
A T H E O R E M  OF T H E  S Y L O W  T Y P E  F O R  I N F I N I T E  G R O U P S  

B .  V.  K a z a c h k o v  UDC 519.4 

In 1945, A. G. Kurosh, in [1] generalized as follows the well-known theorem of Ditsman, Kurosh, 
and Uzkov on the conjugacy and number of Sylow subgroups [2] (see, also, [3], w 

The Kurosh Theorem.  If group ~ contains a p-subgroup A with a finite number of conjugate sub- 
groups then, for each p-subgroup B of group ~ ,  one can specify at least one subgroup which is conjugate to 
A and which, together  with t~, generates a p-subgroup.  If, in addition, none of the subgroups conjugate to 
A generates ,  in conjunction with A, a p-subgroup,  then the number of subgroups conjugate to A is congruent 
to 1 module p (p a pr ime number).  

In the presen t  paper  we shall establish conditions under which the basic asser t ion  of the Kurosh 
Theorem also turns out to be true for the r - subg roups  of group 6t. Here ,  U is an a rb i t r a ry ,  but fixed, set 
of pr ime numbers ,  e i ther  finite or infinite. 

i. CONJUGACY OF v-SYLOW SUBGROUPS 

THEOREM 1. Let each finite epimorphic image of group �9 and any of its subgroups possess  the 
proper ty  of conjugacy of 7r-Sylow subgroups.  Then, if ~ contains a ~r-subgroup A with a finite number of 
conjugate subgroups then, for each 7r-subgroup B of group $, one can specify at least one subgroup, conju- 
gate to A and, together  with B, generating a ~r-subgroup. 

Proof .  Let ~ contain a finite class (A} of subgroups (not necessa r i ly  Sylow), conjugate with the ~r- 
subgroup A: 

A, c~Ac2 , . . . ,  cT) Ac~., ci ~ q~, i = 2, 3 , . . . ,  ~. 

To this c lass  cor responds  a finite class  of conjugate normal izers  of finite index (NA). We denote by a the 
intersect ion of all its subgroups.  By the Poincar6 Theorem,  invariant  subgroup a also is of finite index in 
~t. The in tersect ion of any subgroup c~lAci of class  (A> with subgroup a is invariant,  both in c~lAci and in 
a. This follows, in view of the invariance of c~lAci in (c~'IAci)a, f rom the i somorphism formula:  

(c:(1Aci) Z c~(lzlci (cTzlAc~) z ~ Z 
z (ci-lAc~) (~ r and c.(1Ac i - -  (c'(XAci) ~ z" 

Thus, to c lass  (A) cor responds  the collection of r - subg roups  which a re  invariant  in a, i.e., the in te r sec -  
tions of the t e rms  of the class with subgroup a, with the collection being, in all of group r also a complete 
class  (A r a> of r - subgroups  which are  conjugate by means of these same elements ci: 

A • o, c~ 1 (A N 6) c2,..., c~ x (A N z) c~,. 

It is possible to have coincident subgroups among these latter,  without excluding the case that all a re  equal 
to one another.  We denote their  product  by D. It is c lear  that D <] q6, since it is generated by subgroups 
of a complete c lass .  

Let B be some 7r-subgroup in q~. We form the ~-subgroup BD. If it is not yet a 7r-Sylow subgroup 
there  then exists in �9 a lr-Sylow subgroup B containing it. By the i somorphism theorem,  B a / a  ~- B / D ,  
where D = B N a is a 7r-subgroup having finite index in B and containing the subgroups D and B N (r. In- 
var iance ofT) in tr and, even more  to the point, in ~ ,  is not mandatory.  We now show, however,  that for any 
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r - s u b g r o u p  CllAe i of c lass  <A> ~ ~ (c:~ ~ .Ac~)D . It suff ices  to r e m a r k  the poss ib i l i ty  of the following de-  
composi t ion  of fac tor  group (c~lAci)a/(c~lAci)  ~ a into the d i rec t  product  of its own subgroups:  

(c:~ Ac~) ~ c:~I Ac~ 

since we can then conclude that each e lement  of the fac tor  group c~'lAci/(c~'lAci ) ~ a commutes  with each 
e lement  of fac tor  group a/(c~'iAci) D ~ and, consequently,  with each e lement  of subgroup D/(c~'IAci f~)a of 
the la t te r .  

We denote by ~ the subgroup,  invar iant  in r  genera ted by all the subgroups of complete  c lass  <A). 
It  follows f r o m  what has  just  been p roven  that  U <~ ~ .  Subgroups of c lass  (A) ,  conjugate in ~ ,  need not 
n e c e s s a r i l y  be conjugate in ~ B. We the re fo re  identify in c lass  <A) the c lass  of subgroups conjugate to A 
in r 

A, h~Ah~, . . . ,  h~Ah~, whenhi ~ ~B, ~ = 2, 3 , . . . ,  k, k ~ )~. 

To this la t te r  co r r e sponds  the c lass  of subgroups in f ac to r  group ~5B/D: 

AD (h~lAh~) D (h'klAh~) 
-5 ' -5 ' ""  

We now show that  each of these  fac tor  groups is finite. Let us choose an a r b i t r a r y  one of them: (h~'lAhi)I~/ 
(h:~lAhi) T) h'(1Ahl 

1~. Again by the i s o m o r p h i s m  t heo rem ,  we have the two re la t ionships  ~ ~(hT~lAh~) ~ 5  and 

(h:~lAh~)~ ~ ~ hilAhi In the second re la t ionship ,  the fac tor  group on the right is finite, so that the fac tor  

group on the right (and, this means ,  a lso  on the left) of the f i r s t  re la t ionship  is finite,  s ince (h~Ah~)N 
= (h~lAhi)f~ ~,  which follows f r o m  the inclusion (h(1Ahl)n ~ ~ D ~ D . We have obtained a finite c lass  (AD/  
D) of conjugate finite subgroups  in ~:B/fi, i .e . ,  an invar iant  se t  of e lements ,  genera t ing in ~B/D a finite in-  
va r ian t  subgroup.  We denote it by T/]~ (we have not excluded its coincidence with ~B/D).  Thus ,  the fac tor  
group ~ B/D contains the subgroups ]3--/D and T / f i ,  with T / ~  <] gJ~/D. 

Let us cons ider  fu r the r  finite group T]3/D. By hypothes is ,  all  t h e r - S y l o w  subgroups in it a r e  conju- 
gate.  Subgroup B is a r -Sylow subgroup in ~ ,  so that,  consequently,  ]3/D is a r -Sy low subgroup in TB/D.  
Factor  group T]3/D also contains AD/D, with this subgroup,  if it is not yet a ~-Sylow subgroup,  occur r ing  
in some  r -Sylow subgroup M/D of T]3-/I~. Since, by hypothes is ,  B-/D = S-1MS/]~ or  B = S-1MS, where  S E 
TB, we then conclude that B, a ~r-Sylow subgroup in r  contains ,  toge ther  with r - subgroup  ]3, the r - s u b -  
group S-iAS of c lass  <A). But this means  tha t  the la t ter  two ~r-subgroups together  genera te  a r - subgroup .  
The t h e o r e m  is proven.  

We turn now to the corollaries of the theorem we have proven. 

COROLLARY i. If, in the conditions of Theorem I, ~-subgroup A turns out to be a r-Sylow subgroup, 
then the finite class <A) will exhaust all the ~-Sylow subgroups of group ~. Indeed, in this case, any ~- 
Sylow subgroup �9 will generate, together with any subgroup c-IAc of class <A), a v-subgroup {~, c-iAc}, 
e E$, but this means that 91 = c -I �9 Ac, since subgroup e-IAc is 7r-Sylow, i.e,, ~I~ (A). We thus conclude 
that group ~, satisfying the conditions of Theorem I, has the property of 7r-conjugacy. 

COROLLARY 2. Since, in any finite group, by virtue of the Sylow Theorem, all the p-Sylow subgroups 
are conjugate to one another, we obtain a new proof of the basic assertion of the aforementioned Kurosh 
Theorem if, in the conditions of Theorem i, we take for r the set consisting of a single prime number p. 
We remark that thence, in its turn, follows the basic assertion of the Ditsman-Kurosh-Uzkov Theorem [2]. 

COROLLARY 3. Since, in any finite solvable group, in view of the theorem of 1 ~ Hall, all the ~-Sylow 
subgroups are conjugate to one another, we then see the truth of 

THEOREM 2. If locally solvable (in particular, solvable) group ~ contains r-subgroup A possessing a 
finite number of conjugate subgroups then, for each 7r-subgroup ]3 of group @, we can specify at least one 
subgroup which is conjugate to A and which, together with B, generates a 7r-subgroup. 

COROLLARY 4. From Theorem 2 we readily obtain the assertion, previously proven by us (see, for 
example, [4]) : 
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THEOREM 3. A local ly  solvable  (in p a r t i c u l a r ,  solvable) group ~ has the p r o p e r t y  of finite ~:-con- 
jugacy.  

We note that o ther  a s s e r t i ons  of our p rev ious ly  cited paper  [4] a l so  follow f rom T h e o r e m  1. 

2 .  ON T H E  N U M B E R  O F  ~ r - S Y L O W  S U B G R O U P S  

Defini t ion.  In group ~ ,  let  a l l  the 7r-Sylow subgroups fo rm a finite c l a s s  of conjugate subgroups .  We 
ca l l  the o r d e r  of this  c l a s s  the "Hall  number"  if  it  can be r ep re sen t ed  in the form of a p roduc t  of fac tors  
each of which is congruent  to 1 modulo some p r i m e  number  of ~ and is a power  of a p r i m e  number  dividing 
one of the f inite indices  of the p r inc ipa l  s e r i e s  of the group (the p r inc ipa l  s e r i e s  between group ~ i t s e l f  and 
one of its subgroups ~). 

We can now formula te  the fourth a s s e r t i o n  of The o r e m  9.3.1 of [5] as  follows: in a finite so lvable  
group of o r d e r  mn, (m, n) = 1, the number  of subgroups of o r d e r  m is the "Hall number . "  

THEOREM 4. If each finite ep imorph ic  image  of a group and any of i ts subgroups p o s s e s s e s  the 
p r o p e r t y  of conjugacy of ~r-Sylow subgroups ,  and the i r  number  is  the "Hall number , "  it  then follows f rom 
the ex i s tence  in ~ of a f inite c l a s s  of conjugate lr-Sylow subgroups that  the o r d e r  of this  c l a s s  is the "Hall 
numbe r . "  

Proof .  Let group r sa t i s fy ing  the condit ions of the t h e o r e m ,  p o s s e s s  a finite c l a s s  of ~r-Sylow sub-  
groups conjugate with ~l : 

~ ,  c~l~c~ . . . . .  c~l~cx, c~ ~ (~, ~ = 2, 3 , . . . ,  ~. 

To it co r r e sponds  a finite c l a s s  of n o r m a l i z e r s  which a r e  conjugate by means of the s a m e  e l emen t s  (N~) .  
We denote the i n t e r sec t ions  of the subgroups of c l a s s e s  (~)  and ( l ~ l )  by D and a r e s p e c t i v e l y .  By the 
foregoing deduction f rom T h e o r e m  1, c l a s s  (~)  exhausts  a l l  the v-Sylow subgroups in c~. Since invar ian t  
subgroup r has f inite index in r then, by the i s o m o r p h i s m  t h e o r e m ,  we obtain a finite c l a s s  in @/D of finite 
7r-Sylow subgroups  ~ / D ,  c~1~c~/D . . . . .  D - I~ex /D  �9 This c l a s s  genera tes  the finite subgroup r <:] @/D. 

By hypothes is ,  the number  of ~-Sylow subgroups in ~ / D  is the "Hall number , "  i . e . ,  X = nln 2. . .n k, where  
each fac to r  is congruent  to 1 modulo some p r i m e  number  of ~ and is a power of a p r i m e  which divides  one 
of the indices  of the p r inc ipa l  s e r i e s  

-9 "% ~z-~ -~z D ~ ~-b- -  ~ j )  �9 . . ~  ~ ~ -~- = -~- 

and, consequent ly ,  in view of the invar iance  of ~ and D in ~ ,  one of the indices  of the p r inc ipa l  s e r i e s  ( from 
to  D) : 

~ 1 ~ |  ~ . . .  ~ 1 ~ . . .  ~ - - - - D .  

We conclude that  the "Hall number"  ~ in ~ /D is a l so  the "Hall number"  in the en t i r e  group r 

COROLLARY. In view of the aforement ioned t he o r e m  of P. Hall  on finite so lvable  groups ,  we have 
the va l id i ty  of 

THEOREM 5. In a loca l ly  so lvable  (and, in p a r t i c u l a r ,  solvable)  group p o s s e s s i n g  a finite c l a s s  of 
conjugate ~r-Sylow subgroups ,  the number  of such subgroups is the "Hall  number . "  

R e m a r k  1. In a f inite group the number  of p-Sylow subgroups is  not n e c e s s a r i l y  the "Hall  number"  
so that ,  t h e r e f o r e ,  by taking as  se t  ~ a s ingle  p r i m e  number  p, we do not obtain for  an a r b i t r a r y  group the 
a s s e r t i o n  of the Kurosh Theo rem on the number  of p-Sylow subgroups w h e r e a s ,  in the case  of a so lvable  
group ~ ,  the s t r o n g e r  a s s e r t i o n  on the number  of p-Sylow subgroups is val id .  

1. 

2. 

31 

4. 
5. 

L I T E R A T U R E  C I T E D  

A. G. Kurosh ,  "Sylow subgroups of z e r o - d i m e n s i o n a l  topologica l  groups ,"  Izv. Akad.  Nauk SSSR, Ser .  
Matem. ,  9,  65-78 {1945). 
A. P. Di tsman,  A. G. Kurosh,  and A. I~ Uzkov, "Sylowsche Unte rgruppen  yon unendlichen Gruppen," 
Matem.  Sb., 3, 179-185 (1938). 
A. G. Kurosh ,  Group Theory ,  Third Edition [in Russ ian] ,  Moscow (1967). 
B. V. Kazachkov,  "On finite v-conjugacy  of g roups ,"  Dokl. Akad.  Nauk SSSR, 14___44, No. 5,971-973 (1962). 
M. Hall ,  The Theory  of Groups ,  Macmi l l an  (1959). 

262 


