A THEOREM OF THE SYLOW TYPE FOR INFINITE GROUPS

B. V. Kazachkov UDC 519.4

In 1945, A. G. Kurosh, in [1] generalized as follows the well-known theorem of Ditsman, Kurosh,
and Uzkov on the conjugacy and number of Sylow subgroups [2] (see, also, [3], §54).

The Kurosh Theorem. If group ® contains a p~subgroup A with a finite number of conjugate sub-
groups then, for each p-subgroup B of group ¥, one can specify at least one subgroup which is conjugate to
A and which, together with B, generates a p-subgroup. If, in addition, none of the subgroups conjugate to
A generates, in conjunction with A, a p-subgroup, then the number of subgroups conjugate to A is congruent
to 1 module p (p a prime number).

In the present paper we shall establish conditions under which the basic assertion of the Kurosh
Theorem also turns out to be true for the 7-subgroups of group 8. Here, U is an arbitrary, but fixed, set
of prime numbers, either finite or infinite.

1. CONJUGACY OF 7-SYLOW SUBGROUPS

THEOREM 1. Let each finite epimorphic image of group @ and any of its subgroups possess the
property of conjugacy of m-Sylow subgroups. Then, if ® contains a m-subgroup A with a finite number of
conjugate subgroups then, for each m-subgroup B of group @, one can specify at least one subgroup, conju-
gate to A and, together with B, generating a m-subgroup.

Proof. Let ™ contain a finite class (A) of subgroups (not necessarily Sylow), conjugate with the -
subgroup A:

A, ' ey, ... M e, =@, i= 2 3,..., M\

To this class corresponds a finite class of conjugate normalizers of finite index (Na). We denote by o the
intersection of all its subgroups. By the Poincaré Theorem, invariant subgroup ¢ also is of finite index in
@, The intersection of any subgroup ci'iAci of class (A) with subgroup ¢ is invariant, both in c{iAci and in
o. This follows, in view of the invariance of ¢ !Ac; in (c['Acj)o, from the isomorphism formula:

(ci*dc) o N c;tde, (c;tAe) s - s

~ an o~ — .
] (c; e Ne ¢t Ae, (et Acy) ne

Thus, to class (A) corresponds the collection of 7 -subgroups which are invariant in o, i.e., the intersec-
tions of the terms of the class with subgroup o, with the collection being, in all of group 8, also a complete
class (A N o) of r-subgroups which are conjugate by means of these same elements cj:

Aﬂ51 C;1<Anc)(:27 sy C;\I(Aﬂc)ch-

It is possible to have coincident subgroups among these latter, without excluding the case that all are equal
to one another. We denote their product by D. It is clear that D <] &, since it is generated by subgroups
of a complete class.

Let B be some 7-subgroup in . We form the 7-subgroup BD. If it is not yet a m-~Sylow subgroup
there then exists in® a 7-Sylow subgroup B containing it. By the isomorphism theorem, Bo/o ~ B/D,
where D=BNo isa m-subgroup having finite index in B and containing the subgroups D and B N ¢. In-
variance of D in o and, even more to the point, in ¥, is not mandatory. We now show, however, that for any
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m-subgroup c{ Ac1 of class (4> D <] (¢i* -Ac;)D . 1t suffices to remark the possibility of the following de-
composition of factor group (cj'Aci)o/(cj!Aci) N ¢ into the direct product of its own subgroups:

(c;Ac) s et e, y s

€l dc) N5 Ay s T Gt e

since we can then conclude that each element of the factor group ci*Aci/(ci!Acy) N o commutes with each
element of factor group o /(cj 1Ac;) N o and, consequently, with each element of subgroup D/(c1 1Ac1 Mo of
the latter.

We denote by & the subgroup, invariant in @, generated by all the subgroups of complete class (A).
It follows from what has just been proven that D < 9B . Subgroups of class (A), conjugate in ¥, need not
necessarily be conjugate in ®B. We therefore identify in class (A) the class of subgroups con]ugate to A
in B:

A, hglAh% Rt hEIAhk: Whenhie @E’ i= 21 3; R kv k <}“

To this latter corresponds the class of subgroups in factor group ®B/D:

AD (h3Ahs) D (h7Ak,) D
D ' b ' T D

We now show that each of these factor groups is finite. Let us choose an arbitrary one of them: (hi'iAhi)IS/
— n1AR) D h7lA4h,
D. Again by the isomorphism theorem, we have the two relationships (1—_D.i— g(h_‘l_jlh—)_a—ﬁ_
=1 4} -1 h 4 i
i ﬁhz)" N(h fAhA . In the second relationship, the factor group on the right is finite, so that the factor
) o

group on the rlght (and, this means, also on the left) of the first relationship is finite, since (hi*4h;)No

= (h*4Ah;) N D, which follows from the inclusion (ki ‘Ar)Ns= D D . We have obtained a finite class (Aﬁ/
D) of conjugate finite subgroups in ®B/D, i.e., an invariant set of elements, generating in &B/D a finite in-
variant subgroup We denote it by T/D (we have not excluded its coincidence with ®B/D). Thus, the factor
group @ B/D contains the subgroups B/D and T/D, with 7/D <]$B/D.

and

Let us consider further finite group TB/D. By hypothesis, all the m-Sylow subgroups in it are conju-
gate. Subgroup B is a T-Sylow subgroup in®, so that, consequently, B/D is a m-Sylow subgroup in TB/D
Factor group TB/D also contains AD/D with this subgroup, if it is not yet a m-Sylow subgroup, occurring
in some 7-Sylow subgroup M/D of TB/D. Since, by hypothesis, B/D = 8"'MS/D or B = S™!MS, where S €
TE, we then.conclude that B, a m-Sylow subgroup in ®, contains, together with m-subgroup B, the m-sub~
group S™IAS of class (A). But this means that the latter two m-subgroups together generate a m-subgroup.
The theorem is proven.

We turn now to the corollaries of the theorem we have proven.

COROLLARY 1. If, in the conditions of Theorem 1, m-subgroup A turns out to be a m-Sylow subgroup,
then the finite class (A) will exhaust all the 7-Sylow subgroups of group 8. Indeed, in this case, any 7-
Sylow subgroup ® will generate, together with any subgroup ¢™!Ac of class (A), a m-subgroup {®, ct4e},
¢ €®, but this means that M = ¢™1 - Ac, since subgroup ¢ “1Ac is 7-Sylow, i.e,, ®< <A> We thus conclude
that group @, satisfying the conditions of Theorem 1, has the property of m-conjugacy.

COROLLARY 2. Since, in any finite group, by virtue of the Sylow Theorem, all the p-Sylow subgroups
are conjugate to one another, we obtain a new proof of the basic assertion of the aforementioned Kurosh
Theorem if, in the conditions of Theorem 1, we take for 7 the set consisting of a single prime number p.
We remark that thence, in its turn, follows the basic assertion of the Ditsman-Kurosh-Uzkov Theorem [2].

COROLLARY 3. Since, in any finite solvable group, in view of the theorem of P. Hall, all the m-Sylow
subgroups are conjugate to one another, we then see the truth of

THEOREM 2. If locally solvable (in particular, solvable) group @ contains n-subgroup A possessing a
finite number of conjugate subgroups then, for each m-subgroup B of group @, we can specify at least one
subgroup which is conjugate to A and which, together with B, generates a m-subgroup.

COROLLARY 4. From Theorem 2 we readily obtain the assertion, previously proven by us (see, for
example, [4]):
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THEOREM 3. A locally solvable (in particular, solvable) group 8 has the property of finite r~con-
jugacy.

We note that other assertions of our previously cited paper [4] also follow from Theorem 1.

2. ON THE NUMBER OF 7n-SYLOW SUBGROUPS

Definition. In group @, let all the m7-Sylow subgroups form a finite class of conjugate subgroups. We
call the order of this class the "Hall number" if it can be represented in the form of a product of factors
each of which is congruent to 1 modulo some prime number of 7 and is a power of a prime number dividing
one of the finite indices of the principal series of the group (the principal series between group @ itself and
one of its subgroups 9).

We can now formulate the fourth assertion of Theorem 9.3.1 of [5] as follows: in a finite solvable
group of order mn, (m, n) = 1, the number of subgroups of order m is the "Hall number."

THEOREM 4. If each finite epimorphic image of a group and any of its subgroups possesses the
property of conjugacy of n-Sylow subgroups, and their number is the "Hall number," it then follows from
the existence in ¥ of a finite class of conjugate m—-Sylow subgroups that the order of this class is the "Hall
number."

Proof. Let group 8, satisfying the conditions of the theorem, possess a finite class of m-Sylow sub-
groups conjugate with M:

M, ;' Wy, ..., P, =68, i=2,3,..., M

To it corresponds a finite class of normalizers which are conjugate by means of the same elements (Np).
We denote the intersections of the subgroups of classes (M) and (NR) by D and o respectively. By the
foregoing deduction from Theorem 1, class (M) exhausts all the 7-Sylow subgroups in®. Since invariant
subgroup ¢ has finite index in @ then, by the isomorphism theorem, we obtain a finite class in /D of finite
T-Sylow subgroups M/D, c;'Mc¥/D, ..., DC?W“/D . This class generates the finite subgroup &/D <] /D.

By hypothesis, the number of r-Sylow subgroups in %/D is the "Hall mumber," i.e., A = nyn,. . .0, where
each factor is congruent to 1 modulo some prime number of 7 and is a power of a prime which divides one
of the indices of the principal series

»_ 9

1
FDTD"'D

0 92 _ D
D D T D

and, consequently, in view of the invariance of % and D in®, one of the indices of the principal series (from
@ to D):

G >5E>.. 292028, >...09,=D.

We conclude that the "Hall number"” A in ®/D is also the "Hall number" in the entire group @.

COROLLARY. In view of the aforementioned theorem of P. Hall on finite solvable groups, we have
the validity of

THEOREM 5. In a locally solvable (and, in particular, solvable) group possessing a finite class of
conjugate m-Sylow subgroups, the number of such subgroups is the "Hall number."

Remark 1. In a finite group the number of p-Sylow subgroups is not necessarily the "Hall number"
so0 that, therefore, by taking as set 7 a single prime number p, we do not obtain for an arbitrary group the
assertion of the Kurosh Theorem on the number of p-Sylow subgroups whereas, in the case of a solvable
group ¥, the stronger assertion on the number of p-Sylow subgroups is valid.
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