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Abstract—We are interested in aircraft trajectories seen as
stochastic processes. These processes evolve in an unknown
atmospheric random environment. As several aircraft parameters
are unknown such as true airspeed (TAS) and wind, we have to
estimate them.

To this end, we suggest to use ensemble weather forecasts,
which give different scenarios for the atmosphere, with a system
of trajectory predictions. In this way using the air-traffic data,
we evaluate the likelihood of each element and we construct a
random weather environment organized by the element weight.

To get this result, we use sequential Monte Carlo methods
(SMC) in the special context of random environment. The
algorithm called island particle filter allow to estimate both
the likelihood of the meteorological forecasts and the aircraft
parameters.

Index Terms—Trajectory Prediction, Random Environment,
Ensemble Meteorological Forecast, Stochastic Process, Particle
Filter

INTRODUCTION

To satisfy the future demand in terms of air transporta-
tion, the present air-traffic management system needs to be
improved. To this end two projects, NEXTGen in the United-
States and SESAR in Europe, have been launched. In both
cases, the selected appproach consists in constraining in time
and space the aircraft position (4D-trajectory) [3], [4]. More-
over, the SESAR project aims to ensure free flights avoiding
any delaying tactics. Therefore trajectory predictors have to
be accurate and reliable. In that way, the workload of air-
traffic controllers can be reduced using decision support tools.
Moreover the capacity of the airspace can be used to its
maximal capacities. To explore more innovative techniques,
the SESAR JU has developed the WP-E long term research
program. This work contains the fundamental methods intend
to be use in the WP-E IMET program (http://www.imet.pro).
This program investigate the optimal approach for future
trajectory prediction systems to use Meteorological uncertainty
information.

To compute aircraft trajectories in advance, trajectory pre-
dictors need different information. Some concern the flight
intent, others are directly related to the aircraft and finally

some are environmental parameters, such as wind and temper-
ature. An important source of uncertainty in aircraft trajectory
prediction concerns the meteorological parameters. Indeed
a part of the along track error in predicting the aircraft
trajectories is due to the weather forecasting error [5].

Up to now, aircraft trajectory predictors use only one
weather deterministic forecast. However, in the case of the
airspace capacity reduction probability in relation with avail-
able slots linked to the Met, statistical information about
weather forecasts are needed (see CATS report D1.1 [12]).
To take into account this Met uncertainty, a proposed solution
was to use statistical errors on weather forecast [6]. Some
research works use Gaussian assumptions and prescribed
correlation functions [6] for the Met uncertainties. European
programs have investigated this type of uncertainty modelling:
HYBRIDGE [11], ERASMUS [13]. However the wind un-
certainties are time or space dependant and are not Gaussian
distributed [9]. Recently in the scope of the SESAR program,
the TESA project [14] intends to address the question of the
statistical envelope of the trajectories according to given Met
uncertainties with a priori probability distributions (Gaussian,
Poisson, exponential) of the Met entries. It do not take into
account the real distribution of the weather forecast errors.

Our work is totally new and uses a different technical
direction. It aims to give a solution to the TP Met uncertainties
by using ensemble weather forecasts. Indeed national meteo-
rological center are able to provide them. These forecasts give
several atmospheric evolution scenarios which reflects thelack
of knowledge about the initial state [7]. These scenarios enable
to explore the uncertainties about the state of the atmosphere
[7]. Another fact at this point is that ensemble forecasts
are not delivered with a probability distribution [8]. This
problem can be tackled using stochastic methods to weight
the elements of the ensemble weather forecasts regarding to
air-traffic observations.

In this work we suppose that we have air-traffic observations
and an aircraft trajectory predictor. Each aircraft trajectory
prediction has an error part and all the aircrafts trajectories in



the same area are sharing the same meteorological situation.
Now, considering we have a set of weather forecasts, we can
evaluate a performing score regards to trajectory prediction
errors over the last minutes.

In order to formalise these two ideas, the first part is
dedicated to give the formal framework of this problem. Then
the ensuing algorithms are explained and finally we give some
numerical results on an academic example.

I. FORMALISM

To get the likelihood of wind proposals with respect to air-
traffic radar observations, a mathematical modelling has tobe
done. We choose to modelize aircraft trajectories as stochastic
processes evolving in a random meteorological environment.
This modelling is natural according to the physical question
of a mobile evolving in a forecasted medium with random
errors. As we suggest to use an ensemble of forecasts,
classical filters such as Kalman Filters, Particle Filters and
their different versions are unsuited. We propose to use a
specific algorithm called Island Particle Filter [1]. This filter
is very general and requires no special assumptions like
linearity or Gaussianity of the parameters. Moreover, the
Island algorithms are reputed to learn unknown parameters [1].

Before going deeper into the mathematical formalism, we
adopt the following notations. The ensemble of probability
measures on a spaceE is denotedP(E). For a probability
measureµ and a measurable functionf , µ(f) is the expecta-
tion of the functionf for the measureµ. For a probability
operator Q(x, dy) giving the probability to arrive in the
elementdy starting fromx, µQ(dy) =

∫

µ(dx)Q(x, dy) is
the probability of the eventdy for the operatorQ averaged by
the measureµ. Finally µQ(f) =

∫

µ(dx)Q(x, dy)f(y) is the
expectation of the functionf for the operatorQ through the
measureµ.

A. Definitions of the involved stochastic processes

Before considering aircraft trajectories, we decompose the
real wind at timen, W r

n into two parts, the forecasted part
W f

n and the forecasting error partX1
n. The state parameters

of an aircraft are denoted by the processX2
n. X2

n may
contain the Mode-S information such as the location, ground
speed, TAS, etc. The processX2

n is directly influenced by
the atmosphere and in our computation by the Met prediction
errorsX1

n. In this study we intend to evaluate the likelihood
of the pair (X1

n, X
2
n) according to radar observationsYn.

The Mode-S observationsYn include the aircraft positions,
ground speed, TAS, etc and are assumed to be imperfect.

In our study, we have splitted a control area (En-Route or
TMA) in sub-domainDl where the Met errors are spatially
uniform. Our interest concerns the definition of the trajectories
inside the subdomainDl and we have to manage the entries
and the exits of aircrafts. The modelling presented below
corresponds to this locally uniform case.

For anyn ≥ 0 we considerE(0)
n ⊂ R

2 the location space.
LetX1

n,x be aE(1)
n -valued random homogeneous environment,

i.e. a random field, wheren ≥ 0 andx ∈ E(0)
n . (E(1)

n , E(1)n )
is a collection of measurable spaces. In the sequel as far as
there is no possible misunderstood,X1

n,x is denotedX1
n. Let

X2
n be aE(2)

n -valued process.(E(2)
n , E(2)n ) is a collection of

measurable spaces such that for any time stepn ≥ 0, E(2)
n

encapsulates the location of the aircrafts which are inE
(0)
n but

also the aircrafts’ kinematic parameters for example. It means
that some coordinates of the processX2

n are locations in the
spaceE(0)

n . Let Yn be aFn-valued process where(Fn,Fn) is
a collection of measurable spaces.
X1

n is supposed to be a Markov chain of transition kernel
M

(1)
n and initial distributionη(1)0 (dx

(1)
0 ). X2

n is also a Markov
process of transition kernelM (2)

x
(1)
n ,n

and initial distribution

η
(2)

x
(1)
0 ,0

. The transition kernel family depends on the evolution

of the random mediumX1
n.

Using these notations, the aircraft position process modelis

X0
n+1 = X0

n + Sn(X
2
n) +W f

n (X
0
n)∆t+∆X1

n(X
0
n)

whereSn is the flight strategy in a time stepn∆t.

Let N l
n > 0 be an integer denoting the number of aircrafts

present in a sub-domainDl. An air-traffic isN l
n duplications

of the processX2
n. Moreover we consider that there are no

interactions between the aircrafts, for instance no conflict
avoidance. It means that the aircrafts(X2,j

n )1≤j≤N l
n

are
independant. The traffic processes(X2,j

n )1≤j≤N l
n

are living

in E2
n,l = ⊗

N l
n

j=1E
2,j
n . For the sake of simplicity, the family of

aircrafts (X2,j
n )1≤j≤N l

n
is also denoted byX2

n. The process
Yn is a partial observation of the Markov chain

(

X1
n, X

2
n

)

n≥0
.

B. Learning the Trajectory Processes in a Random Environ-
ment when the environment is decomposed in several domains

We first deal with the quenched process, which corresponds
to the case where the evolution of the random environment is
assumed to be fixed by the Met forecasts. In the next section,
we will treat the case where the environment is regarded as a
random process.

1) Quenched restricted process:In order to manage the
subdomain exit of the aircrafts, we create a specific point
called cimetery point, denoted℧l

n, where the aircrafts are
affected as they go outside the subdomain.

Considering that X1
n,l = x

(1)
n,l , let denote

(X2,i
n,l(X

0
n,l))1≤i≤N l

n
the aircraft state whereX0

n,l is the
location process. The aircrafts evolve with the transition
kernelM (2)

x
(1)
n,l

,n,l
for any xn−1 to the targetdy according to:

M
(2)

x
(1)
n,l

,n,l
(xn−1, dy) = 1Dl

(y)M
(2)

x
(1)
n,l

,n
(xn−1, dy) +

(1− 1Dl(y))δ{℧l
n}
(dy)



Therefore the mutation kernelM (2)

x
(1)
n,l

,n,l
corresponds to a

survival process where the aircraft goes to the cemetery℧
l
n if

it exits the domainDl. After this transition step inDl there
are Ñ l

n remaining aircrafts.
ThenN ′

n,l new aircrafts are added, that means that some
aircrafts are entering into the domainDl. This step is mod-
elled by the kernel transitionPn,l which is defined for any
probability measureη by :

ηPn,l = η ⊗ η ∗ µl
n

where µl
n is the new aicraft reallocation measure.Pn,l can

be written in the preeceding form because the mutation kernel
M

(2)

x
(1)
n,l

,n,l
does not account any interaction process for instance

without any conflict avoidance scheme.
Each aircraft generates an observationY i

n,l, with probability

density functionG
x
(1)
n,l

,n,l
(X

(2),i
n,l ). This density function cor-

responds to the likelihood of the radar observation (wind or
flight parameters) with respect to the process restricted tothe
uniform domainDl.

The Trajectory Prediction (TP) distribution with respect to
the Met environment and the observations is denoted :

η
(2)

x1
[0,n],l

,n,l
= P(X2

n,l ∈ dx2n,l|Y[0,n−1],l = (y0,l, . . . , yn−1,l),

X1
[0,n],l = (x

(1)
0,l , . . . , x

(1)
n,l))

The updated version of this distribution using the new
observation and corresponding to the optimal TP is denoted
by :

η̂
(2)

x1
[0,n],l

,n,l
= P(X2

n,l ∈ dx2n,l|Y[0,n],l = (y0,l, . . . , yn,l),

X1
[0,n],l = (x

(1)
0,l , . . . , x

(1)
n,l))

As it was proved in [2],η(2)
x1
[0,n],l

,n,l
satisfies the following

non-linear equation :

η
(2)

x
(1)

[0,n],l
,n,l

= φ
(2)

x
(1)

[0,n],l
,n,l

(

η
(2)

x
(1)

[0,n−1],l
,n−1,l

)

with

φ
(2)

x
(1)

[0,n],l
,n,l

(η
(2)

x
(1)

[0,n−1],l
,n−1,l

)(dx
(2)
n,l) =

∫

E
(2)
n−1,l

ψ
x
(1)

[0,n−1],l
,n−1,l

(η
(2)

x
(1)

[0,n−1],l
,n−1,l

)(dx
(2)
n−1,l)

M
(2)

x1
n,l

,n,l
(x

(2)
n−1,l, dx

(2)
n,l)Pn,l(x

(2)
n,l)

where

ψ
x
(1)
n−1,l,n−1,l

(η
(2)

x
(1)

[0,n−1],l
,n−1,l

) = 1E2
n−1,l

η
(2)

x
(1)

[0,n−1],l
,n−1,l

⊗ (1− 1E2
n−1,l

)

G
x
(1)
n−1,l,n−1,l

η
(2)

x
(1)

[0,n−1],l
,n−1,l

η
(2)

x
(1)

[0,n−1],l
,n−1,l

(G
x
(1)
n−1,l,n−1,l

)

This complex nonlinear system gives the sequential evo-
lution of the TP distribution. It has no analytical solution

and we have to use a Monte-Carlo algorithm to compute
an approximate solution. Finally we summarize the evolution
scheme of the TP distributions by the following scheme :

X̂2
n−1,l ∼ η̂

(2)

x
(1)
[0,n−1],l

,n−1,l

M
(2)

x
(1)
n,l

,n,l
X̃2

n,l
∼ η̃

(2)

x
(1)
[0,n],l

,n,l

Pn,l

X2
n,l

∼ η
(2)

x
(1)
[0,n],l

,n,l

S
n,η̃

(2)

x
(1)
[0,n]

,n,l

X̂2
n,l

∼ η̂
(2)

x
(1)
[0,n],l

,n,l

2) Random restricted distribution process:In this section
the environment is not fixed and we take into account its
unknown evolution. As we decompose the spaceE0

n for each
time stepn > 0 such that the random fieldX1

n is uniform
in each cellDl, we have to restrict the random process in
distribution spaceη′ on eachDl. To this end, we introduce
the stochastic process:

X ′
n,l = (X1

n,l, η
(2)

X
(1)

[0,n],l
,n,l

)

This stochastic process takes its values inE′
n,l = E1

n,l ×
P(E2

n,l). As it was proved in [2], it is a Markov chain with
transitions defined for any functionf ′n,l and for any state
(u, η) ∈ E′

n,l :

M ′
n,l

(

(x1n−1,l, η
(2)

x1
[0,n−1],l

,n−1,l
), d(x

(1)
n,l , η

(2)

x
(1)

[0,n],l
,n,l

)

)

(f ′n,l)

=

∫

E
(1)
n,l

M
(1)
n,l (x

(1)
n−1,l, dx

(1)
n,l)

f ′n,l(x
(1)
n,l , φ̃

(2)

x
(1)

[0,n−1],l
,n−1,l

(x
(1)
n,l , η

(2)

x
(1)

[0,n−1],l
,n−1,l

))

with :

M
(1)
n,l (xn−1, dy) = 1Dl

(y)M (1)
n (xn−1, dy)

and an initial distributionη′0,l ∈ P(E′
0,l) = P(E

(1)
0,l ×P(E

(2)
0,l ))

defined by :

η′0,l(d(x, ν)) = η
(1)
0,l (dx)δη(2)

x,0,l

(dν)

The applicationφ̃(2)
x
(1)

[0,n−1],l
,n,l

is defined by :

φ̃
(2)

x
(1)

[0,n−1],l
,n,l

(x
(1)
n,l , η

(2)

x
(1)

[0,n−1],l
,n−1,l

)(dx
(2)
n,l)

= φ
(2)

x
(1)

[0,n],l
,n,l

(η
(2)

x
(1)

[0,n−1],l
,n−1,l

)(dx
(2)
n,l)

The most important point to keep in mind to differentiate
φl from φ̃l is that in the quenched framework we know
the environment and its evolution in time whereas in this
distribution spaceX1

l is a random variable.



Now following the same scheme as before, we define the
marginal quantitiesη′n,l in distribution space. We can find here
that

η′n,l = P(X1
n,l ∈ dx1n,l, η

(2)

X1
[0,n],l

,n,l
|Y[0,n−1],l = (y0,l, . . . , yn−1,l))

and

η̂′n,l = P(X1
n,l ∈ dx1n,l, η

(2)

X1
[0,n]

,n,l
|Y[0,n],l = (y0,l, . . . , yn,l)).

One can check thatη′l is verifying a non-linear equation :

η′n,l = φ′n,l(η
′
n−1,l)

with

ψ′
n−1,l(η

′)(f ′n,l) = η′(G′
n−1,lf

′
n,l)/η

′(G′
n−1,l)

where

G′
n,l(x, µ) =

∫

E
(2)
n,l

µ(dy)Gn,l(x, y) = µ(Gn,l(x, .))

In other words, G′
n,l represents the probability

that the observations ofyn,l is made given that
Y[0,n−1],l = (y0,l, . . . , yn−1,l), andX1

n,l = x
(1)
n,l .

As the probabilityη′n,l cannot be calculated analytically, we
have to use particle techniques to approximate them. Any tra-
ditional particle filters as SMC [10] or Kalman filters cannotbe
used in this special context. Indeed, the random environment
where the stochastic process evolve does not allow the use of
these techniques. The Island Particle Filter algorithm presented
in the Algorithm 1 is then the only adapted one. In this generic
algorithm the hidden statex′n = (x1n, η

2
n,x1

n
) has to be estimate

with respect to the observation sequencey1:n. To this end there
is two nested SMC algorithms. The first one correspond to the
environment level, the second one to the trajectory process
level. Basically, for each environment proposed we perform
the approximation of the trajectory process law. Then, for each
environment we compute the likelihood, suming the likelihood
of each proposed traffic situation, and we get the likelihood
of the environment. That allow us to estimate the environment
law, which is exactly the scope of our work.

In few words, we describe this algorithm. It usesN1

different Met forecasts and the observation of an aircraft
traffic. Each weather forecast is considered as an Island. For
each Island, for each aircraft the algorithm generates a setof
N2 trajectories by perturbing randomly the flight parameters.
Using this set of predicted trajectories (one set per aircraft),
a confrontation to the reality is performed and a distance
between the prediction and the observation is computed.
Then the trajectory predictions receive a weight according
to their distance. After this step of trajectory weighting,the
Island themselves are assessed by their mean performance
to predict the air traffic. Therefore the algorithm compute
without any knowledge the likelihood probability functionof
the trajectories and the Met forecasts. Then, the trajectories
are resampled randomly according to their weight. The highly

Algorithm 1 Island Particle Filter - IPF
Require: η′0, M ′ et ψ′

Ensure: Particle approximation of p(x′n|y1:n) and
p(x′n|y1:n−1)

Begin
1. INITIALIZATION p = 0
for i = 1, . . . , N1 do

Sampleεi = (ζi0, ν
i
ζi
0,0

) ∼ η′0,

ζi0
i.i.d∼ η

(1)
0 , andνi

ζi
0,0

= 1
N2

N2
∑

j=1

ξi,j0 whereξi,j0
i.i.d∼ η

(2)

ζi
0,0

end for
p = 1
2. SELECTION OF ISLANDS

Sample Ip = (Iip)
N1
i=1 multinomially with probability ∝

(

1
N2

N2
∑

j=1

Gp(ζ
i
p, ξ

i,j
p )

)N1

i=1
for i = 1, . . . , N1 do

3. SELECTION OF PARTICLES INSIDE EACH ISLAND

SampleJ i
k = (J i,j

k )N2
j=1 multinomially with probability

∝
(

Gp(ζ
Ii
k , ξ

Ii
k,j

k )
)N2

j=1
4. MUTATION OF ISLAND

Sample independantlyζip+1 according toM (1)(ζ
Ii
p

p , .)
for j = 1, . . . , N2 do

5. MUTATION OF PARTICLES

Sampleξi,jp+1 according toM (2)

p,ζi
p+1

(ξI
i
p,J

i
p , .)

end for
end for
p←− p+ 1 go to step 2.
End

probable are more often drawn but the less probable are
not systematically dismissed. The new set of trajectories
described the envelope of the trajectories according to the
observation system and each weather forecast is weighted
according to the reality. Then a new prediction is performed
and the sequence starts again.

This algorithm, allow us to treat our problem without
making assumptions on the linearity of our model nor the
Gaussianity of the errors. Then the limitations of this algorithm
are not related on which needed assumptions but more in
the computational cost. Indeed more the trajectory model is
not well known more it needs computational time in order to
compensate the lack of knowledge.

II. N UMERICAL RESULTS

In order to test our method, we have designed an
academic, but realistic, experiment (see Fig. 2). We consider
an air traffic sector observed by Mode-S radar with a
given meteorological situation. We assume that there is a
meteorological perturbation such as a cold front. Then two
domains appear, one behind the cold front with a specific



wind force and direction, and a second zone with a different
wind. The ensemble Met forecasts provide different location
of the cold front and different wind forecasts. Moreover we
assume that three aircrafts evolve following a straight line
in the control sector and only one is crossing the cold front
limit. Therefore the flight model is very simple with a null
constant acceleration except for random instants. We suppose
that the aircraft altitude is constant and their airspeeds are
constant piecewise functions with some slight variations.
Then the purpose is to evaluate the likelihood of an ensemble
of Met predictions and to learn the TAS of the aircrafts
present in the traffic.

The Island Particle filter is used to learn both the ensemble
forecast weights and the aircraft parameters (here only
the TAS). The method is described in Fig. 1. For any
aircraft present in the traffic, using any Met forecasts, the
algorithm generates several trajectories. Then using the radar
observations, the trajectories are resampled according totheir
likelihood. The updated trajectories for all the aircraftsare
used to compute the weight of the Met forecasts according to
the Mode-S information.

For our different numerical experiments, we model the wind
error by stationnary and uniform values in each subdomain.
The limit of the domain delimited by a vertical border is
not known. The unknown wind error is uniform in direction
and strength over each area. Therefore, the forecasting wind
error in both areas in terms of strength and direction, and
the location of the border have to be estimated. It is known
that aircraft compensate lateral wind. It is the reason why
we have to use more than one aircraft direction line. The
aircraft true airspeed is not exactly observed and we consider
that the speed is piecewise constant with some little random
jump. In the experiment, the random jump are modeled by
a Poissonian process. The configuration of the experiment is
resumed in the Fig. 2. The blue line with triangles represents
the unknown limit we have to estimate. The arrows in each
domain separated by the blue line have the same direction and
the same number of dash which means that the wind force is
the same overall the area.

The observation process is given by Mode-S radar
information. Using the perturbed true airspeed and ground
speed, we can deduce a perturbed 2D wind force. In both
domains, the wind force is about40 kt. This can be used as
wind observation. The three aircrafts have a true airspeed
about400 kt.

In this academic work, the perfect observations are
perturbed with Gaussian centered random noises. We have
choosen a white noise with a variance of0.1 on each aircraft
position and for the deduced wind with a variance of

√
5.

The period of sampling observations is 15 seconds. In this
example the experiment simulates 20 minutes of air-traffic
started at 12h00 UTC.

Fig. 2. Example of possible numerical experiment. Crossing a sector control,
there are a cold front and three En-Route aircrafts moving with different
speeds. The cold front is a limit of two domains with different wind directions.
The purpose of the experiment is to estimate the likelihood of the weather
and the aircraft airspeed using an ensemble of weather forecasts and radar
observations.

Consequently, all the ingredients needed to perform the
Island Particle Filter method are available. Concerning the
Met proposals, we have designed an ensemble of 3125
forecasts with a combination of 5 different forecasted
wind force normally distributed around the true value, 5
different directions and 5 possible border locations uniformly
distributed around the true value.

The numerical results are quite good both for the learning
of the Met environment and for the TAS of the aircrafts.

First we put our attention to the Met situation. As regards
the limit, as soon as an aircraft experiment the limit, the true
limit is perfectly determined. The Figure 3 represents the
likelihood evolution of the vertical limit proposals over time.
First all the limit proposals are equivalent as no aircrafts
experiment the limit yet. Therefore the likelihood of all the
proposal are the same. In the experiment only one aircraft is
crossing the limit from the right to the left. When the aircraft
is crossing a wrong proposal, the likelihood of the proposal
decreases down to zero and gradually all the wrong limits
obtain a weak likelihood. At the end, the highest likelihood
limit proposal are concentrated on the left where the real
limit is.

Once the limit between the two domains is known, we can
put our interest on the meteorological parameters, for instance
for the left area. First the likelihood of the wind direction
forecasts is examined. As it might be noticed on the Fig. 4,
the weight evolution of the direction proposals for the uniform
domain on the left is concentrated over one proposition.
At the beginning of the experiment the direction weights



Fig. 1. Sequential estimation of the ensemble weather forecast weights and TAS of the aircraft using the Island Particle Filter. For each forecast, the algorithm
generates several TPs which are selected using the radar observations. This step learns the aircraft parameters such as the TAS. Then for each weather forecast
the algorithm estimates its likelihood with respect to the radar observations.

Fig. 3. Time evolution (y-axis from top to bottom) of weight (colorscale) of
the different limit proposals (x-axis) between the two domain. The algorithm
gives gradually the maximum of likelihood to the forecast which has the most
probable limit. The other limit are excluded as soon as an aircraft experiment
the border.

are equidistributed. Then using the Mode-S information, the
weight starts to concentrate on only one direction till the end
of the experiment. This weight concentration on one direction
corresponds to the real direction which has been successfully
learned.

Fig. 4. Likelihood evolution (in color) over time (y-axis from top to bottom)
of direction proposals (x-axis) obtained with IPF for the left uniform area.
Using the algorithm, the maximum of weight is quickly concentrate over one
direction giving the best forecast regarding to the air-traffic radar observations.
In this example, the best forecast corresponds to the real direction.

The direction of the wind being learned, the figure 5
presents the wind force relative errors. One can see that this
relative error is about2%. Concerning the wind force, it seems
to have two periods. The second period and the jump in the



Fig. 5. Evolution in time (x-axis) of the relative error of theIPF estimated
wind force for one area to the real wind force. During the firstthird of the
series, the error computed with two aircraft is not very stable. When a new
aircraft is entering into the zone, the estimation is better and more stable. The
relative errors on the wind force stay about2%, i-e less than1 kt.

error values correspond to the entry of the right aircraft inthe
left area. In the first one, the relative errors are quite unstable
showing the learning phase with two aircrafts. While in the
second period the relative error is very stable showing the end
of the learning process with the three aircrafts in the same
domain.

While the environment parameters are learned by the Island
Particle system, the aircraft parameters are also estimated. In
our experiment we only have to estimate the true airspeed
of each aircraft about400 kt. The airspeed estimation of one
of these aircrafts is represented in Figure 6. On this graphic,
the black line represents the true airspeed which needs to be
estimated (knots), the blue line the mode-S radar observations
and the red line the reconstructed signal by the IPF algorithm.
Even if the perturbations of the TAS observation are strong,the
estimation of the TAS is efficient picking out the Poissonian
jump.

In this numerical experiment, we have shown the capability
of our method to estimate the likelihood of an ensemble of Met
forecasts while learning some aircraft parameters. For further
experiments, we intend to work with multiple areas and more
realistic meteorological forecasts.

CONCLUSION AND FURTHER DEVELOPMENTS

In this study, we have developed a stochastic modeling of
the aircraft trajectories in random atmopsheric conditions.
The stochastic process is a Markov process in a random
environment partially observed by radar. This process can be
estimated by a special Particle Filter called Island Particle
Filter. Each island corresponds to a weather prediction andis
used to evaluate the likelihood of the Met forecasts.

Fig. 6. Estimated aircraft true airspeed by IPF method. In spite of the strong
perturbation on the TAS observations, the estimation of the TAS is quite
efficient with an absolute error smaller than0.5 kt.

Then the methodology developped in this work allows us
to give a weight to each element set of the ensemble weather
forecasts regarding to the traffic-observations. That is we
can infer the random environment: learning the likelihood of
wind proposals while learning some flight parameters such
as true airspeed. The numerical experiment have shown the
powerfull of our stochastic modelization developed and the
capability of the Island Particle Filter.

The next mathematical step of this work is to relax the
assumption of uniformity for the Met errors. We are working
on this topic using errors which are uniform in probability
law (it means that it is the probability distribution which is
uniform and not the errors themselves) on sub-domains. Then
we intend to deal with real weather ensemble forecasts such as
the forecasts provided by European operational meteorological
centres. The applicability of the preceding algorithm to real
data makes no doubt as far as the algorithm does not have
any restricting assumptions. However, this method needs an
efficient programming code and parallel computing techniques
in order to get real time operational applications.
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