Quelques contributions en topologie symplectique et géométrie presque complexe

J.-F. Barraud

USTL - UFR Mathématiques Laboratoire P. Painlevé

Principales directions

Courbes pseudo-holomorphes en dimension 4,

Principales directions

Courbes pseudo-holomorphes en dimension 4,

Théorie de Morse et de Floer,

Principales directions

- Courbes pseudo-holomorphes en dimension 4,
- Théorie de Morse et de Floer,
- Type des hyper-surfaces réelles.

Familles de courbes équisingulières

Soit (M^{2n}, ω) une variété symplectique lisse, compacte, sans bord.

Soit (M^{2n}, ω) une variété symplectique lisse, compacte, sans bord. $\begin{cases} \omega \in \Lambda^2(TM) \\ d\omega = 0 \\ \omega^n \neq 0 \end{cases}$

Modèle local: $(\mathbb{R}^{2n}, \sum_{i=1}^{n} dx_i \wedge dy_i).$

Soit (M^{2n}, ω) une variété symplectique lisse, compacte, sans bord.

Soit J une structure presque complexe sur M compatible avec ω .

Soit (M^{2n}, ω) une variété symplectique lisse, compacte, sans bord.

Soi J une structure presque complexe sur M compatible avec ψ .

 $\begin{cases} J: TM \to TM, \ J^2 = -\mathrm{Id} \\ \omega(X, JX) > 0 \end{cases}$

Soit (M^{2n}, ω) une variété symplectique lisse, compacte, sans bord.

Soit J une structure presque complexe sur M compatible avec ω .

Courbes pseudo-holomorphes:

 $du + J(u) \, du \, j = 0$

Familles équi-singulières

Espaces de modules:

Les courbes *J*-holomorphes de genre $g \in \mathbb{N}$ et de classe d'homologie $A \in H_2(M, \mathbb{Z})$ fixés forment un ensemble noté $\mathcal{M}_{g,A}$.

Familles équi-singulières

Espaces de modules:

Les courbes *J*-holomorphes de genre $g \in \mathbb{N}$ et de classe d'homologie $A \in H_2(M, \mathbb{Z})$ fixés forment un ensemble noté $\mathcal{M}_{g,A}$.

Fait:

Pour un choix générique de J, les espaces de modules $\mathcal{M}_{g,A}$ sont des variétés lisses de dimension

$$\dim_{\mathbb{R}} \mathcal{M}_{g,A} = 2(c_1 \cdot A + (n-3)(1-g)).$$

Familles équi-singulières

Espaces de modules:

Les courbes *J*-holomorphes de genre $g \in \mathbb{N}$ et de classe d'homologie $A \in H_2(M, \mathbb{Z})$ fixés forment un ensemble noté $\mathcal{M}_{g,A}$.

Fait:

Pour un choix générique de J, les espaces de modules $\mathcal{M}_{g,A}$ sont des variétés lisses de dimension

$$\dim_{\mathbb{R}} \mathcal{M}_{g,A} = 2(c_1 \cdot A + (n-3)(1-g)).$$

Que dire des perturbations d'une courbe holomorphe Cdonnée qui préservent une collection de "contraintes" fixées sur C?

Un résultat de lissité

Dans toute la suite, on se limite au cas où M est de dimension 4.

Pour chaque contrainte σ on définit alors:

- un "coût": $d(\sigma) = (d_h(\sigma), d_v(\sigma)),$
- **•** et une co-dimension: $c(\sigma)$, tels que:

Théorème. Soit C une courbe J-holomorphe et \mathfrak{S} un jeu de contraintes sur C. Alors, si

- $c_1 \cdot C \ge 1 + \mu + \sum_{\sigma \in \mathcal{S}} d_v(\sigma)$

(où $\mu = nb$ "cusps") alors, l'espace $\mathcal{M}_{\mathfrak{S}}$ des courbes respectant ce jeu de contraintes est une variété lisse de co-dimension $\sum_{\sigma \in \mathcal{S}} c(\sigma)$, intersection transverse des espaces associés à chaque contrainte prise séparément.

Commentaires

Contraintes élémentaires:

Contrainte	Coûts	Codim.
	$d_h = 0 d_v = 1$	c = 2
$\searrow k$	$d_h = 0 d_v = k$	c = 2(k-2)
$\frown \frown \left\{ (z^2, z^3) + \dots \right\}$	$d_h = 2 d_v = 2$	c = 2
•••	•••	•••

Commentaires

Contraintes élémentaires:

Contrainte	Coûts	Codim.
	$d_h = 0 d_v = 1$	c = 2
$\searrow k$	$d_h = 0 d_v = k$	c = 2(k-2)
$ \begin{array}{ c c } \hline \hline$	$d_h = 2 d_v = 2$	c=2
•••	•••	•••

Ingrédients:

 Description des perturbations d'une courbe à cusp de [Ivachkovich, Shevchischin].

Commentaires

Contraintes élémentaires:

Contrainte	Coûts	Codim.
	$d_h = 0 d_v = 1$	c = 2
$\searrow k$	$d_h = 0 d_v = k$	c = 2(k-2)
$ \qquad \qquad \\ \qquad \qquad \qquad \\ \qquad \qquad \qquad \\ \qquad \qquad \qquad \\ \qquad \qquad \qquad \qquad \qquad \\ \qquad \qquad$	$d_h = 2 d_v = 2$	c=2
• • •	•••	•••

Ingrédients:

- Description des perturbations d'une courbe à cusp de [Ivachkovich, Shevchischin].
- Généricité automatique en dimension 4 de [Hofer, Lizan, Sikorav],

Application au pb d'isotopie dans \mathbb{CP}^2

Dans \mathbb{CP}^2 muni d'une structure presque complexe J compatible avec la forme symplectique standard ω , M. Gromov a montré que:

Théorème (Gromov, 1985). Par deux points passe une unique J droite. Par 5 points passe une unique J conique.

Application au pb d'isotopie dans \mathbb{CP}^2

Dans \mathbb{CP}^2 muni d'une structure presque complexe J compatible avec la forme symplectique standard ω , M. Gromov a montré que:

Théorème (Gromov, 1985). Par deux points passe une unique J droite. Par 5 points passe une unique J conique.

En incorporant l'étude précédente à la preuve, on obtient:

Théorème. Dans \mathbb{CP}^2 muni de sa forme symplectique standard ω , toute sphère symplectique à points doubles ordinaires positifs *est isotope*, parmi de telles surfaces, à une courbe algébrique.

Développements postérieurs

Une motivation pour cette étude:

Théorème (D. Auroux, 2000). Toute variété symplectique de dimension 4 s'obtient comme un revêtement ramifié de \mathbb{CP}^2 au-dessus d'une surface symplectique.

Théorème (Siebert-Tian, Shevchischin, 2005). Toute surface symplectique lisse de degré ≤ 17 est isotope à une courbe algébrique.

Théorème (V. Shevchischin). Toute surface symplectique à points doubles ordinaires positifs de $degré \leq 4$ est isotope à une courbe algébrique.

Théorie de Morse - Floer — avec O. Cornea —

On se donne

- une variété M compacte sans bord (simplement connexe),
- f une fonction de Morse sur M,
 <,> une métrique Riemannienne M.

On se donne

- une variété M compacte sans bord (simplement connexe),
- f une fonction de Morse sur M,
 <, > une métrique Riemannienne M.

Pour $x, y \in \operatorname{Crit}(f)$, on note

- |x| = nb val. propres < 0 du Hessien.
- $\mathcal{M}(x, y)$ l'ensemble des orbites de $-\nabla f$ de x à y.

$$\dim \mathcal{M}(x, y) = |x| - |y| - 1.$$

On se donne

- une variété M compacte sans bord (simplement connexe),
- f une fonction de Morse sur M,
 <, > une métrique Riemannienne M.

Pour $x, y \in \operatorname{Crit}(f)$, on note

- |x| = nb val. propres < 0 du Hessien.
- $\mathcal{M}(x, y)$ l'ensemble des orbites de $-\nabla f$ de x à y.

$$\dim \mathcal{M}(x, y) = |x| - |y| - 1.$$

 $\overline{\mathcal{M}}(x,y) =$ compactification par ajout des trajectoires brisées.

Le complexe de Morse est alors donné par

 $C_*(M, f) = \bigoplus_{x \in \operatorname{Crit}(f)} \mathbb{Z}x$

et sa différentielle par:

$$\partial x = \sum_{|y|=|x|-1} \sharp \mathcal{M}(x,y) \ y$$

Le complexe de Morse est alors donné par

 $C_*(M, f) = \bigoplus_{x \in \operatorname{Crit}(f)} \mathbb{Z}x$

et sa différentielle par:

$$\partial x = \sum_{|y|=|x|-1} \sharp \mathcal{M}(x,y) \ y$$

 $\partial^2 = 0$ est alors la traduction algébrique de: (|x| - |z| = 2)

$$\partial \overline{\mathcal{M}}(x,z) = \bigcup_{|x| > |y| > |z|} \mathcal{M}(x,y) \times \mathcal{M}(y,z)$$

Le complexe de Morse est alors donné par

 $C_*(M, f) = \bigoplus_{x \in \operatorname{Crit}(f)} \mathbb{Z}x$

et sa différentielle par:

$$\partial x = \sum_{|y|=|x|-1} \sharp \mathcal{M}(x,y) \ y$$

 $\partial^2 = 0$ est alors la traduction algébrique de: (|x| - |z| = 2)

$$\partial \overline{\mathcal{M}}(x,z) = \bigcup_{|x| > |y| > |z|} \overline{\mathcal{M}}(x,y) \times \overline{\mathcal{M}}(y,z)$$

Le complexe de Morse est alors donné par

 $C_*(M, f) = \bigoplus_{x \in \operatorname{Crit}(f)} \mathbb{Z}x$

et sa différentielle par:

$$\partial x = \sum_{|y|=|x|-1} \sharp \mathcal{M}(x,y) \ y$$

On aimerait la remplacer par

$$\partial x = \sum_{y \in \operatorname{Crit}(f)} \overline{\mathcal{M}}(x, y) y$$

On envoie les espaces de modules dans un espace de lacets.

$$\begin{array}{cccc} \mathcal{M}(x,y) & \longrightarrow & \Omega'M' \\ \gamma & \longmapsto & \gamma \end{array}$$

On envoie les espaces de modules dans un espace de lacets.

 $\mathcal{M}(x,y) \longrightarrow \Omega M'$ $\gamma \longrightarrow \gamma$ $M' = M/\delta \text{ où } \delta \text{ est un chemin simple passant par tous les points critiques}$

On envoie les espaces de modules dans un espace de lacets.

 $\begin{array}{ccc} \mathcal{M}(x,y) & \longrightarrow & \Omega' \mathcal{M}' \\ \gamma & \longmapsto & \gamma \, \text{paramétrée par} \, -f \end{array}$

 $M' = M/\delta$ où δ est un chemin simple passant par tous les points critiques,

 $\Omega' =$ Lacets de Moore (paramétrés par un intervalle de longueur arbitraire)

On envoie les espaces de modules dans un espace de lacets.

$$\overline{\mathcal{M}}(x, y) \longrightarrow \Omega' M'$$

$$\gamma \longmapsto \gamma \text{ paramétrée par } -f$$

Cette application est compatible avec les brisures.

On envoie les espaces de modules dans un espace de lacets.

 $\begin{array}{rccc} \overline{\mathcal{M}}(x,y) & \longrightarrow & \Omega'M' \\ \gamma & \longmapsto & \gamma \text{ paramétrée par } -f \end{array}$

Cette application est compatible avec les brisures. En choisissant de bonnes "cubulations" des $\overline{\mathcal{M}}(x, y)$ on obtient des chaines $m_{x,y} \in R_* := C_*(\Omega'M')$ telles que

$$\partial m_{x,z} = \sum_{y} m_{x,y} * m_{yz}$$

On envoie les espaces de modules dans un espace de lacets.

$$\begin{array}{rccc} \overline{\mathcal{M}}(x,y) & \longrightarrow & \Omega'M' \\ \gamma & \longmapsto & \gamma \text{ paramétrée par } -f \end{array}$$

Cette application est compatible avec les brisures. En choisissant de bonnes "cubulations" des $\overline{\mathcal{M}}(x, y)$ on obtient des chaines $m_{x,y} \in R_* := C_*(\Omega'M')$ telles que

$$\partial m_{x,z} = \sum_{y} m_{x,y} * m_{yz}$$

concaténation des lacets

... pour un complexe enrichi.

On définit alors:

$$C_{*,*}(M,f) = \bigoplus_{x \in \operatorname{Crit}(f)} R_*x \quad \text{et} \quad \partial x = \sum_{y \in \operatorname{Crit}(f)} m_{x,y} y$$

qu'on étend à tout le complexe via la règle de Leibniz.

... pour un complexe enrichi.

On définit alors:

$$C_{*,*}(M,f) = \bigoplus_{x \in \operatorname{Crit}(f)} R_* x \quad \text{et} \quad \partial x = \sum_{y \in \operatorname{Crit}(f)} m_{x,y} y$$

qu'on étend à tout le complexe *via* la règle de Leibniz. Alors:

$$\partial^2 = 0$$

 ∂ est compatible avec la filtration donnée par l'indice des points critiques.

 $(C_{*,*}(M, f), \partial)$ définit donc une suite spectrale $(E_{p,q}^r, d^r)$.

Suite spectrale de Leray Serre

Théorème. $(E_{p,q}^r, d^r)_{r\geq 2}$ isomorphe, à partir de la page 2, à la suite spectrale de Leray-Serre associée à la fibration $\Omega M \to PM \to M$.

Par ailleurs, l'existence d'une flèche non nulle sur la page r implique la non-vacuité d'au moins un espace $\mathcal{M}(x,y)$ avec $|x| - |y| \leq r$.

Suite spectrale de Leray Serre

Théorème. $(E_{p,q}^r, d^r)_{r\geq 2}$ isomorphe, à partir de la page 2, à la suite spectrale de Leray-Serre associée à la fibration $\Omega M \to PM \to M$.

Par ailleurs, l'existence d'une flèche non nulle sur la page r implique la non-vacuité d'au moins un espace $\mathcal{M}(x,y)$ avec $|x| - |y| \leq r$.

La page 2 est donc isomorphe à $H_*(M) \otimes H_*(\Omega M)$ et la suite converge vers $H_*(PM) = H_*(pt)$.

Elle porte donc beaucoup de flèches non triviales...

Soit (M, ω) une variété symplectique, et $L, L' \subset M$ deux sous-variétés Lagrangiennes (transverses) simplement connexes.

Soit enfin J une structure presque complexe ω compatible.

Soit (M, ω) une variété symplectique, et $L, L' \subset M$ deux sous-variétés Lagrangiennes (transverses) simplement connexes.

Soit enfin J une structure presque complexe ω compatible.

Idée de A. Floer: remplacer

- Crit(f) par $L \cap L'$,
- l'indice de Morse par l'indice de Maslov,

Pour un choix générique de J, les espaces $\mathcal{M}(x, y)$ sont des variétés lisses, de dimension |x| - |y| - 1.

Pour un choix générique de J, les espaces $\mathcal{M}(x, y)$ sont des variétés lisses, de dimension |x| - |y| - 1.

Compacité: on suppose dans un premier temps que

$$\omega_{|\pi_2(M)|} = c_{1|\pi_2(M)|} = 0.$$

Les $\mathcal{M}(x, y)$ sont alors compacts modulo brisures.

$$\overline{\mathcal{M}}(x,y) \longrightarrow \Omega' L^{(\prime)} \\
[u] \longmapsto \text{ trace sur } L.$$

Pour un choix générique de J, les espaces $\mathcal{M}(x, y)$ sont des variétés lisses, de dimension |x| - |y| - 1.

Compacité: on suppose dans un premier temps que

$$\omega_{|\pi_2(M)|} = c_{1|\pi_2(M)|} = 0.$$

Les $\mathcal{M}(x, y)$ sont alors compacts modulo brisures.

$$\begin{array}{cccc} \overline{\mathcal{M}}(x,y) & \longrightarrow & \Omega' L^{(\prime)} \\ [u] & \longmapsto & \text{trace sur } L. \end{array}$$

Cubulation: plus difficile (structure au bord des espaces de modules, techniques de gluing).

Suite spectrale de Floer

Théorème. A partir de la page 2, la suite spectrale de Floer ainsi obtenue a les mêmes propriétés d'invariance que l'homologie de Floer.

Lorsque L et L' sont liées par une isotopie hamiltonienne, la suite spectrale est celle associée à $\Omega L \rightarrow PL \rightarrow L$.

Enfin, une flèche non triviale sur la page r implique la non-vacuité d'un espace $\mathcal{M}(x, y)$ avec $|x| - |y| \leq r$.

Exemple d'application

Lorsque L et L' sont liées par une isotopie hamiltonienne, on montre que par tout point de L passe une bande d'aire contrôlée par la distance de Hofer:

$$\nabla(L, L') = \inf_{H/\phi_H^1(L) = L'} ||H||$$

Exemple d'application

Lorsque L et L' sont liées par une isotopie hamiltonienne, on montre que par tout point de L passe une bande d'aire contrôlée par la distance de Hofer:

$$\nabla(L,L') = \inf_{H/\phi_H^1(L)=L'} \|H\|$$

Exemple d'application

Lorsque L et L' sont liées par une isotopie hamiltonienne, on montre que par tout point de L passe une bande d'aire contrôlée par la distance de Hofer:

$$\nabla(L, L') = \inf_{H/\phi_H^1(L) = L'} ||H||$$

où R est le rayon d'une perle symplectique enfilée sur L sans toucher L'.

Des bulles sur des chemins

Outre les difficultés d'analyse bien connues, les bulles posent un problème de continuité...

Des bulles sur des chemins

Outre les difficultés d'analyse bien connues, les bulles posent un problème de continuité...

une déformation "quantique"

Les chaînes $m_{x,y} \in C_*(\Omega'M')$ peuvent tout de même être construites tant qu'il n'y a pas (trop) de bulles.

Théorème. Si M est monotone, la construction précédente définit une suite spectrale tronquée à la page $c_{\min} - 1$ ayant les mêmes propriétés d'invariance que précédemment.

Elle commence avec $HF_*(M) \otimes H_*(\Omega M)$, mais la différentielle sur la page d² s'écrit:

$$d^{2}x = d_{0}^{2}x + \sum_{\lambda \in \pi_{2}(M)} GW(x, y; \lambda) [\lambda] y e^{\lambda}$$

Cas de \mathbb{CP}^1

Cas de \mathbb{CP}^1

Cas de \mathbb{CP}^1

Type des hyper-surfaces réelles — avec E. Mazzilli —

Soit $H = \{h = 0\}$ une hyper-surface réelle lisse de $\begin{vmatrix} \mathbb{C}^n \\ (\mathbb{R}^{2n}, J) \end{vmatrix}$.

Soit u un germe de disque holomorphe.

$$\Delta_{p,reg}^{1} = \max_{\substack{u(0)=p\\du(0)\neq 0}} \{\nu(h \circ u)\} \qquad \Delta_{p}^{1} = \max_{u(0)=p} \left\{\frac{\nu(h \circ u)}{\nu(u)}\right\}$$

Soit $H = \{h = 0\}$ une hyper-surface réelle lisse de $\begin{vmatrix} \mathbb{C}^n \\ (\mathbb{R}^{2n}, J) \end{vmatrix}$.

Soit u un germe de disque holomorphe.

$$\Delta_{p,reg}^{1} = \max_{\substack{u(0)=p \\ du(0)\neq 0}} \{\nu(h \circ u)\} \qquad \Delta_{p}^{1} = \max_{\substack{u(0)=p \\ u(0)=p}} \left\{\frac{\nu(h \circ u)}{\nu(u)}\right\}$$

Soit $H = \{h = 0\}$ une hyper-surface réelle lisse de $\begin{vmatrix} \mathbb{C}^n \\ (\mathbb{R}^{2n}, J) \end{vmatrix}$.

Soit u un germe de disque holomorphe.

$$\Delta_{p,reg}^{1} = \max_{\substack{u(0)=p \\ du(0)\neq 0}} \{\nu(h \circ u)\} \qquad \Delta_{p}^{1} = \max_{\substack{u(0)=p \\ u(0)=p}} \left\{\frac{\nu(h \circ u)}{\nu(u)}\right\}$$

Soit $H = \{h = 0\}$ une hyper-surface réelle lisse de $\begin{vmatrix} \mathbb{C}^n \\ (\mathbb{R}^{2n}, J) \end{vmatrix}$.

Soit u un germe de disque holomorphe.

$$\Delta_{p,reg}^{1} = \max_{\substack{u(0)=p\\du(0)\neq 0}} \{\nu(h \circ u)\} \qquad \Delta_{p}^{1} = \max_{u(0)=p} \left\{\frac{\nu(h \circ u)}{\nu(u)}\right\}$$

Soit $H = \{h = 0\}$ une hyper-surface réelle lisse de $\begin{vmatrix} \mathbb{C}^n \\ (\mathbb{R}^{2n}, J) \end{vmatrix}$.

Soit u un germe de disque holomorphe.

$$\Delta_{p,reg}^{1} = \max_{\substack{u(0)=p \\ du(0)\neq 0}} \{\nu(h \circ u)\} \qquad \Delta_{p}^{1} = \max_{\substack{u(0)=p \\ u(0)=p}} \left\{\frac{\nu(h \circ u)}{\nu(u)}\right\}$$

Type et algèbre de Lie

Théorème (J.Kohn, 1972). Dans \mathbb{C}^2 , on a

$$\Delta_p^1 = \Delta_{p,reg}^1 = \operatorname{Stab}_p(T^J H)$$

où $T^J H = TH \cap JTH$, et $\operatorname{Stab}_p(T^J H) = \operatorname{longueur} \operatorname{du}$ premier crochet de Lie itéré W tel que $W_p \notin T_p^J H$.

Théorème. Soit \mathcal{L} l'ensemble des sous-fibrés en droites complexes de T^JH . Dans \mathbb{C}^n (ou (\mathbb{R}^{2n}, J)), on a

$$\Delta_{p,reg}^1 = \max_{L \in \mathcal{L}} \operatorname{Stab}_p(L)$$

Théorème.

$$\Delta_p^1 = \max_{\tilde{L} \in \tilde{\mathcal{L}}} \frac{\operatorname{Stab}_p(\tilde{L})}{\nu(\tilde{L}, \frac{\partial}{\partial t})}$$

où $\nu(\tilde{L}, \frac{\partial}{\partial t})$ mesure "l'ordre de contact" de \tilde{L} et $\mathbb{C}\frac{\partial}{\partial t}$.

Théorème.

$$\Delta_p^1 = \max_{\tilde{L} \in \tilde{\mathcal{L}}} \frac{\operatorname{Stab}_p(\tilde{L})}{\nu(\tilde{L}, \frac{\partial}{\partial t})}$$

où $\nu(\tilde{L}, \frac{\partial}{\partial t})$ mesure "l'ordre de contact" de \tilde{L} et $\mathbb{C}\frac{\partial}{\partial t}$. Remarque: inégalité de D'Angelo (J = i !):

$$\Delta_{p_{\varepsilon}}^{1} \le 2(\Delta_{p}^{1})^{n-1}.$$