ sans appartenir à F_1 ni à F_2 , c'est-à-dire peut être de la forme $\begin{pmatrix} x & y \\ 0 & t \end{pmatrix}$ sans que t ni y soit nul. Exemple : $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. $F_1 \cup F_2$ n'est donc pas un s.e.v., puisqu'il n'est pas stable par +.
- 3. $(E_{1,1}, E_{1,2}, E_{2,2})$ est une base de $F_1 + F_2$ et $(E_{1,1}, E_{1,2}, E_{2,2}, E_{2,1})$ est une base de E. Donc $(E_{2,1})$ est une base d'un supplémentaire dans E de $F_1 + F_2$. Ce supplémentaire est donc de dimension 1. On peut le préciser : $Vect(E_{2,1}) = \{\begin{pmatrix} 0 & 0 \\ z & 0 \end{pmatrix} \mid z \in \mathbf{R}\}$.