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Adaptation of a particle filtering method for data assimilation
in a 1D numerical model used for fog forecasting

S. Rémy?, O.Pannekouck® T. Bergot® and C.Baehf
a.b. ¢ \Météo-France/CNRS CNRM/GAME URA 1357
d Météo-France/CNRS CNRM/GAME URA 1357
and
Université de Toulouse Paul Sabatier, Institut de Mathégoats

Abstract: COBEL-ISBA, a boundary layer 1D numerical model, has beerld@ed for the very short term forecast of fog and low
clouds. This forecast system assimilates local obsemnatio produce initial profiles of temperature, specific httyiend liquid
water content. As fog forecasting is a threshold problem nttodel is strongly non linear.

A new assimilation method based on a genetic selectioncfefiiter was tested to produce the initial conditions. Thetiple filter
was adapted for a deterministic forecast and to take intowattche time dimension by minimizing the error on a time vandA
simplified particle filter was also used to determine thaahitonditions in the soil. The filter was tested with two setsimulated
observations. In all cases, the initial conditions prodiimethis algorithm were of considerably better quality thia@ones obtained
with a Best Linear Unbiased Estimator (BLUE). The forecdghe control variables and of fog events was also improveteldV
comparing scores with the ones obtained with an ensemblaétafilter (EnKF), the particle filter showed better perforoes for
most of the cases. The size of the ensemble impacted thesfieguf filter collapse but had a limited influence on the terapee
and specific humidity scores.
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1 Introduction This forecasting system has been used to help produce
forecast bulletins of LVP conditions at the Paris-Charles
Low visibility conditions often cause problems fofle Gaulle airport in France since 2005. These bulletins
many international airports as they may reduce the laril o provide estimated times for the onset and lifting of
ing/takeoff traffic, leading to delays or even cancellasiohVP conditions up to 4 hours in advance. _
of flights. Accurate forecasts of these conditions hat®9 is & phenomenon that evolves at small spatial and
become an important issue. Each airport defines a 4@ scales. Modeling the life cycle of fog involves in-
of visibility and ceiling thresholds below which safetjeractions between many parameterizations : turbulence,
procedures, called Low Visibility Procedures (LVP), ar@licrophysics, radiative scheme, surface-atmosphere
applied. At Paris-Charles De Gaulle airport, the threshdifchanges. This stresses the importance of working with
values are set at 600m for visibility and 60m for th@ccurate initial conditions : the quality of the COBEL-
ceiling. ISBA forecasts depends much on the initial conditions
Various approaches are employed to forecast low visibigergot and Guedalia(19943, Roquelaure and Bergot
ity conditions. 1D models are suitable for the nowcastifg?07, Reémy and Bergot(20093). As fog modelling
of radiation fog events for airports located in flat terraitivolves numerous threshold processes, the model is
(Bergot and Guédalia (19943, Bergot and GuédaliaStrongly non-linear. Because they do not require any
(19948). They are currently used in real time to forecadfl€ar or Gaussian hypothesis, particle filters are an
fog at local scale in several airports (eBergot et al. adequate algorlthm to produce_z |n|t_|al conditions for
(2009, Clark (2002, Clark (2006, Herzegh etal. such a non-linear system. Particle filteiSo{icet et al.
(2003). The 1D boundary layer model COBEL (COdé200), DelMoral (2004 and van Leeuwen (2009
Brouillard & I'Echelle Locale), developped jointly byAmong others) are a probabilistic method that aims to
Météo-France and the Paul Sabatier University wagtimate the probab|I|_ty density function (pdf) of the first
coupled with the land surface scheme ISBA (Interfaéki€ss given observations through an ensemble of random
Sol Biosphére Atmospheére\ilhan and Planto(1989, draws, or particles. The filter consists of two steps: the

Boone (2000)), as documented iBergot et al.(2005. particles are integrated by the model, and then updated
or selected. There exist many kind of particle filters,

based on how the updating and/or selection of particles

*Correspondence to: CNRM/GAME, 42 Av Coriolis, F-31057 Tude ; smilati
Codex, France E-mail - samuel.remy@meteo fr is done at each assimilation stega Leeuwen(2009),
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Baehr and Pannekouck@009). Assimilation schemesare the initial conditions and mesoscale forcings. Meso-
that mix both the particle filter and the ensemble Kalmagale forcings (i.e. geostrophic wind, horizontal advatti
filter (EnKF) has also been developed, with the aim #md cloud cover above the model column) are given by the
guide the particles closer to observations. Numerical Weather Prediction (NWP) model ALADIN
Our aim is to check if an algorithm based on particlgnttp://www.cnrm.meteo.fr/aladin).

filtering can provide initial conditions for COBEL-ISBA

at a reasonable numerical cosft. In QOing_ that, we &9 o The operational assimilation scheme

confronted to the so-called “dimensionality problem”

(Snyder et al.(2008), i.e. that the number of particles® two-step assimilation scheme using local observations
needed to adequately represent the prior density co(frgot etal(2003) provides the initial conditions. The
be very large. This problem is highly dependent on tig¥servation system used at Paris-Charles de Gaulle airport
system that is considered and the type of filter thatifsdesigned to provide up-to-date information on the state
used. Particle filters with genetic selection for examp® the surface boundary layer temperature and moisture.
were shown Baehr and Pannekouck2009) to be less It consists of a weather station which provides 2 m tem-
affected by this problem. A genetic selection particRerature and humidity, visibility and ceiling; a measure-
filter was thus adapted to provide initial conditions for Be€nt mast that gives temperature and humidity observa-
deterministic run. The computation of the weights wans at 1, 5, 10 and 30 meters; radiative flux (short-wave

also modified to take into account observations that &@ad long-wave) observations at 2 and 45 meters; and soil
available before or shortly after the analysis time. temperature and water content between the surface and

The framework of this study is outlined in section 240cm. Observations from the weather stations are avail-
Two sets of simulated observations were created : oMdle every 6 minutes whereas for other instruments they
with mostly clear-sky conditions at the initialization, t@e available every 15 minutes.

Study the formation of fog' and the other with frequeﬂ:[he Operational assimilation System uses information
occurrence of fog and low clouds. Section 3 preserf@m a first guess or background (i.e. a previous 1 hour
the setup of the particle filter and section 4 shows tR&OBEL-ISBA forecast), local observations, and profiles
results with the two sets of simulated observations, &8m the ALADIN NWP model to compute a Best Linear
compared to the operational setup of the assimilatibfibiased Estimator (BLUE) of temperature and specific
scheme. In section 5, we are going to discuss the impBefnidity initial conditions:

of the ensemble size on the performance of the particle

a b o b
filter. Finally, section 6 summarizes the results. x* =x"+K(y’ - Hx’) 1)
where
T T —1
2 Framework of the study K =BH' (HBH" +R) 2)
2.1 The COBEL-ISBA assimilation-prediction systemIn Eq. 1,x“ is the analysisx® is the first guess or back-
211 The model ground, andy® are the observationK is the Kalman

gain that determines how the background is modified
The COBEL-ISBA system results from the couplingy take into account the observatio®.and R are the
of the high resolution atmospheric boundary layiror variance/covariance matrices of the background and
1D model COBEL Bergot (1993, Bergot and Guédaliaof the observations respectively, aid is the forward
(19943 and Bergot and Guedalig19940)) with the 7- operator, i.e. the matrix that interpolates informatiaomir
layer land-surface scheme ISBANGilhan and Planton the model grid to the observation grid. As the dimension
(1989, Boone(2000). The atmospheric model possesses the system is small (30 levels for two control variables),
a high vertical resolution: 30 levels between 0.5 and 13ffatrices can be explicitly inverted and there is no need
m, with 20 levels below 200 m, to be able to adequateyr a variational algorithm. In the operational setup, the
forecast radiative fog events. The physical parameterigaror statistics are imposed arbitrarily to allow the ialti
tions used in COBEL-ISBA consist of: profile to be close to observations near the surface and
I(_;Ioser to the ALADIN profiles above.

e a turbulent mixing scheme with a 1.5-order tu . -
bulence closure that uses a prognostic turbuIeWthen a layer of cloud is detected, an additional step

kinetic energy (TKE) equation. The mixing Iengtl‘f‘ses an algorithm that minimizes the difference between

differs for stable Estourne(1988) and for neutral observed and simulated radiative fluxes at the ground
or unstable conditionsBougeault and Lacarrereand at 45 m to estimate cloud thickness. This algorithm

(1989) works as follows: the radiation sc_he_me of COBEL is
X t@ed to compute the modeled radiative fluxes at 2 and
m, using different initial thicknesses of the fog layer.
he best estimate of the initial fog thickness is the one
that minimizes the error between modelled and observed
radiative fluxes (seBergot et al(2005 for more details).
COBEL-ISBA is run at one-hourly intervals and provide$he relative humidity profile is then modified within the
up to eight hours of LVP forecasts. The inputs to the modsturated layer.

e a warm microphysical scheme adapted to fog a
low clouds in temperate regions,

e detailed long-wave and short-wave radiation tran
fer schemes.
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The soil temperature and water content profiles used2®@.2 The FOG situation
initialize ISBA are obtained directly by interpolation o

. tI'his situation was designed to study the fog and low
soil measurements.

cloud life cycle. Fog and low clouds occurred during many
nights of the 15-day observation set, hereafter referred
to as FOG, because of high moisture combined with
strong night-time cooling due to clear skies above the
Observing System Simulation Experiments (OSSE) aremedel column. Figure2 shows the “true” temperature

adequate tool for studying the accuracy of an assimilatiohservations at 1m and the “true” liquid water content
scheme (e.gHuang et al.(2007). They consist in gen-integrated over the model column. In total, 98 hours of
erating pseudo-observations by adding perturbations tb\P conditions were “observed” in these 15 days, with
reference model run. The pseudo-observations are tifieg occurring on 11 nights. Stratus also occurred in the
assimilated and the initial state and forecast can be cdipper part of the model column on days 7 and 8. It was
pared to the reference run. The advantages of this method counted as LVP. Various fog situations occurred, from
are : shallow, early-morning fog to fog layers more than 200 m

thick.
e The perfect model hypothesisis true, in agreementIC

with the hypothesis made in the BLUE assimila- .
tion algorithm. The errors in the initial condition?'z'3 Reference experiments for NEAR-FOG and FOG
originate only in the observations and first gue$dgure 3 shows the mean Root Mean Square Error
errors, themselves originating from errors in iNifRMSE) and the mean bias of the forecasted temperature
tial conditions propagated by the previous foreand specific humidity versus forecast time and altitude,
cast. The lack of observations for certain paranahen the operational setup, as defined in section 2.12, was
eters (e.g. the thickness or water content of a clouded. The influence of the observations can be seen in the
layer) does not allow the assimilation scheme tower values of RMSE at initialization time below 50m,
entirely correct the errors of the first guess fielegispecially for temperature. For both temperature (figure
The quality of the initial conditions thus depend8c) and specific humidity (figurda), most of the increase
solely on the observations used and on the assimf-the RMSE occurred during the first two hours of fore-
lation scheme. cast time. For specific humidity, the maximum of RMSE
e This framework allows observations to be simwas always at the surface whereas, for temperature, the
lated over the whole domain (the boundary lay&MSE no longer showed large differences between the
for this study). lower and upper part of the domain after 4h of forecast
e Lastly, it is possible to create a large variety dime. The analysis was nearly unbiased for both specific
observation sets that accommodate our needs famidity and temperature (figur&b and d). The specific
evaluation purposes. humidity bias became slightly positive with forecast time,
i}h a maximum close to the ground. A small cold bias
the study of clear-sky nights and of shallow-fog situatior?iso occured for the fo_recasted tempere_lture (flgdbeand_
increased regularly with the forecast time, with maxima
(NEAR-FOG), and the other for the study of frequerE:tlose to the ground-level and above the top of the mast
and deep fogs (FOG) (Sé&my and Bergo(20093 for 30m)
more details on how the simulated observations weie '’ .
Igure 4 shows the mean RMSE and bias of tempera-
generated). o - i
ture and specific humidity when the operational setup was
N used with the FOG situation. It is interesting to compare
2.2.1 The NEAR-FOG situation it with figure 3. The initial profiles of specific humidity
Simulated observations corresponding to clear-sky affigjure 4a) show a larger RMSE for FOG than for NEAR-
shallow-fog situations were produced. This observati&i©G over the whole domain. This is mainly due to errors
set will be referred to as NEAR-FOG hereafter. Fiftedn the initialization of fog and low clouds. The increase
days of simulated observations were generated, durfgRMSE with forecast time is slower for FOG than for
which no fog occurred for the first 10 nights. ShalloWEAR-FOG and, after two hours of forecast, the values
fog situations developed for the remaining five nightslose to the surface are similar for both situations. The
Their thicknesses did not exceed 10 m. Twenty-one holRMSE above 100m remain significantly higher for FOG
of Low Visibility Procedure (LVP) conditions were “ob-than for NEAR-FOG, for all forecast times. The specific
served” for this situation. The skies above the model célumidity bias (figure4b) is close to zero for all fore-
umn were entirely clear, which ensured strong night-tincast times below 50m whereas it is negative above that
cooling. Figurel shows the “true” temperature at 1m andeight. For all heights, the specific humidity bias did not
the corresponding liquid water path. Close to ground levelry much with forecast time. The RMSE of forecasted
the daily highs lay in the 20-22 °C range while the lowemperature (figuréc) increases much faster in the lower
were around 8-9 °C. Day and night relative humidity vapart of the domain for FOG than for NEAR-FOG (figure
ied greatly from 30% to 100%, corresponding to typic&c) and reaches a maximum of 1K after 7 hours of sim-
conditions observed during autumn and winter over landlation. A maximum appears between 50 and 150 m of

2.2 Simulated observations
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a) 1m Temperature
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Figure 1. NEAR-FOG : “Truth” for 1m temperature (a) and Liduvater path (b).

altitude, which corresponds to situations where the forle probabilitiesp(zx) and p(yx). The aim of filtering
casted height of the fog is different from the simulatealgorithms is to estimate the probabilityxy|yx). In this
observations. The inversion at the top of the fog layer sigork, the hypothesis that a linear relation, denoted by
nificantly increases the error if the forecasted cloud layére H matrix, exists between the observation and the
thickness is not the same as the observed one. The temdel spaces is made. Non-linear observation operators
perature bias (figuréd) also increases with forecast timeare possible, but non-necessary in this work. A non-linear

with a maximum at the surface. dynamical system can be written as:
3 Particle filter-based data assimilation

Tpe1 = f(zp) + Vi 3)
Particle filters are ensemble-based assimilation algorith yp = Hap + Wy

that employ a fully non-linear and non-Gaussian analysis
step to estimate the probability distribution function of

the model conditioned by the observations. There exﬁg the model(V3), k € Nand(Wy.), k € N are the model

severgl partlcl'e f||t<_er algorithms. In this work, a genetig the observation errors respectively; the observation
selection particle filter based on the work of Baehr a

L ors are supposed to be independent from each other
Pannekouc_:ke (2909) was adapted to a determlnlstlc_- ime. Particle filters use an ensemble of first guesses
model. This section presents a background on parti gce

. ; . ) x),i=1,..,N, also called “particles”. The subscript
filter, focuses on the genetic selection algorithm, and th otes the analysis time iterations, anthe particles.

shovv_ hOW the part|cle_fll_te_r was adapted to supply InItI%"article filtering relies on the hypothesis that this ensem-

conditions to a deterministic model. ble of first guesses is able to approximate the probability
p(z) through a discrete sum:

3.1 Fundamentals of particle filtering

Let (zx), k € N be a Markov chain that denotes the model

. . N
state.(yx), k € N is the sequence of observations. Both () Nooo 1 Z‘S(” ) )
are realizations of the random variab¥s andY;, with k N P Lk
Copyright(© 2009 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-19 (2009)
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a) 1m Temperature
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Figure 2. same as figufiefor FOG.
Then, using the Bayes theorem: is done using only the selected particles. During the se-

lection step, a particle will be kept with a probability
p(Yk|ze)p(@k)

p(zx|yr) _ (5) of G (z;) or eliminated with a probability of — G (x;).
J p(ykler)p(ey)de Del Moral (2004 showed that using a multiplicative co-
N N efficientey, so that a particlé has ac, G (z;) probabil-
~% Zwits(ﬂ?i,k) (6) ity to be selected and &— ¢,Gy(z;) probability to be
i=1 eliminated, lowers the error variance of the estimator pro-

vided by the particles filter. As iBaehr and Pannekoucke
(2009, we chosey, = m Once the particles are
selected, they are resampled through an importance re-
p(yrlTi k) sampling (IR) algorithmZwhich uses multinomial draws.
Wik = m () This algorithm replicates particles with higher weights. T
j=1 PRI differentiate them, noise is added to each particle. This
The maximal weight iss** = maa;(w, ;). The poten- noise has to be large enough to differentiate the similar

Where (w; ), = 1,.., N are the weighting coeffi-
cients, given by:

tial fonction is defined for each particles follows: particles that result from the selection step and to range
the first guesses probability, but not too large so that the
Gr(zi) = plyelzir) (8) resulting particles have weights that are not too small, i.e
so that to avoid filter collapse. We chose to add to each particle
" Gr(zi) analysisi a term in the form:
ik =

| > Gr(;) 1
X?.,k = X?k + BfuLk (10)
3.2 Genetic selection algorithm

Particle filter algorithms differ on whether and how th@/here y; i is a vector of random variables drawn from
particles are selected and resampled. The genetic seleciigaussian distributiol/ (0, 1). The noises were thus co-
algorithm selects the particles that are closer to the ebdsgrent with the model uncertainty. Bounds were arbitrarily
vations, i.e. the ones that have larger weights. Resamplimgposed on them so that they were not too large.
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a) Specific humidity RMSE (g/kg) b) Specific humidity bias (g/kg)
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Figure 3. NEAR-FOG : RMSE (left) and bias (right) of temperat (top) and specific humidity (bottom) versus forecasetitsolines
are every 0.05K for temperature bias and RMSE, every 0.0§ fgtkspecific humidity RMSE and every 0.025 g/kg for specificridity
bias.

3.3 Dimensionality problem 3.4 Adaptation of a particle filtering algorithm to a
deterministic 1D model

A patrticle filter with genetic selection was adapted for us-
As particle filters rely entirely on the hypothesis th&t9€ within a deterministic 1D model. The dimensional_ity
the background probability(z;,) can be estimated by aproblem was partially corrected through the resampling
weighted sum of particles, the ensemble has to be lafjate.
enough to represent accurately enough the probability
density function of the first guessinyderetal. (2008 3.4.1 Computation of the weights
showed with the dynamical system proposed by Lorenz _
(Lorenz (1996) that the ensemble size needed for A shown by Eq. 7, the weights; s,i =1,..\V are a
successful implementation of a Sequential Importanigaction of the distance between the particknd the ob-
Resampling (SIR) particle filter scales exponentially wigrvations, which is supposed to be known. This function
the problem size. For a 200-dimensional model spaé&pends much on the law followed by the observation er-
they found at 1&' particles were needed to avoid filtefors, as shown bypel Moral (2004. The hypothesis was
collapse or divergence, i.e. a single particle has a weigh@de that these errors are Gaussian; as a consequence, the
nearly equal to 1 while all others has very small Weightgyeights are also a Gaussian function of distances. Another
The dimensionality problem can be partially reducedfivantage of this choice is that the Gaussian function is
depending on what kind of particle filter is used. BaeNery discriminative: particles with higher distances will
and Pannekoucke (2009) showed that a genetic selecfige very small weights. The distance between observa-
algorithm brought convergence of the particle filter withons and the particle was taken as the Mahalanobis dis-
1000 particles and a 200-dimensional model space, usigce: modified to take into account the background error
the same dynamical system as Snyder et al. Furtherm&tatistics:
the frequency of filter divergence also depends on the
dynamical system. p(yk|$i,k) = p((yx — HiUi,k)T(R + HBHT)_l

(yv —Hzix)) (11)
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a) Specific humidity RMSE (g/kg) b) Specific humidity bias (g/kg)
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Figure 4. Same as figuifor FOG.

The B matrix in Eq. 11 was computed directly fronthe times when observations were available, so that the
the ensemble of first guesses. An issue is the relatdleservations were assimilated within a time window and
importance of temperature and specific humidity in thet at a single point in time. If a familfy;*), m = 1,..M
computation of the modified Mahalanobis distance. A$ observations are available at timesbetween analysis
temperature was generally larger than specific humiditytimes & — 1 and k£ + 1, then for each observatiog;”

the situations under study, the distance between simulaaed each particle; ,,, the potential function is computed
and observed temperature was often much larger than disailarily as with Eq.8:

tance between simulated and observed specific humidity.

As a consequence, the overall distance given by Eq. 11 Gr(xim) = py|zim) (12)
was much more influenced by errors on temperature than

on specific humidity. The weights thus depended mu&he potential function of the particle over the time
more on temperature errors than on specific humidityindow associated with analysis timés then the product
errors. To solve this problem, the distance betweeh all potential functions computed at a single time,
simulated and observed temperature was normalizedf@towing Del Moral (2004:

that the sum of all temperature distances computed at a

given analysis time were made equal to the sum of all Gr(z;) = TP=VGL(2im) (13)
distances on specific humidity. As we had no information and
on the “real” relative impact of temperature and specific Gr ()

e . . . . W _ AN 14
humidity on the distance, we chose arbitrarily to equalize ik = W (14)
their relative influence. The overall distance was then j=1 7k

taken as the sum of the specific humidity distance , . —
the normalized temperature distance. It then dependiﬁcﬁe maximal weight becomes"** = maz; (Wi k).

n . : .
temperature and specific humidity errors in the samé2|re 5 illustrates this concept, I _the weights were
proportion. computed only as a function of the distance between the

particles and observations for single point in time (i.e.
analysis time), particle 1 in figur& would have had a

In addition, the potential functions were computedrger weight than particle 2, as the distance between
at different forecast times of the backgrounds, matchingservations and particle 1 is smaller at analysis time.
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T,Q Observations
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Figure 5. Schematic graph showing two particles and theigite computed with a time window of 30 minutes centered aalyesis time.

Particle 1 is however not a good choice, as its trajectampn-perturbed first guess. Figueshows the frequency

is very different from the sequence of observationsf the non-perturbed run being chosen to be the ini-
except at analysis time. When the weights computedtial conditions versus analysis time. During the nights
forecast times 30 minutes later and 30 minutes earledr NEAR-FOG, the non-perturbed first guess was cho-
than analysis time are taken into account, then particls@h most of the times; it could be because in a stable
has a larger overall weight than particle 1, as its trajgctaatmosphere, the perturbations added to the analysis were
is closer to the sequence of observations. better preserved during the simulation than in a neutral
In our case study, observations from the measurementunstable stratification, while in a neutral atmosphere,
mast were available every 15 minutes, the weather statfmrturbation to the analysis were quickly smoothed dur-
provided 2m humidity and temperature every 6 minutéag the simulation. During the day, the perturbed parti-
and ALADIN profiles were available for every hourcles were most of the time closer to observations than the
The distance between obervations and the backgrounmh-perturbed first guess. During FOG, the frequent oc-
were computed for forecast times varying from 6 minutesirrence of fogs changed this pattern; perturbed particles
to 1h30, i.e. from analysis time minus 54 minutes twere chosen more often during the nights, because thick
analysis time plus 30 minutes. In this way, all availabfegs or stratus occured, which ma the atmosphere less un-
observations were used. This setup thus imposed simusiable or neutral. During the day, as for NEAR-FOG, the
tions to be started at least 30 minutes later than analysism-perturbed guess was seldom chosen to be the initial
time. It is already the case in the operational setup, @mnditions.

the observations that covers the period from analydike initial temperature and specific humidity provided
time included to 30 minutes later are available around #9 this algorithm replaced the ones that were given by
minutes after analysis time. the BLUE algorithm. The second step of the assimila-
tion scheme, i.e. the initialization of liquid water con-
tent and adjustment of initial specific humidity profiles
in case clouds are present at initialization time, was left
unchanged.

Two possibilities exist for the construction of the initial

conditions for the deterministic, non-perturbed run: eith3 43 Frequency of filter collapse

take the weighted mean of all particle as the analysis, or"

the best particle, i.e. the one with the largest weight, as Before anything else, we have to check if the filter does not
analysis. Here, we chose the latter option, so that the iodllapse. Figur&’ presents a frequency histogram of the
tial conditions are as close as possible to the observatiomximal weight/V™** for all simulations of the FOG and
and that its coherence with the model physics is ensurddEAR-FOG situations. The filter was run with ensemble
The filter was run with 50 perturbed particles, plus thgzes varying from 50 to 200 members, which is small

3.4.2 Determination of the initial conditions
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Figure 6. Frequency of the non-perturbed guess being chosea the initial conditions versus analysis time, for NEARRG (a) and
FOG (b).

compared to ensemble sizes usedSnyder et al(2008 was present at analysis time, the atmosphere was either
andBaehr and Pannekouck2009. Filter collapse can bevery stable, when the fog was shallow, or neutral when
diagnosed by diagrams strongly skewed toward the righitwas thicker or in the presence of stratus. There were
when the maximal weight is very close 1. For the FOG sitlearly more situations with weakly stable, neutral or un-
uation (figurera, c and e), it was not the case. When usirsgable lower atmosphere for FOG, than for NEAR-FOG;
50 members; the filter was already rather convergent: fomd many of these situations were linked to the presence
less than 10% of the simulations, the maximal weight watfog or stratus. For NEAR-FOG, when the atmosphere
above 0.95. The diagrams were more and more skewedtas stable, the variability of the maximal weight divided
wards the left with increasing ensemble size, which medms the sum of all weights was less important than with
that the filter was more and more convergent. This canB®G. There appears to be a dependancy between stabil-
explained by the fact that when more particles are avatl and the frequency of filter divergence, with a threshold
able, the best one is likely to stand above the other orm@eund -2 to -3K for potential temperature gradient. Be-
less markedly, in terms of distance to the observatiofsy that value, filter divergence was frequent; while it was
than when fewer particles are used. quite rare when stability was above that value. For FOG,
With the NEAR-FOG situation, collapse of the filter wathe dependancy is less clear, though overall filter diver-
more frequent when using a 50-particles ensemble; tence was significantly more frequent for strongly stable
maximal weight was larger than 0.95 for around one anatmospheres than with weakly stable, neutral or unstable
ysis in three. The frequency of filter collapse decreasatinospheres.

with increasing ensemble sizes. The difference betweBms explanation of the different behaviour of the filter de-
FOG and NEAR-FOG lay in the occurence of deep fogending on the stratification of the atmosphere lies in how
during FOG, which provoked a change in the stratificatidhe initial perturbations are preserved or smoothed dur-
of the atmosphere at night. ing the simulation. The atmosphere is neutral or weakly
Figure 8 shows the maximal weighty™** for every as- unstable during the day and at night if deep fog or stra-
similation cycle of PART50 versus lower atmosphere stats occurs. With a neutral or unstable atmosphere, the
bility, arbitrarily defined here as the gradient of poterinitial perturbations are quickly smoothed during simula-
tial temperature in the first 200m of the atmosphere, fons; the distances of the particles are then rather close
NEAR-FOG and FOG. Cases when fog or stratus weaad filter divergence is avoided. Stable atmosphere oc-
present at analysis time are plotted in gray. When fegr during nights with clear-sky or shallow fogs. When

Copyright(© 2009 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-19 (2009)
Prepared usingjjrms3.cls DOI: 10.1002/qj



a) FOG, 50 particles b) NEARFOG, 50 particles
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Figure 7. Frequency histogram Y™ ** for all simulations of the FOG (left) and NEAR-FOG (rightjigition; simulations using 50 (a
and b), 100 (c and d), 200 (e and f) particles.

the atmosphere is stable, the initial perturbations are msed., which could explain the different behaviour of the
modified much through the simulations and the distangaeticle filter. The results in terms of filter divergence-fre

of the particles to the observations are larger; the filterdgsiency versus ensemble size are in the same range as the
then likelier to collapse. As shown before, in this casenes obtained baehr and Pannekouck2009 for the

the non-perturbed guess was often chosen to be the inNBIAR-FOG situation. Convergence was more frequent
conditions. for the FOG situation. perturbations were used.

Filter divergence was linked for most cases to the strat-

ification of the atmosphere. For the same dimensigrs Soil data assimilation

of the model space, it occured less frequently than in
Snyder et al(2008, for ensemble sizes much smaller thal
were used in their work. The frequent convergence '
the modified particle filter was due to the selection sta

which eliminated particles that were distant from the olj- L and th levels of ISBA th h its phvsical
servations. The fact that the noise added to the initiast and the upper 1evels o through 1ts physica
rocesses, in order to reach some kind of equilibrium that

of the particles was coherent with the model uncertairft istent with it terized Eigil
and bounded also allowed to run with fewer particles th consistent with Its parameterized processes. 1gulre
trates this phenomenon; with the operational setup, un-

If they were purely random. The selection step was Irealistic initial values of sensible and latent heat fluxes a
incl in the kind of particle filter that Snyder et al.”" . ) ; . ) )
cluded e kind of particle filter that Snyder e aqmckly adjusted in the first 15 minutes of the simulation.

the operational setup, the soil observations are simply
erpolated to the ISBA grid to provide initial conditians
uring the simulation, COBEL-ISBA adjusts the values
"temperature and humidity in the lower levels of CO-
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Figure 8. W™“* for every assimilation cycles of PART50 with NEAR-FOG(adfOG(b) versus potential temperature gradient in the
first 100m of the atmosphere. When fog or stratus was presemzadysis time, the corresponding cross is plotted in gréne mean for
every stability interval of 1K is plotted by a continuousdin

This adjustment brought a sharp peak in the forecasted interface between soil and atmosphere was patrtially
2m temperature and a brutal increase in the forecasted @stved following the implementation of this algorithm.
specific humidity. This phenomenon is frequent for sinf-here was still some adjustment on the sensible heat flux,
ulations with maximal solar radiation and is a source bfit the impact on 2m temperature and specific humidity
specific humidity bias. was much smaller than with the operational setup.

This problem was especially troublesome within a particle

filter, as for many simulations it concerned all particles,

perturbed or non-perturbed. When using the adapted par-

ticle filter with the original soil initialization, partiels all 4 Results of the filter

showed the same bias for specific humidity for simulations

that started between 10UTC and 15UTC. To prevent this

problem, a simplified version of a particle filter was séthe performance of the filter was assessed against the
up to provide the initial conditions for ISBA. The ISBAREF experiment to evaluate the improvement or degra-
first guess that was closest to observations of soil tempgsition of the new assimilation algorithm as compared to
ature and water content was chosen to be the ISBA initiaé operational setup. Scores on temperature and specific
conditions for the non-perturbed run. A random perturumidity were computed and, for the FOG situation, the
bation was added to these profiles to produce the initielpact of the new assimilation scheme on the quality of
conditions of the perturbed particles. That means that he forecast of LVP events was also estimated. The ex-
selection step consisted here only to keep the closest patiments were called PART50, PART100, PART200 de-
ticle and to eliminate all others. The distance betwepanding on the size of the (perturbed) particle ensembles.
observations and the ISBA backgrounds were computachis section the results of PART50 are shown; the influ-
over a time window, as they were for COBEL. The rasnce of the ensemble size will be discussed in a specific
tionale behind this algorithm was to provide ISBA witkection.

initial conditions produced by the model itself, as it is theOBEL-ISBA was designed to forecast radiation fog,
case for COBEL. The adjustment that usually occurs at theiich is a phenomenon that occurs in the lower part of
beginning of the simulation would then already be takehe model's domain. As a consequence, when discussing
in account in the initial conditions of both ISBA and COthe scores, more emphasis will be put in the first 100m of
BEL. Figure9 shows an example of how the problem ahe domain.
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Figure 9. NEAR-FOG: simulation starting at Day 4, 13UTC; Zxmperature (left) and the sum of latent and sensible headl(right).
Observations are plotted by a dashed line, simulation waghaperational setup is represented by a black line; witméve assimilation
scheme, by a gray line.

4.1 NEAR-FOG situation The usefulness of taking a first guess as the initial con-
ditions and of assimilating data over a time window ap-
&eared fully during the forecast. As the initial conditions
were coherent with the model's physical processes, the
YGrecast was rapidly of much better quality for PART50

and specific humidity, and also the bias difference betweaeg compared to REF. The improvement reached 35 to

the two experiments for NEAR-FOG. The RMSE of ini -, - . 0 )
tial temperature was improved by up to 20-40% ab045/o for specific humidity and 25 to 30 % for tempera

100¥Sre. The bias was also reduced in the lower part of the
80m and degraded by up to 10% below 20m. For mmgomain for temperature after 2 hours of forecast and for
0

Figure10 shows the Root Mean Square Error (RMSE)

specific humidity the RMSE was reduced by 25 to 55 - - !
. ecific humidity over the whole domain after 1 hour of
above 100m, and slightly degraded below 20m. PART recast. This shows that the initialization of ISBA and

did not improve the initial RMSE in the lowest part of th(f}he interface between COBEL and ISBA worked better
domain. An explanatlon for this 1S that the F".Sta.‘”ce bﬁfith the new algorithm then with the operational setup,
tween the particles and observations was minimized OVEI:t \vas shown by previous studie@émy and Bergot

a time window and not just at analysis time; the par“céooga)) that a faulty initialization of ISBA is a cause of

that was selected to be the initial conditions may not ecreasing forecasted bias on temperature and specific hu-

the one closest to the observations at analysis time. Al%o

o " idity.
the initial conditions of REF were very close to the Obl"hese results were obtained with a filter that was often

servations from the mast and the weather station theg . . . . .
since the variances of the measurements from the mast%'ngrgmg during the nights (see figu®. This was not

the weather station used in the BLUE were much smal oéo detrimental in our case, as the filter was used within a
than the ones of both the ALADIN profiles and the fir terministic approach. The most important in this frame-

e§rk is that the filter provides good quality first guesses to

gu?jS:ngg ;réltlczzlr:]ergﬁ:}edr?;u;e'zlt?ﬁ;\t/%?Sshg(r:]itfli)é E\E%iﬁg{) used as initial conditions. The noise added to the initial
y b ' P nditions also contributed to increase the spread of the

\t/\r/]z;? unchanged below 100m and slightly improved aboé’ﬁsemble even when the filter collapsed.
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a) Specific hu. RMSE, % of RMSE with REF b) Specific hu. bias minus bias with REF (g/kg)

| | | | | |

=
o
o

Altitude (m)
Altitude (m)

10 10

07 08 00 01 02 03 04 05 06 07 08

00 01 02 03 04 05 06
Forecast time (h) Forecast time (h)

c) temperature RMSE, % of RMSE with REF  d) Temperature bias minus bias with REF (K)

Altitude (m)
Altitude (m)

10 10

00 01 02 06 07 08 00 01 02

03 04 05 06 07 08
Forecast time (h)

03 04 05
Forecast time (h)

Figure 10. NEAR-FOG: RMSE of PART50 as a percentage of the RMISREF (left) and bias of PART50 minus bias of REF (right)
versus forecast time, for temperature (top) and specificitlityr(bottom).

4.2 FOG situation 4.2.2 Forecast of LVP events

Figure 12 shows the frequency distribution histogram of
the onset and the burnoff time of LVP events, for all sim-
ulation times and forecast times, for the FOG situation.
Figure 11 shows the RMSE of PART50 as a percentagmulations in which fog was already present at initializa-
of REF's RMSE for temperature and specific humidityion time were discarded for the computation of the onset
and also the bias difference between the two experimestsres. For these simulations, it was meaningless to com-
for FOG. PART50 improved the initial conditions apare the simulated and observed onset times because the
compared to REF. For specific humidity the initial RMSEbg events considered had begun before the initialization
was reduced by 40 to 45 % over the whole domain. As fiime. The errors larger than 240 minutes are grouped to-
temperature, the initial RMSE improvement was larggether in the 240 minutes column. The mean and standard
above 50m, with a reduction of 30 to 45% above thdeviation of errors smaller than 240 minutes are also indi-
height and of 10 to 25% below. For both temperature andted.
specific humidity, the initial bias difference as comparethe onset time of low visibility conditions was generally
to REF was very small forecasted too early for REF: there was small negative bias
As for simulations with NEAR-FOG, the temperaturér this experiment. This bias was corrected and even in-
RMSE was reduced by larger margin during the simulaerted by PART50, with onset time generally forecasted
tion than for the initial state. For specific humidity, théoo late. The errors were generally smaller for PART50
improvement is in the same range for the forecast and than for REF. The frequency of errors being smaller or
the initial state. After one hour of forecast, the RMSE wasjual to 30 minutes was raised from 30% for REF to
improved by up to 35-45% for temperature and speci#i®% for PART50 and the standard deviation of the error
humidity. The bias was slightly degraded in the loweavas smaller. The errors larger than 240 minutes were sig-
part of the domain for temperature and left unchanged faficantly less frequent. PART50 also improved markedly
specific humidity. It was improved in most other part ahe prediction of LVP burnoff time as compared to REF.
the domain. The errors were generally smaller with much fewer errors
larger than 240 minutes. The frequency of errors being

4.2.1 Scores on temperature and specific humidity
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Figure 11. Same aK0for FOG.

Table I. Hit Ratio (HR) of LVP conditions for various foretasTable Il. Pseudo False Alarm Ratio (FAR) of LVP conditions
times for the FOG situation and for the REF, PART50 and ENKF3@r various forecast times for the FOG situation and for the
experiments. EnKF32 values are taken frdrémy and Bergot REF and PART50 experiments. EnKF32 values are taken from

(20091). Rémy and Bergof20091).
1h00 2h00 3h00 4h00 6h00 8h00  all 1h00 2h00 3h00 4h00 6h00 8h0O  all
REF 093 089 089 088 086 0.84 0.8REF 0.07 005 0.07 010 0.12 0.18 0.09

PART50 093 094 097 098 098 098 O09PART50 0.01 000 0.03 001 0.09 0.09 0.04
ENKF32 095 092 093 095 093 093 09£NKF32 004 003 0.02 006 008 015 0.07

events, HR and pseudo-FAR are then defined as follows:
smaller or equal to 30 minutes was raised from 40% for
REF to 70% for PART50. The negative bias of REF for HR = % ; pseudoF AR = b
the forecast of burnoff time was reduced by PARTS50. a+c a+b

Table| shows that the detection of LVP conditions was

Tablesl andll show the Hit Ratio (HR) and pseudaomproved for all forecast times larger than 1 hour, and that
False Alarm Ratio (FAR) of LVP conditions for varioughe overall hit ratio was significantly higher for PART50
forecast times and for the REF and PART50 experimeritsan for REF. The improvement was larger for longer
In the case of rare event forecasting, such as fog dndecast times, corresponding to the largest improvements
LVP conditions, the pseudo-FAR is convenient becausénitemperature and specific humidity RMSE as compared
removes the impact of the "no-no good forecasts" (no LM REF. Also, the hit ratio of LVP conditions did not
forecast and no LVP observed), which mostly dominatiecrease with time with PART50, while it did with REF.
the data sample and hide the true skill of the LVP forecaltis shows the strong influence of the initial conditions
system. Ifa is the number of observed and forecasteaxh the forecast when the model error has been removed by
events,b the number of not observed and forecastewsing simulated observations. Tablshows that PART50
events, and the number of observed and not forecastexkperienced fewer false alarms than REF. The number of

Copyright(© 2009 Royal Meteorological Society Q. J. R. Meteorol. SoQ0: 1-19 (2009)
Prepared usingjjrms3.cls DOI: 10.1002/qj



a) Onset time error for REF b) Burnoff time error for REF
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Figure 12. FOG: Frequency distribution histogram of th@ean onset time (left, the LVP conditions at initial time aret taken into

account) and burnoff time (right) of LVP conditions, in mtes. REF experiment is at the top, PART50 at the bottom. iResilues

correspond to a forecast of onset or burnoff that is too I&teors larger than 240 minutes are grouped in the 240 mincgksnn. The
mean and standard deviation of errors smaller than 240 esrare indicated.

false alarms did not increase much with forecast time. TI{i998)) of the ensemble Kalman filter was run with FOG
is an interesting result since an improvement in both Hidd NEAR-FOG using ensemble of 8, 16 and 32 mem-
and pseudo-FAR is hard to obtain. bers. As the ensembles used were rather small, the covari-
ances were inflated using an adaptive covariance inflation
algorithm (Anderson(2007). The results are described
in Rémy and Bergo2009h). As the ensemble size didn’t
The ensemble Kalman filteEgenser{(1994) andEvensen impact much the quality of initial conditions and forecasts
(2003) is an assimilation scheme that uses an ensemialeen using the ensemble Kalman filter with simulated
of first guesses to estimate the background error statjstisisservations, it was possible to qualitatively compare the
which are then used in the BLUE algorithm that comesults of the 32 members ensemble Kalman filter (exper-
putes the initial conditions for the ensemble and the ndment ENKF32) with the ones obtained with PART50.
perturbed run. This scheme has been implemented in \Eigure13 shows the RMSE of PART50 as a percentage of
ious oceanic and atmospheric modeto(tekamer et al. ENKF32's RMSE for temperature and the bias difference

(2005, Zhang(2009 and Sakov and Okg2009 among between the two experiments for NEAR-FOG and FOG.
others). A “perturbed observations” versidsLfgers et al.

4.3 Comparison with an ensemble Kalman filter
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a) NEARFOG, temperature RMSE, % as with ENKF32 b) NEARFOG, temperature bias - bias with ENKF32 (g/kg)
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Figure 13. Temperature RMSE of PART50 as a percentage of Mi@HRof ENKF32 (left) and bias of PART50 minus bias of ENKF32
(right) versus forecast time, for NEAR-FOG (top) and FOGt{bm). Data for ENKF32 are taken froRémy and Bergot2009h.

Specific humidity scores are not shown as they displagd a smaller pseudo-FAR. ENKF32 showed a higher de-
the same patterns. The RMSE of temperature at initiggction rate for forecast times of 1 hours while PART50
ization time was slightly degraded in the first 20m of theas better for higher forecast times. For the pseudo-false
domain and improved elsewhere by PART50 as compaaddrm rate, PART50 and ENKF32 showed scores in the
with ENKF32 for NEAR-FOG; while the initial bias wassame range, except for a forecast time of 8 hour, for which
mostly unchanged. Forecasted temperature RMSE WART50 was significantly better. PART50 also predicted
significantly improved for NEAR-FOG, by up to 30%jpnset and burnoff time more accurately than ENKF32 (not
and the forecasted temperature bias was also smallerdioown).

PART50 as compared with ENKF32. The overall im-

provement of PART50 as compared to ENKF32 increased

with forecast time. 5 Impact of the ensemble size

For FOG, the initial temperature RMSE was larger f . . '
PART50 as compared with ENKF32 below 10 m. Abov he size of the ensemble influenced the frequency of filter
that height, there was a small improvement of 5 to 10d/:ollapse especially for the NEAR-FOG situation (see fig-
The initial bias was similar for both experiments beIO\Hre7) In this section, the impact on the initial conditions
100m and slightly larger for PART50 above 100m. Duf”lnd forecasts is assessed.

ing the forecast, PART50 displayed smaller RMSEs thgyerall no consistent tendancy can be drawn for the im-
ENKF32 by 10 to 30% below 100m and up to 7 hours %Ct of the ensemble size on the RMSE of analyzed and

forecast. Elsewhere, the differences between PART50 Hacasted temperature and specific humidity (n_ot shown).
ENKF32 were smaller. The forecasted temperature bi e scores of PART100 and PART200 were slightly bet-

was slightly smaller for PART50 as compared to ENKF r or worse than PART50 depending on the height and the
below 80m, and slightly larger above that height orecast time, but no correlation could be drawn between

The HR and pseudo-FAR of LVP conditions were cIoéIEhe quality of these scores and the ensemble size.

between the two experiments, as shown by tabkersdl| e same conclusion holds also for the specific humid-

PART50 had an overall HR slightly higher than ENKF3Ey bias (not shown). A consistent impact of the ensemble
size on the temperature bias was however found. Fig-

ure 14 shows the temperature bias difference between
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a) NEAR-FOG, PART100, temperature bias — bias with PART50(K)  b) NEAR-FOG, PART200, temperature bias - bias with PART50 (K)
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Figure 14. Temperature bias difference between PART10(PARIT50 (left) and PART200 and PART50 (right) for NEAR-FO®@[}
and FOG (bottom). A negative value indicates that PART10RART200 had a smaller temperature bias than PART50.

PART100/200 and PART50, for FOG and NEAR-FOG Summary and discussion

It can be seen that for both situations, PART100 and o ]

PART200 showed significantly better temperature bid challenge of data assimilation is to provide the model
for the initial profiles as well as for the forecasted ones.With initial conditions that are at the same time close to
Overall, correlation between the ensemble size and {h€ true state of the atmosphere, and coherent with the
quality of the initial conditions and forecasts was weaRrocesses that are modelled in the system. Both require-
though the impact of ensemble size on the convergefi@@nts are harder to reach with strongly non-linear systems
of the filter was marked. Convergence frequency and tfiéch as COBEL-ISBA. An algorithm based on a genetic
quality of initial conditions appear thus to be decoupleg€lection particle filter was developed, with modifications
This could be due to the fact that the filter was used with#iought to take into account the particle’s time trajec-
a deterministic approach: the goal of the filter is to préories. Experiments using this new assimilation scheme
vide an accurate first guess, not to describe fully all tM¢re assessed against experiments using the operational
possible states of the background. The noise added to 2P 0f COBEL-ISBA that consists of a BLUE algorithm.
particle at initial time during the resampling stage expsai T NiS work showed that an algorithm based on particle fil-
also this result, as it increased the spread of the enseni®{#19 With genetic selection is able to provide accurate
even when the filter diverged. The fact that this noise widfial conditions to a 1D model using a reasonable num-
bounded also probably helped to keep the best pamdlgg[s of _partlcles, within a simulated obse_rvatlons fr_ame-
even when the overall number of particles was not vef§Prk. Filter collapse was less frequent, given the size of
large, close to observations. the model space and of the ensembles that were used,
This study shows also that for these two particular situian with experiments carried out by Snyder et al. (2008),
tions, the filter worked well with 50 particles with simuthanks to the genetic selection algorithm and the noise
lated observations and that more particles does not briifled to each particle at analysis time. The divergence fre-
further information on the probability distribution of theuency of the filter was shown to depend on the stratifica-

backgrounds. This conclusion has to be confirmed usii)? of the atmosphere. Both temperature and specific hu-
real observations. midity analysis were improved as compared to the BLUE

algorithm used in the operational setup. As the initial con-
ditions were given by the first guess that had the closest

Copyright© 2009 Royal Meteorological Society Q. J. R. Meteorol. SoQ0: 1-19 (2009)
Prepared usingjjrms3.cls DOI: 10.1002/qj



trajectory to the observations, the initial conditions metla neige (modeling of hydrological processes in the isba

the two conditions mentioned above. Thanks to that alsoland surface scheme : inclusion of a hydrological reser-

the forecasted temperature and specific humidity were imvoir, freezing, and modeling of snow). Ph.D. thesis,

proved by a larger margin than the analyzed ones. The betdniversité Paul Sabatier, 207 pp., [available at CNRM,

ter quality of the initial conditions and forecasts brought Meteo-France, 42 Av. Coriolis, 31057 Toulouse Cedex,

better forecasts of LVP events. The final product deliveredFrance.].

by COBEL-ISBA, i.e. hours of forecasted occurence or lift-

off of LVP conditions, was markedly improved by the nesdougeault, P. and P. Lacarrere, 1989: Parameterization of

assimilation scheme. orography-induced turbulence in a mesoscale model.

The conclusions on the convergence of the filter and on thé/lon. Wea. Rey117, 1872-1890.

adequate number of particles needed to run the model are

model-dependant and also situation-dependant: the sesgirgers, G., P. V. Leuwen, and G. Evensen, 1998: Anal-

vary from one set of simulated observations to anotherysis scheme in the ensemble kalman filtdon. Wea.

Nethertheless, they can be helpful for future implementa-Rev, 126, 1719-1724.

tions of assimilation algorithms based on particle filtgrin _ - o

as they provide general insights on the causes and meark, D., 2002: Terminal ceiling and visibil-

nisms of filter divergence. ity product development . fc_>r northeast air-

A next stage will be to test this assimilation scheme with Ports.  14th -~ Conf. on  Aviation, Range, and

real observations. As the physics underlying the observa/erospace  Meteorology AMS, [available —at

tions and the simulations were the same when using Sim,v,t?ttp:llwww.ll.mlt.edu/m|SS|on/aV|at|on/publlcatlo’rpnsfslbllcatlon—

lated observations, the task of producing initial condigio  files/ms-papers/Clark_2002_ARAM_MS-15290_WW-

consistent with the model’'s physics was simplified. The 10474.pdf].

real atmosphere is non-linear to greater extent than a sim- i

ulated one; particle filtering is an assimilation algorithrfv/a’k, D., 2006: The 2001 demonstration of automated

that was designed for non-linear dynamical systems, so if/0ud forecast guidance products for san-francisco

seems fit for the task. international airport.10th Conf. on Aviation, Range,
and Aerospace MeteorologyAMS, [available at
http://jobfunctions.bnet.com/abstract.aspx?docid-688)].
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