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Abstract—We are interested in aircraft trajectories seen as some are environmental parameters, such as wind and temper-
stochastic processes. These processes evolve in an unknowgture. An important source of uncertainty in aircraft tcajey

atmospheric random enwronment. As several alrcr.aft parametes prediction concerns the meteorological parameters. thdee
are unknown such as true airspeed (TAS) and wind, we have to . - .
a part of the along track error in predicting the aircraft

estimate them. f oo

To this end, we suggest to use ensemble weather forecaststrajectories is due to the weather forecasting error [5].
which give different scenarios for the atmosphere, with a system  Up to now, aircraft trajectory predictors use only one
of trajectory predictions. In this way using the air-traffic data, eather deterministic forecast. However, in the case of the
we evaluate the |Ike!|h00d of each .element and we construct a airspace capacity reduction probability in relation witrai
random weather environment organized by the element weight. - o . .

To get this result, we use sequential Monte Carlo methods able slots linked to the Met, statistical information about
(SMC) in the special context of random environment. The Wweather forecasts are needed (see CATS report D1.1 [12]).
algorithm called island particle filter allow to estimate both To take into account this Met uncertainty, a proposed smiuti
the likelihood of the meteorological forecasts and the aircraft \yas to use statistical errors on weather forecast [6]. Some
palrﬁ?e?(te;;ms—ﬂajectory Prediction, Random Environment, researc_h Works_ use Gaussian assumptior.ls.and prescribed
Ensemble Meteorological Forecast, Stochastic Process, ParticlecOrrelation functions [6] for the Met uncertainties. Eveap
Filter programs have investigated this type of uncertainty moudgll

HYBRIDGE [11], ERASMUS [13]. However the wind un-
INTRODUCTION certainties are time or space dependant and are not Gaussian

To satisfy the future demand in terms of air transportalistributed [9]. Recently in the scope of the SESAR program,
tion, the present air-traffic management system needs tothe TESA project [14] intends to address the question of the
improved. To this end two projects, NEXTGen in the Unitedstatistical envelope of the trajectories according to rgivet
States and SESAR in Europe, have been launched. In batitertainties with a priori probability distributions (@ssian,
cases, the selected appproach consists in constrainimgien tPoisson, exponential) of the Met entries. It do not take into
and space the aircraft position (4D-trajectory) [3], [4]oM- account the real distribution of the weather forecast srror
over, the SESAR project aims to ensure free flights avoidingOur work is totally new and uses a different technical
any delaying tactics. Therefore trajectory predictorsehty direction. It aims to give a solution to the TP Met uncertigist
be accurate and reliable. In that way, the workload of aiby using ensemble weather forecasts. Indeed national meteo
traffic controllers can be reduced using decision suppoisto rological center are able to provide them. These forecass g
Moreover the capacity of the airspace can be used to #sveral atmospheric evolution scenarios which reflecttattie
maximal capacities. To explore more innovative techniguesf knowledge about the initial state [7]. These scenari@bkn
the SESAR JU has developed the WP-E long term reseatohexplore the uncertainties about the state of the atmesphe
program. This work contains the fundamental methods intefidd. Another fact at this point is that ensemble forecasts
to be use in the WP-E IMET program (http://www.imet.pro)are not delivered with a probability distribution [8]. This
This program investigate the optimal approach for futurgroblem can be tackled using stochastic methods to weight
trajectory prediction systems to use Meteorological utaiety the elements of the ensemble weather forecasts regarding to
information. air-traffic observations.

To compute aircraft trajectories in advance, trajectoms-pr In this work we suppose that we have air-traffic observations
dictors need different information. Some concern the fliglsind an aircraft trajectory predictor. Each aircraft trigeg
intent, others are directly related to the aircraft and Fnalprediction has an error part and all the aircrafts trajéesoin



the same area are sharing the same meteorological situatiodror anyn > 0 we considerE”) ¢ R? the location space.
Now, considering we have a set of weather forecasts, we dast X! , be aE\Y-valued random homogeneous environment,
evaluate a performing score regards to trajectory premfictij e a random field, where, > 0 andz € EY). (B, &)

errors over the last minutes. is a collection of measurable spaces. In the sequel as far as

In order to formalise these two ideas, the first part igere is no possible misunderstood. _ is denotedX?. Let
dedicated to give the formal framework of this problem. The&g be aE?-valued process(E(Q) 5’(2)) is a collection of

the ensuing algorithms are expla!ned and finally we give Sonr]nééasurable spaces such that for any time step 0, Eff)
numerical results on an academic example.

encapsulates the location of the aircrafts which arB{ but
I. FORMALISM also the aircrafts’ kinematic parameters for example. lanse

To get the likelihood of wind proposals with respect to airt—hat SO%? coordinates of the proces} are locations in the

traffic radar observations, a mathematical modelling haseto SPaC€En - LetY, be aF,-valued process wher@,, 7») is
done. We choose to modelize aircraft trajectories as stticha® C°|1|e_Ct'°n of measurable spaces. .
processes evolving in a random meteorological environment Xp 1S SF'F_)POSG_d tf) b_e a !\{I)arko(\ll)cham _of transition kernel
This modelling is natural according to the physical questio/» = and initial distribution, ’ (dz; 7). X} is also a Markov
of a mobile evolving in a forecasted medium with randorfirocess of transition kemdwiil)),n and initial distribution
errors. As we suggest to use an ensemble of forecag®)  The transition kernel family depends on the evolution
classical filters such as Kalman Filters, Particle Filtensl a %o -0 S
their different versions are unsuited. We propose to useofalthe random mediunk...
specific algorithm called Island Particle Filter [1]. Thisteft
is very general and requires no special assumptions like
linearity or Gaussianity of the parameters. Moreover, the o — X%+ 8 (X2)+Wf(XO)At+AX1(X°)
Island algorithms are reputed to learn unknown parametgrs [ et noTmem nen e
where S,, is the flight strategy in a time stepAt.

Before going deeper into the mathematical formalism, we
adopt the following notations. The ensemble of probability Let N! > 0 be an integer denoting the number of aircrafts
measures on a spade is denotedP(E). For a probability present in a sub-domaif,;. An air-traffic is N} duplications
measureu and a measurable functiofy ..(f) is the expecta- of the processX?2. Moreover we consider that there are no
tion of the functionf for the measureg:. For a probability interactions between the aircrafts, for instance no cdnflic
operator Q(z, dy) giving the probability to arrive in the avoidance. It means that the aircrafté(?l’j)1<j<N,zz are
elementdy starting fromz, uQ(dy) = [ u(dr)Q(x,dy) is  independant. The traffic processg&?7),.;<y: are living
the probability of the eveniy for the operatox) averaged by in B2 — ®J_V:,IL1E72L,]'. For the sake of simplicity, the family of

the measurg:. Finally uQ(f) = [ pu(dz)Q(z,dy) f(y) is the ml

) ; aircrafts (X27),<;<n: is also denoted byX2. The process
?gaescli?;?n of the functiorf for the operator through the Y, is a partial observation of the Markov ch&(if,, X 2)

Using these notations, the aircraft position process misdel

n>0"

A. Definitions of the involved stochastic processes ) ) ) )
B. Learning the Trajectory Processes in a Random Environ-

Before considering aircraft trajectories, we decompo®e thon \when the environment is decomposed in several domains
real wind at timen, W, into two parts, the forecasted part

W/ and the forecasting error pait!. The state parameters We first deal with the quenched process, which corresponds
ofnan aircraft are denoted by thne proced®. X2 may O the case where the evolution of the random environment is

contain the Mode-S information such as the location, grou$sumed to be fixed by the Met forecasts. In the next section,
speed, TAS, etc. The procesg? is directly influenced by We Will treat the case where the environment is regarded as a
’ ’ . n

the atmosphere and in our computation by the Met predictié@ndom process.
errors X! In this study we intend to evaluate the likelihood 1) Quenched restricted processn order to manage the
of the pair (X}, X2) according to radar observations,. subdomain exit of the aircrafts, we create a specific point
The Mode-S observation, include the aircraft positions, called cimetery point, denotet,, where the aircrafts are
ground speed, TAS, etc and are assumed to be imperfect. affected as they go outside the subdomain.

Considering  that X = sz let denote
In our study, we have splitted a control area (En-Route ()Kfl’f(Xg )i<i<n: the aircraft state whereX? , is the
TMA) in sub-domainD; where the Met errors are spatiallylocdtion process. The aircrafts evolve with the transition
uniform. Our interest concerns the definition of the trajees  kernel M fl)> z for any z,,_; to the targetdy according to:
inside the subdomai®; and we have to manage the entries T 10T
and the exits of aircrafts. The modelling presented below M® (Tn_1,dy) = 1Dl(y)]V[(2) (@n_1,dy) +

corresponds to this locally uniform case. 2l 2l )n
(1= 1p, ()03 (dy)



Therefore the mutation kernéw'%)) z corresponds to a and we have to use a Monte-Carlo algorithm to compute
D™ an approximate solution. Finally we summarize the evotutio

survival process where the aircraft goes to the cemdfirif scheme of the TP distributions by the following scheme :

it exits the domainD,. After this transition step inD; there
are N}, remaining aircrafts.

Then N, 1 new aircrafts are added, that means that some 1% wi
aircrafts are entering into the domaip,. This step is mod- X2 .~ 77(& L L X~ ﬁfﬁi) .
elled by the kernel transitio, ; which is defined for any Fom-1 T FomLe
probability measurey by : P
NPy =1 @0 * o, i
where p! i i i X~ iy — Xz~
i, is the new aicraft reallocation measur®,; can Blom] 1 Blom] 1T

be written in the preeceding form because the mutation kerne
M (?1)) . does not account any interaction process for instance
without any conflict avoidance scheme. th 2) Ra_ndom r?s_trlcte(tj ?lstgbungn protcei(stn. t:us sectlor: i
Each aircraft generates an observaﬁfm with probability € environment 1S Not Tixed and we take into account its
(2),i unknown evolution. As we decompose the spatefor each
density functionG, ) ,(X,.7" ). This density function cor- e stepn. > 0 such that the random fiel&! is uniform
responds to the Ilkel|hood of the radar observation (wind @ each cellD;, we have to restrict the random process in

flight parameters) with respect to the process restrictetido distribution space;’ on eachD;. To this end, we introduce

uniform domainD;. the stochastic process:
The Trajectory Prediction (TP) distribution with respeat t 2
the Met environment and the observations is denoted : nl (Xn ] ;(D l)
[0,n],0°™
(2) _ 2 2 -
Mty ot = EXn € AT Vom0 = (o ¥n-10)s 1is stochastic process takes its valueshf), = E}
Xyl (I((Jll)’ " (13)) P(E?,). As it was proved in [2], it is a Markov chaln W|th

transitions defined for any functiorf), ; and for any state
The updated version of this distribution using the new, n) € £/,

observation and corresponding to the optimal TP is denoted

by :
R M’ zl 7 (2) .d (1)7 (2) 7
775[13 Joml - P(XT%J € dmi,l‘y[om}i = Wot,- - Yn), ! <( bt nzlo,nfl],z’"fl’l) (= It Eg)n] M l) (Fa)
’ _ PG
Xoma = (@02 2) = M3 (el o da) )
), ; Y
As it was proved in [2],77(21) , satisfies the following 7 1) 22 (z 1) n(2)
) ) 0,n),00™ Jn I\ n 0 (1) n—1,0" " I (1) n—1.1
non-linear equation : Flon—1,02 0, —11,0 "5
@ ) @) with
n:vfé) ]lnl :d)xfé) ]lnl <77xfé) 1]Lnll)
n [l m], ,n— ’ ? 1
with M) (01, dy) = 1o, () M (21, dy)
62 ( (2(3) )(dz?) = and an initial distributionyy , € P(Ep, ;) = P(E[()’l) xP(Eé’l)))
O R R ’ defined by :
) (2)
N )(dz,” )
/E?M o= L2 1l 1 (d(,v)) Zﬁé,lf(dw)%;%gl(d”)
MDD (@2 dP) P )
TR LI The application}?), is defined by :
where T(o,n—1],007!
(2) - 2) 7(2) 20 3 dz'?
wwifll e 1l(77 Eé)"’ 1,07 n=L, l) B ]lEz’_l'ln Eé‘)n—l],l’n_Ll ¢ Eé)n 1,00 ’l( nl777 (é)n 1,1 7"_1vl)< xn,l)
2 2 2
G.o 77(2&) = ¢(<)1> l(7l(<3> _ l)(dxi,g)
® ( 1 ) Tp1,0M— 1,1 [O n—1], l,n—l,l [0 nl, TR [0,n 1]_][7” 1,
R 77(2<3> 11(G 1 ) The most important point to keep in mind to differentiate
[O 1]7[7”7 n—1 17/" ?

¢, from ¢, is that in the quenched framework we know
This complex nonlinear system gives the sequential evilre environment and its evolution in time whereas in this
lution of the TP distribution. It has no analytical solutiordistribution spaceX} is a random variable.



Now following the same scheme as before, we define thégorithm 1 Island Particle Filter - IPF

marginal quantities, ; in distribution space. We can find hereRequire: 75, M’ et ¢’

that

(2)

77;,1 = P(Xrlz,l € dm}z,lvnx

] il |Y—[0,n—1],l = (yO,lu ce 7yn71,l))

1
[0,n],

and
77;,1 = P(X}L,z € dm}l,u’igé) [l \Y[o,n],z = (Z/O,h cee ayn,l))~
One can check thay; is verifying a non-linear equation :
niu = %71(77;171,1)

with

1#7/171,1(77’)(&,1) = U’(G;q,z 7/1,1)/71/(6';171,1)
where

i) = [ HA)Goa(2.9) = 1G]

En,l

In other words, G, represents the probability
that the observations ofy,; is made given that
Yion—1 = Yot -+ Yn—14), and X} | = CBS%

As the probabilityn;, ; cannot be calculated analytically, we
have to use particle techniques to approximate them. Any tra
ditional particle filters as SMC [10] or Kalman filters caniet

Ensure: Particle

approximation and

p Z‘ yl:n—l)
. INITIALIZATION p =10

for i=1,...,N; do

of p(a7[yr:n)

Samplegi = (Cévyééo) ~ 776;\[
i dd.d (1) i1 2 i i da.d (2)
¢ R, ,anduéé’o_ szglgo wheregy’ "~ e
end for
p=1
2. SELECTION OF ISLANDS
Sample I, = (I;;)ﬁ\;ll multinomially with probability o<

N1
(1%G<%m>
N3 = PA5Sp>Sp
fori=1,...,N; do
3. SELECTION OF PARTICLES INSIDE EACH ISLAND
SampleJj, = (J;7)2, multinomially with probability

ACH
Lol
X (Gp(glkafkk ))
J=1
4. MUTATION OF ISLAND

Sample independantly’ , , according toM(l)(g,f;’, D)
for j=1,...,Ns do
5. MUTATION OF PARTICLES

i=1

used in this special context. Indeed, the random envirobhmen Sampleg‘;*jl according tOMfgi (57s, )
where the stochastic process evolve does not allow the use of gnd for e

these techniques. The Island Particle Filter algorithns@méed  and for

in the Algorithm 1 is then the only adapted one. In this generi ), ., 1+ 1 go to step 2.

algorithm the hidden statef, = (z,n? ,. ) has to be estimate

with respect to the observation sequepge. To this end there
is two nested SMC algorithms. The first one correspond to the

environment level, the second one to the trajectory process

level. Basically, for each environment proposed we perforRfoPable are more often drawn but the less probable are
the approximation of the trajectory process law. Then, &mte not s_ystematlcally dismissed. The_ new set of tr_aJectorles

environment we compute the likelihood, suming the liketitio described the envelope of the trajectories according to the
of each proposed traffic situation, and we get the likelihodPServation system and each weather forecast is weighted
of the environment. That allow us to estimate the envirortme@ccording to the reality. Then a new prediction is performed

law, which is exactly the scope of our work. and the sequence starts again.

In few words, we describe this algorithm. It use§ This algorithm, allow us to treat our problem without
different Met forecasts and the observation of an aircrdft@king assumptions on the linearity of our model nor the
traffic. Each weather forecast is considered as an Island. KgRUSSianity of the errors. Then the limitations of this aitpon
each Island, for each aircraft the algorithm generates afse@’® not related on which needed assumptions but more in
N, trajectories by perturbing randomly the flight parameter§!€ computational cost. Indeed more the trajectory model is
Using this set of predicted trajectories (one set per dijcra not well known more it needs computational time in order to
a confrontation to the reality is performed and a distan&@mpensate the lack of knowledge.
between the prediction and the observation is computed. I
Then the trajectory predictions receive a weight according '
to their distance. After this step of trajectory weightinige In order to test our method, we have designed an
Island themselves are assessed by their mean performamc&demic, but realistic, experiment (see Fig. 2). We censid
to predict the air traffic. Therefore the algorithm computan air traffic sector observed by Mode-S radar with a
without any knowledge the likelihood probability functiafi given meteorological situation. We assume that there is a
the trajectories and the Met forecasts. Then, the trajiestormeteorological perturbation such as a cold front. Then two
are resampled randomly according to their weight. The fighiomains appear, one behind the cold front with a specific

N UMERICAL RESULTS



wind force and direction, and a second zone with a different
wind. The ensemble Met forecasts provide different locatio
of the cold front and different wind forecasts. Moreover we
assume that three aircrafts evolve following a straighe lin
in the control sector and only one is crossing the cold front
limit. Therefore the flight model is very simple with a null
constant acceleration except for random instants. We sgppo
that the aircraft altitude is constant and their airspeads a
constant piecewise functions with some slight variations.
Then the purpose is to evaluate the likelihood of an ensemble
of Met predictions and to learn the TAS of the aircrafts
present in the traffic.

The Island Particle filter is used to learn both the ensemble
forecast weights and the aircraft parameters (here only
the TAS). The method is described in Fig. 1. For any
aircraft present in the traffic, using any Met forecasts, theég. 2. Example of possible numerical experiment. Crossing-toseontrol,

; ; ; ; there are a cold front and three En-Route aircrafts movindy wlifferent
algorithm generates several trajectories. Then usingatlarr speeds. The cold front is a limit of two domains with differengvdirections.

observations, the trajectories are resampled accorditigefo The purpose of the experiment is to estimate the likelihoochefweather
likelihood. The updated trajectories for all the aircrafi®e and the aircraft airspeed using an ensemble of weather fireemd radar

used to compute the weight of the Met forecasts accordinggrervations.
the Mode-S information.

For our different numerical experiments, we model the wind _ )
error by stationnary and uniform values in each subdomain,Consequently, all the ingredients needed to perform the
The limit of the domain delimited by a vertical border idsland Particle Filter method are available. Concerning th
not known. The unknown wind error is uniform in directioet proposals, we have designed an ensemble of 3125
and strength over each area. Therefore, the forecasting wiAreécasts with a combination of 5 different forecasted
error in both areas in terms of strength and direction, agnd force normally distributed around the true value, 5
the location of the border have to be estimated. It is knovgifferent directions and 5 possible border locations umily
that aircraft compensate lateral wind. It is the reason wisjstributed around the true value.
we have to use more than one aircraft direction line. The
aircraft true airspeed is not exactly observed and we censid The numerical results are quite good both for the learning
that the speed is piecewise constant with some little randéththe Met environment and for the TAS of the aircrafts.
jump. In the experiment, the random jump are modeled by
a Poissonian process. The configuration of the experiment ig=irst we put our attention to the Met situation. As regards
resumed in the Fig. 2. The blue line with triangles represerthe limit, as soon as an aircraft experiment the limit, theetr
the unknown limit we have to estimate. The arrows in eadtnit is perfectly determined. The Figure 3 represents the
domain separated by the blue line have the same direction 4ikelihood evolution of the vertical limit proposals ovemie.
the same number of dash which means that the wind forceFgst all the limit proposals are equivalent as no aircrafts
the same overall the area. experiment the limit yet. Therefore the likelihood of alleth

proposal are the same. In the experiment only one aircraft is

The observation process is given by Mode-S radgrossing the limit from the right to the left. When the air¢raf
information. Using the perturbed true airspeed and groufgicrossing a wrong proposal, the likelihood of the proposal
speed, we can deduce a perturbed 2D wind force. In baiacreases down to zero and gradually all the wrong limits
domains, the wind force is abodf kt. This can be used asobtain a weak likelihood. At the end, the highest likelihood
wind observation. The three aircrafts have a true airspel@it proposal are concentrated on the left where the real
about400 kt. limit is.

In this academic work, the perfect observations are Once the limit between the two domains is known, we can
perturbed with Gaussian centered random noises. We hgwt our interest on the meteorological parameters, foains
choosen a white noise with a variance(of on each aircraft for the left area. First the likelihood of the wind direction
position and for the deduced wind with a variance d5. forecasts is examined. As it might be noticed on the Fig. 4,
The period of sampling observations is 15 seconds. In ttitge weight evolution of the direction proposals for the anif
example the experiment simulates 20 minutes of air-traffitomain on the left is concentrated over one proposition.
started at 12h00 UTC. At the beginning of the experiment the direction weights
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Fig. 1. Sequential estimation of the ensemble weather foreezights and TAS of the aircraft using the Island ParticléeFiFor each forecast, the algorithm
generates several TPs which are selected using the radawvatisns. This step learns the aircraft parameters sudheafAS. Then for each weather forecast
the algorithm estimates its likelihood with respect to thearaobservations.
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0.00096
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Fig. 3. Time evolution (y-axis from top to bottom) of weight (@rscale) of Fig. 4. Likelihood evolution (in color) over time (y-axis frotop to bottom)

the different limit proposals (x-axis) between the two domdine algorithm of direction proposals (x-axis) obtained with IPF for thét leniform area.

gives gradually the maximum of likelihood to the forecast ati@as the most  Using the algorithm, the maximum of weight is quickly concetgtraver one

probable limit. The other limit are excluded as soon as anafirexperiment direction giving the best forecast regarding to the aiffiraadar observations.
the border. In this example, the best forecast corresponds to the readtdin.

are equidistributed. Then using the Mode-S informatioe, th

weight starts to concentrate on only one direction till thel e The direction of the wind being learned, the figure 5
of the experiment. This weight concentration on one diogcti presents the wind force relative errors. One can see that thi
corresponds to the real direction which has been succissfuklative error is abow2%. Concerning the wind force, it seems
learned. to have two periods. The second period and the jump in the
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Fig. 6. Estimated aircraft true airspeed by IPF method. Iresgithe strong
Fig. 5. Evolution in time (x-axis) of the relative error of theF estimated perturbation on the TAS observations, the estimation of th& Ts quite
wind force for one area to the real wind force. During the fitstd of the efficient with an absolute error smaller thard kt.
series, the error computed with two aircraft is not very stabVhen a new
aircraft is entering into the zone, the estimation is bettet more stable. The

relative errors on the wind force stay ab@§%, i-e less thanl kt. Then the methodology developped in this work allows us

to give a weight to each element set of the ensemble weather
. . . forecasts regarding to the traffic-observations. That is we
error values correspond to the entry of the right aircrathim ; . . . oo

can infer the random environment: learning the likelihodd o

left area. In the first one, the relative errors are quiteabist . : .
. . . . - wind proposals while learning some flight parameters such
showing the learning phase with two aircrafts. While in the : : .
) . : ; as true airspeed. The numerical experiment have shown the
second period the relative error is very stable showing titk e

. ) . . rHowerfuII of our stochastic modelization developed and the
of the learning process with the three aircrafts in the same .. . .
domain. capability of the Island Particle Filter.

. . The next mathematical step of this work is to relax the
While the environment parameters are learned by the Island . : : .

: i : assumption of uniformity for the Met errors. We are working
Particle system, the aircraft parameters are also estiinate

our experiment we only have to estimate the true airspega this topic using errors which are uniform in probability

of each aircraft about00 kt. The airspeed estimation of one W (it means that it is the probability distribution W.h'Ch !
uniform and not the errors themselves) on sub-domains. Then

of these ai.rcrafts Is represented in Figure 6. Qn this graph| e intend to deal with real weather ensemble forecasts ssich a
the_ black line represents th_e true airspeed which needs t?’m’g forecasts provided by European operational meteadnalbg
estimated (kr_10ts), the blue line the mOde'S radar obsens_itl centres. The applicability of the preceding algorithm talre
and the red line the _reconstructed signal by _the IPF algnmhdata makes no doubt as far as the algorithm does not have
EV‘?” i Fhe perturbatlon§ of t.h? TAS .ob{servanon are Smmg’. any restricting assumptions. However, this method needs an
estimation of the TAS is efficient picking out the PO'Sson'anficient programming code and parallel computing techesiqu
jump.

in order to get real time operational applications.

In this numerical experiment, we have shown the capability ACKNOWLEDGEMENTS
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