UPS, Licence MIA Math-Méca 3ème semestre, TD d'algèbre 2, Feuille 6 bis (décembre 2007)

Exercice 1. Déterminer la nature des transformațions de \mathbb{R}^3 dont les matrices

Exercise 1. Determiner la nature des transformations de
$$\mathbf{R}^3$$
 dont les findans la base canonique sont les suivantes : $A = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & -1 \end{pmatrix}$, $B = \frac{1}{4} \begin{pmatrix} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$.

Solution: A, B, C, D sont orthogonales, directes sauf C

 $Ker(A - I) = \mathbf{R}(1, -1, 0), Ker(B - I) = \mathbf{R}(1, 1, 0), Ker(-C - I) = Ker(C + I)$ $I(I) = \mathbf{R}(1, -1, -1), \text{ Ker}(D - I) = \mathbf{R}(1, 1, -1) \text{ donc } A, B, -C, D \text{ représentent des}$ rotations d'axes ces droites.

L'angle θ est donné (au signe près) par $1 + 2\cos\theta = trace$ et vaut respectivement $\pm \arccos(1/3), \pm \pi/3, \pm 2\pi/3, \pm 2\pi/3.$

C est la composée de la rotation de même axe que -C et d'angle $\theta + \pi$ par la symétrie orthogonale par rapport au plan orthogonal à cet axe.

(Hors programme : pour préciser le $\theta = \pm \dots - \text{dans } \mathbf{R}^3$ muni de son orientation canonique et étant donné le choix d'une orientation de l'axe de rotation par un vecteur unitaire u – on peut utiliser que la partie antisymétrique de la rotation vaut $\sin \theta J_u$, où $J_u(x) = u \wedge x$. On trouve alors, pour A avec $u = (1, -1, 0)/\sqrt{2}$: $\theta = +\arccos(1/3)$, pour B avec $u = (1,1,0)/\sqrt{2}$: $\theta = +\pi/3$, pour -C avec $u = (1, -1, -1)/\sqrt{3}$: $\theta = -2\pi/3$, pour D avec $u = (1, 1, -1)/\sqrt{3}$: $\theta = +2\pi/3$).

Exercice 2. Trouver les réels a, b, c pour que la matrice suivante soit dans SO(3):

$$U = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & a \\ 1/\sqrt{3} & 1/\sqrt{2} & b \\ 1/\sqrt{3} & 0 & c \end{pmatrix}$$

Solution : (On vérifie d'abord que les deux premières colonnes sont bien de norme

1 et orthogonales).
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \land \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$
.

Exercice 3. Diagonaliser dans une base orthonormale (pour le produit scalaire

canonique de
$$\mathbf{R}^3$$
) la matrice $A = \begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$. Interpréter géométriquement

la transformation de \mathbb{R}^3 représentée par cette matrice.

Solution: $det(A - \lambda I) = -\lambda(\lambda - 6)^2$ et $Ker(A) = \mathbf{R}(1, 1, -2)$ donc (puisque A est symétrique) Ker(A-6I) = le plan d'équation <math>x + y - 2z = 0. A est la composée de la projection orthogonale sur ce plan par l'homothétie de rapport 6.