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What shall we talk about ?

1. The nonlinear filtering problem and Particle Filter resolution.

2. The EnKF convergence and mean-field interpretation.

3. The number of particles in a PF. What about the dimension ?

4. The coupling of Local PF and EnKF, a first solution ?

5. The Pointwise PF, another way to face the dimensionality.

6. Further developpements.
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The nonlinear filtering problem

Particle Filter resolution
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2 / 26 Nonlinear Filtering

Nonlinear State System

The State System fixes the filtering problem.



Xn+1 = Xn + An(Xn)∆t + Bn(Xn)∆Wn

Yn = Hn(Xn) + σVn

where Vn and Wn are Wiener process or not. An, Bn are R
d -valued

functions of Xn and Hn a R
d′ -valued function.

The associated filtering problem is to compute Law(X[0,n]|Yn)

The filtering estimator and the prediction estimator are defined
by :

η̂n(f ) = E[f (X0, . . . ,Xn) | Y0 = y0, . . .Yn = yn]

ηn(f ) = E[f (X0, . . . ,Xn) | Y0 = y0, . . .Yn−1 = yn−1]
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3 / 26 Nonlinear Filtering

Nonlinear State System

With the Filtering State System we define :

the Markovian transition kernel Mn associated with

Xn+1 = Xn + An(Xn)∆t + Bn(Xn)Wn

A (non-unique) selection kernel Sn,ηn
using :

Gn(xn)
def
= gn(xn, yn) with

P(H(xn) + σVn ∈ dyn | Xn = xn) = gn(xn, yn)λn(dyn)

The sequential nonlinear filtering algorithm is :

ηn

Sn,ηn−−−→ η̂n = ηn Sn,ηn

Mn+1−−−→ ηn+1 = η̂n Mn+1
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4 / 26 Nonlinear Filtering

The selection kernel is non-unique

The most classical, and historically the first described :

Sn,ηn
(xn, dx) =

Gn(x)

ηn(Gn)
ηn(dx)

The kernel with genetic selection :

Sn,ηn
(xn, dx) = Gn(xn)δxn (dx) + [1− Gn(xn)]

Gn(x)

ηn(Gn)
ηn(dx)

The genetic selection with a parameter εn :

Sn,ηn
(xn, dx) = εn . Gn(xn)δxn (dx) + [1− εn . Gn(xn)]

Gn(x)

ηn(Gn)
ηn(dx)

where εn . Gn(xn) ∈ [0, 1] for any xn ∈ E
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5 / 26 Particle approximation of the nonlinear

filtering problem

These integral equations are not analytically computable.

We may use an approximation method to solve these equations.

We use a particle resolution for the probability laws, and here to
solve the filtering problem.

This particle filtering belongs to SMC methods.
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6 / 26 Particle approximation of the nonlinear

filtering problem

Beginning the nth time step, we start with the set of particles
(ξ̂i,N

n )1≤i≤N .

(ξ̂1,N
n , . . . , ξ̂N,N

n ) are distributed according to

lim
N→∞

N
X

i=1

δ
ξ̂
i,N
n

= Law(Xn | Y0, . . . ,Yn)

the nth marginal of Law(X0, . . . ,Xn | Y0, . . . ,Yn)

The population of particles with its N offsprings moves with the
selection/mutation algorithm .

The prediction (mutation) is following the dynamics model.

In a genetic case, the selection keeps alive the accepted states
and redistributes only the rejected particles.
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The nonlinear filtering problem

The Ensemble Kalman Filter method
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7 / 26 The Ensemble Kalman Filter

The EnKF is an empirical estimator.

The EnKF tries to reproduce the dynamics of the classical Kalman
Filter.

The EnKF uses several realizations of a nonlinear model to
estimate empirically the covariance errors matrices.

The EnKF is convergent but not tends to the Optimal Filter as we
will see.
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8 / 26 EnKF Algorithm

The point of departure : we give P0 > 0 and an ensemble of
points (X̂ 1

0 , . . . X̂
N
0 ) i.i.d. with N (0,P0)

For any i = 1 . . .N, and n ≥ 1 we have a 1st step :

X
i

n
= An(X̂

i

n−1
) +

p

Qn .W
i

n
W

i

n
∼ N (0, 1)

m
N

n
=

1

N

N
X

i=1

X
i

n

P
N

n
=

1

N − 1

N
X

i=1

(X
i

n
− m

N

n
)(X

i

n
− m

N

n
)
T

R
N

n
=

1

N

N
X

i=1

p

Rn .V
i

n
.(
p

Rn.V
i

n
)
T

V
i

n
∼ N (0, 1)

G
N

n
= P

N

n
.C

T

n
.(Cn .P

N

n
.C

T

n
+ R

N

n
)
−1

Then a correction step :

X̂
i

n
= X

i

n
+ G

N

n
.
ˆ

Yn − Cn.X
i

n
+

p

Rn .V
i

n

˜
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Mean-field process interpretation of the EnKF
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9 / 26 Mean-field process interpretation

We combine the previous equations to have :

X̂
i
n = An(X̂

i
n−1)+

p

Qn.W
i
n+G

N
n .
ˆ

Yn−Cn.An(X̂
i
n−1)−Cn.

p

Qn.W
i
n+
√

Rn.V
i
n

˜

The EnKF approaches the Markovian process Zn (and not the
filter process)

Zn = An(Zn−1)+
p

Qn.Wn+Gn.
ˆ

Yn−Cn.An(Zn−1)−Cn.
p

Qn.Wn+
√

Rn.Vn

˜

with Gn = Pn CT
n [Cn Pn CT

n + Rn]
−1 and

Pn = E
`

[An(Zn−1) +
√

Qn Wn][An(Zn−1) +
√

Qn Wn]
T
´

,

Rn = E
`

[
√

Rn Vn]
√

Rn V T
n

´
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10 / 26 Summary : EnKF vs PF

A Particle Filter converges to the Optimal Filter as the number of
particle goes to infinity.

A EnKF converges a process Zn as the number of elements goes
to infinity.

The estimation of an EnKF is optimal if the pair (Xn,Yn) is linear
Gaussian, and in the other cases the EnKF is only the best linear
estimator.

For an equal number of elements, the Particle Filter is cheaper
than the EnKF.

For a small ensemble, a Particle Filter is more risky than an EnKF.

In high dimensional problems, EnKF has no troubles while Particle
Filters ask questions.

There are many Particles Filters, one for each selection rule.
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Particle Filters Regimes
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11 / 26 Particle Filters and high dimensions

The (exact) nonlinear filter (ηn+1(f ) = ηn Kn+1,ηn
(f )) is not

concerned by the problem of the dimensionality.

This is the particle approximation which brings the dimension into
question.

C. Snyder et al. suggest a numerical experiment to evaluate the
performance of a Particle Filter as the dimension of the state space
increases.
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12 / 26 Particle Filters and high dimensions

C. Snyder et al. propose to use the Lorenz-96 model and an
filtering algorithm with a classical selection.

The Lorenz-96 model is a cyclic dynamical system coupling
together the dimensions :

dxα

dt
= −xα−2.xα−1 + xα−1.xα+1 − xα + F

where xα is the αth component of the state vector
X = (x1, . . . , xα, . . . , xd ) and 1 ≤ α ≤ d .

We propose an experiment where half of the dimensions are
directly observed, the others are blind.

The behaviour of the PF is evaluated by Wn the maximum of
particles weight for each time step :

Wn = max
i∈[1,N]

w
i
n = max

i∈[1,N]

G i
n

PN

j=1 G
j
n
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13 / 26 Particle Filters and high dimensions

For N = 1000 particles they obtain the histograms of the
maximum weight when the dimensions are d = 10, 30 and 80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16

18

20

C. Baehr & O. Pannekoucke EnKF and particle filters for meteorological models



14 / 26 Genetic Particle Filter faces the dimension

So it seems to have problems with their Particle Filter when the
dimension is (not so !) high.

We propose to use a genetic selection with a parameter
εn = 1/sup(Gn) :

Sn,ηn
(xn, dx) = εn . Gn(xn)δxn (dx) + [1− εn . Gn(xn)]

Gn(x)

ηn(Gn)
ηn(dx)

We introduce a second change in the algorithm : we perturb
each particle with a gaussian noise and take it into account in the
potential function Gn.

This changes drastically the behaviour of the particle
approximation !

We have a convergent filter for dimensions higher than 400 for

1000 particles !
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15 / 26 Genetic Particle Filter faces the dimension

For N = 1000 particles and dimensions d = 200, 600 and 1500 we
have the histograms :
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16 / 26 Genetic Particle Filter faces the dimension

The critical number of particles seems to be O(d), while Snyder

et al have found an exponential one.

Is there a possible theorem ?

Case 1 : ∃ Ncrit
1 s.t. ∀N < Ncrit

1 , P
`

Wmax = 1
´

= 1

Case 3 : ∃ Ncrit
2 s.t. ∀N > Ncrit

2 , P
`

Wmax ≤ β
´

≥ α

Case 4 : When P
`

|Wmax − 1
N
| ≤ β

´

= 1, the algorithm is
non-adapted.
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The use of Local Particle Filter
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17 / 26 Coupling of an EnKF and PF

Even if the EnKF converges to a process which is not the filtering
process, it requires few elements to work in high dimensions.

Even if the PF converges to the right filtering process, it requires
a number of particles in O(d) for a genetic selection.

We propose now to couple together a EnKF and a Local Particle
Filter. (I pass over Rao-Blackwellized Particle filters in silence ... may be later for

questions if you wish ...)

For the numerical experiment, we use a dicretized 1D-Burgers
equation on [0, 1] with 361 points for an estimation of the true reality
and 161 points for the model used by the EnKF.

Then we use a local model on the first front (161 dimensions on
the intervalle [0, 1

2
]) with a Particle Filter to assimilate the

observations.

C. Baehr & O. Pannekoucke EnKF and particle filters for meteorological models



18 / 26 Coupling Local PF and EnKF

EnKF result with 100 elements and after a cycle of 37 assimilations
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19 / 26 Coupling Local PF and EnKF

Limited-Area Model, with a Local PF using 100 particles after 37
cycles of assimilation.
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20 / 26 Coupling Local PF and EnKF

Feedback of the particles to the EnKF elements in the LAM domain
by randomization.
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21 / 26 Coupling Local PF and EnKF

Variance error of the EnKF and the LPF coupled with the EnKF.
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The filtering of pointwise turbulent measurements
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23 / 26 Pointwise Particle Filter

We can go one step forward with the definition of a Pointwise
Particle Filter.

It requires a stochastic Lagrangian representation of the random
medium.

We have defined the process conditioned to live into a ball
centered on each grid point of the model.

We have developed a Particle Filter for mean-field processes and
with a conditioning of the process to the observations.

This Pointwise Particle Filter need about 100 to 500 particles per
grid points.

This work is in progress for meteorological or turbulent fields.
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24 / 26 Example of filtering for turbulent fluid

observation

This is the illustration of one Pointwise Particle Filter for
turbulence measurements.

The model is a 3D stochastic Lagrangian representation of
turbulence.

There is a specific treatement of the Eulerian averages and
unobserved parameters.

We perturb reference observations of real atmospheric wind and
temperature, we filter the corrupted signals and we compare the
results with the references.

In this experiment, the Pointwise Particle Filter uses 300 particles.
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25 / 26 Example of filtering for turbulent fluid

observation

Time series and Power Density Spectra : Toulouse, France, the
18th of July 2006 between 16h58 and 17h00 UTC.
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Conclusion
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26 / 26 Outcomes and further developpements

EnKF converges to a mean-field process which is not the optimal
filter.

PF with adapted genetic selection could have an O(d) critical
number of particles.

PF and EnKF can be coupled together to solve some high
dimensional problems.

Pointwise PF could be a solution for any high dimensional
problems.

We will try to assimilate observation on a 3D turbulent field with
PPF or coupled EnKF and LPF for other meteorological models.

There are other selection kernels for PF to find and study (mixing
correction and genetic selection, piloting/tuning of the selection
parameter, ...).
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We have 2 schemes for nonlinear filters.

- One for the Particle Filter.

- One for the EnKF.

For any bounded measurable function f

ηn+1 = ηn Kn+1,ηn,πn
(f ) = ηn Sn,ηn

Mn+1,πn
(f )

ηn+1 = ηn Kn+1,ηn,πn
(f ) = ηn Cn,ηn

Mn+1,πn
(f )
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