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Non-linear filtering of local turbulent fluid measurements was an unexplored domain, in

this paper we present original stochastic models and efficient filters to explore it. First
we propose non-linear filters for processes of a mean-field law and give the convergence
of their particle approximations. We then define the acquisition process of a vector field
along a random path, and significantly modify the Lagrangian models of fluids proposed
by the physicists to make them compatible with the problem of filtering. The closure of

these equations is obtained by conditioning the dynamics to the observations and to the
acquisition process. Our algorithm allowed us to filter velocity measurements of a real

turbulent fluid in 3D flows.
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1. The origin of the problem to be considered

As soon as we make measurements of physical quantities, we face the problem of

random errors naturally introduced in the signal. Until these random errors, called

noise, can be considered negligible with respect to the physical part of the sig-

nal, no processing is necessary or only with some linear filters based on Fourier

transform, moving averages, numerical filters, etc. Unfortunately, noises could be

predominant, or sometimes the interest of our measurements is put on the thinnest

structures of the signal where the noise is often the strongest. Then it’s necessary to

use an optimal filter to estimate the observed state. These filters require to develop

mathematical models that represent the physical behavior of the measured system.

The aptitude of such optimal estimations to extract the useful signal lies in the
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pertinence of the signal’s model.

For measurements at high frequency (> 10 Hz) in the atmosphere ( i.e. in the

turbulence domain where the phenomena are thin and fast ), we are in a situation

where the sensor perturbations could have the same level of energy as the physical

signal. For mobile measurements (with balloons, ships, aircraft, ...), compounding

to the perturbation of instruments acquired at high rate (for 25 to 200 Hz), there

exists a supplementary difficulty in accounting the dynamics of the platform. In this

particular case, it is a random excursion onto a random medium.

The nonlinear filter we present here will take advantage of a probabilistic de-

scription of the fluid and the trajectory of the measurement system. However we

have to model the signal coming from a turbulent fluid as discrete stochastic pro-

cesses and then propose specific algorithms. We suggest theoretical and practical

solutions and their presentation is the aim of this contribution.

2. Filtering of perturbed measurements

As proven by P. Del Moral 3, the exact filtering problem has an integral solution as

a Feynman-Kac probability distribution measure. To approximate this distribution

we will use a particle genealogical algorithm with a genetic selection (see P. Del

Moral [4] for details). These results range far and wide in the answer of nonlinear

filtering problems, but do not provide solutions in the case of random media inter-

acting with mean-field. We have developed 5,6 a nonlinear filtering for mean-field

processes with specific algorithms, particle systems to approximate mean-field dis-

tribution or filtering laws and a strategy to learn hidden states from the observation

process. We present these techniques in the next two sections.

Considering the discrete problem, let Xn be a point of the phase space at step
n > 0 known by the observation process Yn and πn is the law of Xn. In the sequel, for
a process X , the notation X[0,n] stands for the trajectory of the process from initial

step to time n. The filtering problem is to estimate the Law(X[0,n] | Y[0,n−1])
def
= ηn

and the Law(X[0,n] | Y[0,n])
def
= η̂n using the differential stochastic system:

{

dXn = Bn(Xn, πn)∆t+An(Xn)∆Wn

Yn = Hn(Xn) + σVn
(1)

where Vn and ∆Wn are noises given, for example, by standard Wiener processes, An
and Bn are measurable functions with locally bounded derivatives,Hn is the transfer

function and σ is a non-negative parameter. The first equation is the stochastic

dynamics model with Markov kernel Mn+1,πn dependant of the mean-field law. We

assume that the observation noise Vn is a random process with density. It is then

possible to construct a function Gn (see [4]) which gives the potential of a state

Xn with respect to an observation Yn. This potential function gives a (non-unique)
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kernel of selection expressed by

Sn,ηn(xn, ·) = Gn(xn)δxn(·) + [1−Gn(xn)]
Gn(.)

ηn(Gn)
ηn(·) (2)

where δxn is the Dirac measure of the singleton set xn. A well-adapted state Xn is
preserved and an ill-adapted state is reallocated randomly with respect to filtering

law ηn. The acceptation/rejection rate is only controlled by the potential Gn.

Therefore the algorithm of nonlinear filtering estimates the law ηn with the

sequence ( see [5] ):

ηn
Sn,ηn−−−−→ η̂n = ηn Sn,ηn

Mn+1,πn−−−−−−→ ηn+1 = η̂n Mn+1,πn (3)

This algorithm has a particle approximation (see [5, 6]) using 2 systems; the first,

with d elements, learns the mean-field law πn, and the second, with N particles,

learns the laws of filtering ηn and η̂n. We prove in [5] that these approximations

lead an asymptotic convergence when the number N of particles tends to infinity

and for any bounded measurable test function f ,

sup
n≥0

E(|ηNn (f)− ηn(f)|p)
1
p ≤ (C(p)√

N
+
C ′(p)√

d
)‖f‖

where ηNn is the particle approximation of ηn, p is a non-negative number, and the

constants C(p) and C ′(p) depend only on the p parameter. Once the filtering law

has been computed, the estimated (also called filtered) state X n =
∫

xη̂n(dx). Thus

all the moments of the unknown state Xn are accessible.

3. Acquisition process of a random field along a random path

For measurements on random medium, especially when the sensor is mobile with

respect to the medium, we do not have a Markovian model for Xn. However when
this environment can be described by a local (Lagrangian) model, an estimation of

the signal can be achieved (see 5). We develop a new mathematical object, called

the acquisition of a random field along a stochastic path. The acquisition process is

simply the values taken by a random vector field of the phase space on each point of

a path assumed to be stochastic in the configuration space. Considering the discrete

case, this model leads to a prediction/update process well known in the nonlinear

filtering methods and seen before in the scheme (3). The acquisition process could

have very general purpose far from filtering, for example, in punctual modeling of

random media.

For a random path Xn in the physical space E subset of the d dimensional real

space and a random field X ′n,x in the d
′ dimensional phase space E ′, we define the

acquisition process of the field X ′ along the path X by An = X ′n,Xn . If the random

path Xx0
n , coming from x0 at the initial step, is a flow of the vector field X ′n,x,

we call An = X ′
n,X

x0
n
the Lagrangian acquisition. This definition is obvious when
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Fig. 1. Evolutionary scheme of a discrete acquisition process for a Lagrangian dynamics.

X ′ is the Eulerian field of fluid velocities. We will use this description and assume

that the medium is locally homogeneous and the sensor path in given by Zn ∈ E.

The locally homogeneous hypothesis allows to define a sequence of balls following

the acquisition path Bε
n(Zn) = {x ∈ E : |x − Zn| ≤ εn}. To solve the acquisition

problem, we have to estimate the 2 laws of probability given for a test function by

f :

χ̂n(f) = E(f(Xn, An) | X0 ∈ Bε
0(Z0), . . . , Xn ∈ Bε

n(Zn)) and

χn(f) = E(f(Xn, An) | X0 ∈ Bε
0(Z0), . . . , Xn−1 ∈ Bε

n−1(Zn−1))

In ref 5, we show that this measure can be learned by an iterative algorithm

with prediction/selection step with the scheme

χ̂n
Mn+1,πn−−−−−−→ χn+1

SZn+1,χn+1−−−−−−−→ χ̂n+1

where SZn+1,χn+1
is a selection kernel with the same form of (2) using the potential

function with the value 1 into the ball Bε
n+1(Zn+1) and 0 elsewhere. This predic-

tion/selection procedure of the discrete acquisition for the locally homogeneous case

in term of physical state is illustrated with the figure 1.

Now we have the capacity to propose a filter for turbulent flows, coupling a

Lagrangian model, the acquisition estimation, and the filtering problem.

4. Adapted Stochastic Lagrangian Model for Nonlinear Filter

To continue with the physical application, we can apply our acquisition process to

the measurements of a random field and propose a method of calculating local aver-

ages and a nonlinear algorithm to filter data contaminated by noise of intruments.
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In the case of turbulent fluids, we will use Stochastic Lagrangian Models (SLM)

as proposed by S.B. Pope [2] in the homogeneous cases, or proposed by S. Das and

P. Durbin for 3D stratified flows [1]. The filtering of such turbulent flows needs to

condition the problem to the observations in order to give relevant estimation of

the Eulerian quantities of large eddies. This conditioning to the observations of a

Markovian kernel is a new method of closure for a stochastic model.

In its continuous version for 1D or 2D flows, the simplified SLM given by S.B.

Pope for isotropic homogeneous turbulence is
{

dXt = Vt dt

dVt = −∇x < p > dt− ( 12 + 3
4C0)

εt
kt
(Vt− < v >) dt+

√
C0εtdBt

(4)

where Vt is the Lagrangian velocity, ∇x < p > is the gradient of mean pressure, εt
is the turbulent dissipation rate, kt the turbulent kinetic energy, < · > are Eulerian
means, C0 is the Kolmogorov constant and Bt is a Wiener process. The term < v >

will be approximated by the Lagrangian expectation conditioned to the observation

and to the acquisition process E(Vt | X[0,t] ∈ Bε
t (Z[0,t]), Yt). The turbulent kinetic

energy will be half of the variance associated with the same expectation. In this

particular case, we choose to model −∇x < p > dt by the mean increment of

velocities conditioned to the observation and εt will be modeled by the conditioned

expectation of the square of the increment. We are well aware that this model for

the gradient of mean pressure breaks the incompressibility of SLM, but it will be

restored by the observation of an incompressible fluid and by the mechanism of

acceptation/rejection of the filtering technique. Therefore the Markovian transition

Mn+1,πn associated to the real SLM is replaced by the transition Mn+1,η̂n where η̂n
is the law of the optimal filter.

For 3D atmospheric flow, we derive from the model proposed by Das and Durbin
1 (established for dispersion in a stratified turbulent flow), a stochastic model which

could be seen as the dispersion of a fluid particle with respect to a virtual one

following the mean flow :
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dXt = Vt dt

dVh,t = −∇h < p > .dt− C1
εt
kt
(Vh,t− < V >h,t).dt

+C2.(Wt− < W >t).
d<V >h,t

dz
.dt+ (C0.εt)

1
2 dBVh

t

dWt = d < W >t −C1
εt
kt
(Wt− < W >t).dt

+C3.β.g.(θt− < θ >t).dt+ (C0.εt)
1
2 dBW

t

dθt = d < θ >t −C4
εt
kt
(θt− < θ >t).dt

−(Wt− < W >t).
d<θ>t
dz

.dt+ (Cθ)
1
2 dBθ

t

(5)

where Vh,t is the horizontal speed, W is the vertical speed, θ is the temperature, B•t
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are Wiener processes and C• are some constants (see [5]). We use the same methods

to close the system by observations. The vertical gradient mean will be learned with

the particle approximation using the gradient of the set of particles retained after

the acceptation/rejection step of the filtering. After these adjustments, it is not

really a model for turbulence anymore, but it may be useful to filter measurements.

We denote Xn = (Xn, Vn) or Xn = (Xn, V
h
n ,Wn, θn) and the superscript Bn

means ’conditioned to be in the ball Bε
n(Zn)’, the discrete filtering algorithm is

therefore described by the following sequence :

XBn
n

w.r.t. Sn,ηn−−−−−−−→ X̂Bn
n

w.r.t. Mn+1,η̂n−−−−−−−−−→ X̃n+1

w.r.t SZn+1,η̃n+1−−−−−−−−−−→ XBn+1

n+1

where η̃n+1 = Law(X̃n+1 | X[0,n] ∈ Bε
n(Z[0,n]), Y[0,n])

5. Application to real 3D wind measurements

The quality of the estimations delivered by our filter needs to be evaluate with

different points of view. The first one is the filtering of simulated data for fluid

velocities. We do not present this result on 1D or 2D simulated fluids and prefer

to check the ability of the method with real 3D flows. We propose to filter real

clean data perturbed artificially with numerical noise. The purpose is to filter the

corrupted signal and compare it to the signal of reference. First the comparison

is visual with the examination of their respective series and their Power Spectral

Density (PSD).

We use atmospheric data recorded at 5 Hz from an ultrasonic anemometer in

the experimental field of the French Weather Research Center in Toulouse, France,

on the 18th of July 2006 between 16h58 and 17h00 UTC. The choice of the date

and the hour was only the quality of the measurements to become reference signals.

We choose to add a random noise built using the local empirical variance of the

reference signals with a Gaussian law. This noise is an upper limit for turbulence,

and there is a memory effect which can give dramatic errors if the filter does not

return the right parameter of the fluid.

The figure 2 (horizontal wind) and 3 (vertical wind and temperature) show in

light blue the noisy signal of the 3 components of wind and temperature, the thick

black line is the signal of reference to retrieve. The filter uses the algorithm described

in the last section with a particle approximation for system of 800 particles. The

red signal is the output of our filter using a SCILAB code.

Even if the perturbations are strong, the filtered signal compares well to the

reference component. On the diagram of PSD , the correction is very sharp, with

a decreasing of power following the reference spectrum, far from the perturbed sig-

nal. In detail, more there are slight differences between the filtered and the reference

signals and come from our method itself. Indeed the algorithm estimates the charac-
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Fig. 2. Left, series of horizontal wind (velocity (m.s−1) vs time step number) and right, PSD
(with a log-log scale, power (dB) vs frequency (Hz)). The series on the top is the U componant

and the bottom the V componant. In light blue the perturbed signal to be denoise, in black the
reference signal and in red the filtered with 800 particles.

teristic parameters of the fluid through the model used by the filter, and the ouput

is a possible realization of the medium. That’s why the spectral correction is very

good, as it is the spectrum of the model, while the series show differences but the

noise is entirely subtracted out of the perturbed signal. The temperature is the least

well-filtered parameter. There is two possible causes for this. First is a worse quality

of the model of temperature, the second is a perturbed sensor which not gives a

reference signal. At this time there is no answer and its one of our further work.

Our method, which estimates some characteristic terms, retrieves characteri-

zations of turbulence parameters at high frequency which are accessible by the

prediction model. It could be the turbulent dissipation rate or buoyancy coefficient

or 3-d gradients of Eulerian averages, etc. and the acquisition path of the measure-

ment sensor. The figure 4 gives an example of the series of turbulence dissipation

rates and the vertical gradient of temperature.
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Fig. 3. Series (x-axis is time step number. On the top, the vertical velocity (m.s−1), on the
bottom, the temperature (K) ) and PSD (power (dB) vs frequency (Hz)). In light blue the

perturbed signal to be denoise, in black the reference signal and in red the filtered with 800
particles.

These results are very promising, now we have to perform systematic tests giving

an objective evaluation of the technique.

6. Some systematic tests of the method

We conduct various tests on simulated or real data to understand the dynamics

of our filter. To perform some statistic calculations, we need to run many times

the same set of data with our stochastic filter and calculate for the absolute errors

empirical mean or variance. The absolute error is defined here as the absolute dif-

ference between the reference signal and the filtered. Of course the reference is a

realization of the random medium with respect to its law. This test is not really

satisfactory, but it’s the only one we are able to perform with real data. Because

of the complexity of the calculations, we reduce our tests to 1D wind velocities (1

component horizontal of the 3D Wind), and the set of runs have 10 elements. For

real data, we choose the measurements of an ultra-sonic anemometer sampled at
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Fig. 4. Left, estimation of εn parameter (m2.s−2) and right gradient of mean temperature
(K.m−1) with 800 particles. X-axis is time step number.

10 Hz located at Saint-Sardos, France, on the 10th of January 2005 between 12h00

and 12h05 UTC. For all the tries, we use the same signal perturbed by an artificial

Gaussian noise with standard deviation of 3/2. To test the sensitivity of the particle

approximations, we have varied the number of the elements from 100 to 700. To test

the pertinence of the adapted 1D SLM used to filter the data, we modified it first

by suppressing the turbulent frequency εn
kn
and secondly by omitting the mean-field

term εn
kn
[Vn− < v >].

The absolute error of the input data (due to observation noise) is in mean

1.22 ms−1 and variance 2.23. On the figure 5, the curve 1 is the absolute error filter

with respect to the number of particles, in red a power law curve fit (curve 4). The

decreasing of mean errors with the size of the set of particles goes from 0.38 ms−1

to 0.28 ms−1 (from 0.24 to 0.17 in variance). The shape of curve fit suggest a power

law with exponent −1/5 instead of −1/2. The curve 2 is the modified model with
a turbulent frequency put to 1, the curve 3 is the model without mean-field term.

It’s interesting to notice that for a few particles approximation is better to not

take into account the mean-field term. The good representation of mean-field terms

needs enough particles. In this case the complete model is the better than its 2

modifications.

Even if the method is not optimal, these numerical tests confirm that mean er-

rors of our filter looks like the theoretical results, and show the necessity to take a

set of particle big enough to correctly sample the mean-field law and finally the use

of less realistic physical model gives worse results.

To conclude, we can mention that we have compared the calculation with clas-

sical methods 7 for turbulent fluxes using the reference signal and those deduced
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Fig. 5. Mean of absolute errors in ms−1 vs number of particles for the complete model (1), the

model without turbulent frequency (2), without mean-field term (3) and (4) is a curve fit of (1).

with our filters. We do not present an illustration here, but the results are very

comparable. If the classical methods give one number by step of few minutes (due

to block averages), our method is able to estimate these turbulent parameters at

high frequency (> 5 Hz).

7. Further developments

This work is a first stage, we hope to use in future developments these different tech-

niques to estimate turbulent parameters for high resolution atmospheric forecasting

model, or to design new integrated systems for airborne turbulence measurements

or to filter numerically more complex atmospheric set of parameters including hu-

midity content, chemical or aerosol concentration, droplets counting, etc. There is

also some study to complete the understanding of this type of filter, in particular

we need to rely the diameter of the redistribution ball of the acquisition process to

physical quantities as the turbulent frequency. Theoretical works are also in progress

to modify the algorithm and not break the incompressibility hypothesis as the model

proposed here for the gradient of mean pressure could be.
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