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This book presents modern developments on the following two subjects: understanding the prop-
erties of level sets of a given random fieldX = (Xt, t ∈ T ) and analysis and computation of the
distribution function of the random variableMT = supt∈T X(t), provided thatX is real-valued.

Chapter 1 of the book contains a number of fundamental classical results on stochastic processes,
for example, Kolmogorov’s consistency theorem and the 0-1 law for Gaussian processes, but
a particular emphasis is placed on sufficient conditions for continuity, Hölder continuity and
differentiability of trajectories of stochastic processes. Most of the results on path regularity are
not restricted to the Gaussian case, and many apply to the multiparameter (i.e. random field)
setting. The last section of this chapter contains Bulinskaya’s sufficient condition for a one-
parameter process not to have almost surely critical points in a given level set, plus an extension
of Ylvisaker’s theorem in the Gaussian case. Specifically, it is shown here that when the mean
of the Gaussian process is bounded from below and its variance is bounded away from zero, the
supremum of the process over a given fixed parameter set has probability distribution equal to
the sum of an atom at infinity and a (possibly degenerate) probability measure on the reals with a
locally bounded density. The end-of-chapter exercises include derivation of regularity properties
of the paths of fractional Brownian motion and Brownian local time.

Chapter 2 opens with the proof of the latest (2002) refinement of the Slepian inequalities,
due to W. V. Li and Q. M. Shao [Probab. Theory Related Fields122 (2002), no. 4, 494–508;
MR1902188 (2003b:60034)], where the difference between the cumulative distribution functions
of two centered Gaussiann-dimensional vectors (with variances normalized to one and arbitrary
n≥ 2) both evaluated at a given pointa ∈ Rn is bounded above by the following sum:
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whererX
ij andrY

ij are covariances betweenXi andXj and betweenYi andYj, respectively, and
ρij = max(|rX

ij |, |rY
ij |). Two more related comparison lemmas are stated. One of these is the

well-known Sudakov-Fernique inequality showing that if variances of arbitrary increments of a
Gaussian processX are less than or equal to variances of similar increments of a Gaussian process
Y then the mean of the supremum ofX is less than or equal to the mean of the supremum of
Y , provided that the two Gaussian processes are separable centered with almost surely bounded
paths. Next the authors present the proof due to C. Borell of Ehrhard’s inequality [C. R. Math.
Acad. Sci. Paris337(2003), no. 10, 663–666;MR2030108 (2004k:60102)] valid for general Borel
subsets ofRn (with no restrictions on the convexity of those sets). Namely, letγn be the standard
Gaussian probability measure onRn. Then for any pairA andB of Borel sets inRn and allλ ∈
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(0, 1), the following inequality holds:

Φ−1(γn(λA +(1−λ)B))≥ λΦ−1(γn(A))+ (1−λ)Φ−1(γn(B)).

The authors then derive a version of a Gaussian isoperimetric inequality and use it to prove the
Borell-Sudakov-Tsirelson inequality, which gives an exponential bound forP (|MT −µ(MT )| >
x), whereMT is the supremum of a Gaussian process over[0, T ] and µ(MT ) is the median
of distribution ofMT . The next inequality for the tails of the distribution of the supremum is
similar but involves the mean ofMT rather than the median and is due to Ibragimov, who proved
the inequality using stochastic analysis tools. Chapter 2 concludes with the proof of Dudley’s
inequality, which establishes an upper bound on the mean of the supremum (of a possibly non-
Gaussian process) in terms of an integral of a square-root of the logarithm of covering numbers.

Chapter 3 is entirely devoted to the treatment of Rice formulas for one-parameter processes
and centers on integral representations of moments of the number of (up- and down-) crossings
for both Gaussian and non-Gaussian processes having continuously differentiable sample paths.
Formal proofs of these results are preceded by nice intuitive discussions, whereas at the end of the
chapter the authors suggest a number of useful exercises.

Chapter 4 starts with the application of Rice formulas to derive bounds for the tails of the dis-
tribution of the maximum of one-parameter Gaussian processes with continuously differentiable
sample paths and, in the stationary case, to subsequently characterize the asymptotic behavior of
P (MT > x) asx →∞. This chapter also contains two detailed examples of statistical applica-
tions of the distribution of the maximum to genetics and to the study of mixtures of Gaussian
distributions. In the first case the problem is that of testing that a given putative gene has no in-
fluence on a given quantitative trait within the classical framework of a linear model with i.i.d.
errors. In the second case the problem is that of testing

H0: Y ∼N(µ, σ2)

versus
H1: Y ∼ pN(µ1, σ

2) + (1− p)N(µ2, σ
2),

first under the assumption thatµ = µ1 = 0 andµ2 ∈ R while σ2 = 1 (which corresponds to a
simple Gaussian mixture model), next under no additional assumptions on the means butσ2 =
1 (i.e. test of one population versus two when variance is known), and finally with no additional
assumptions on either means or variance (i.e. test of one population versus two when variance is
unknown). Since the distribution of the likelihood ratio test (LRT) statistic is related to that of the
maximum of a rather regular Gaussian process, the authors use the Rice formulas to address the
question of whether the power of the LRT is influenced significantly by the size of the interval(s)
in which the parameters live and whether the LRT is more powerful than the hypothesis tests based
on moments (the answer to the latter question turns out to be negative).

The next chapter focuses on both theoretical and numerical analysis of the Rice series, which are
representations of the distribution function of the maximum of a given stochastic process in terms
of series of factorial moments of the number of up-crossings of the underlying process. The authors
prove two key results. The first is applicable to both non-Gaussian and Gaussian cases but assumes
that the underlying processX hasC∞ sample paths and establishes a general sufficient condition
on the distribution ofX and its derivatives such that the following Rice series representation of



the cumulative distribution functionFMT
of the maximum ofX in terms of factorial moments̃νm

of the number of up-crossings ofX of a given levelu, starting belowu at time 0, holds:

(∗) 1−FMT
= P (X(0) > u) +

∞∑
m=1

(−1)m+1 ν̃m

m!
.

Moreover, when the infinite series is truncated, the error bound for the resulting approximation is
also given. The second key result shows that for a Gaussian centered and stationary process onR
with covarianceΓ such thatΓ(0) = 1 andΓ has a Taylor expansion at zero which is absolutely
convergent att = 2T , the conditions of the above general Rice series theorem are satisfied and thus
representation (∗) is valid. Much of the remainder of the chapter is devoted to efficient numerical
computation of the factorial moments of up-crossings, which is important for applications of the
Rice series. In particular it is shown that the Rice series approach is a priori better than the Monte
Carlo method (in terms of comparison of the complexities of the computation of the distribution
of the maximum) and, for standard error bounds, allows one to compute the desired distribution
with just a few terms of the Rice series. Chapter 5 concludes with a modification of the general
Rice series theorem discussed earlier to include continuous processes that do not have sufficiently
differentiable paths, which is achieved by employing in the series the factorial moments of up-
crossings of anε-mollified version (withε > 0) of the underlying process and then takingε to
0.

Chapter 6 revisits the subject of Rice formulas but in a much richer multiparameter setting.
The authors start by proving the area formula, then establish Rice formulas for the moments
of multiparameter Gaussian random fields (from a domain inRd to Rd) having continuously
differentiable trajectories, and also prove a closely related result on the expected number of
weighted roots corresponding to a given level set. Next, Rice formulas for the expected number of
local maxima and the expected number of critical points of a Gaussian random field with domain
D are established, whereD is aC2-manifold (at first, the manifold has no additional structure,
then the results are further specialized to the cases whenD has a Riemannian metric and whenD
is embedded in a Euclidean space). Analogous results are subsequently also proved for the case of
Gaussian random fields fromRd to Rd′ but nowd > d′.

Chapter 7 is devoted to the analysis of regularity of the distribution of the maximum of Gaussian
random fields. The key result here is the representation formula for the density of the maximum
of a Gaussian real-valued field withC2-paths defined on an open set containingS, whereS is a
compact subset ofRd which can be written as the disjoint union of a finite number of orientable
C3 manifoldsSj of dimensionj without boundary (wherej = 0, . . . , d). Moreover, under certain
nondegeneracy conditions, this density of the maximum is shown to be continuous. On the other
hand, restricting attention to the one-parameter case allows the authors to derive subtler results on
the degree of smoothness of the distribution of the maximum. Namely, if a Gaussian process on
[0, 1] has paths inC2k then the cumulative distribution function of the maximum is shown to be of
classCk.

Chapter 8 generally studies tails of the distribution of the maximum of a random field and is
divided into two parts. In the first part the authors focus solely on the case of one-parameter
Gaussian processes and analyze the asymptotic behavior of the successive derivatives of the



distribution of the maximum as well as the tails of the distribution of the maximum of certain
unbounded Gaussian processes. In the latter case the probabilityq that the supremum is finite is
strictly less than one, and the aim is to understand the speed at whichP (MT ≤ u) converges toq
asu grows to+∞. In the second part the authors establish bounds for the density of the maximum
of a multiparameter Gaussian random field and subsequently analyze the asymptotic behavior of
the maximum given by

P (M > u) = A(u) exp(−u2/(2σ2))+ B(u),

where A(u) is a known function with polynomially bounded growth asu → +∞, σ2 =
supt Var(X(t)), andB(u) is an error bounded by a centered Gaussian density with variance
smaller thanσ2.

Chapter 9 develops an efficient method, based on record times, for the numerical computation of
the distribution of the maximum of one- and two-parameter Gaussian random fields. The authors
first consider the parameter space[0, 1] and prove that ifX is a Gaussian process withC1-paths,
then the maximumM = max{X(t), t ∈ [0, 1]} has a distribution with tails of the form

(∗∗) P (M > u) =

P (X(0) > u) +
∫ 1

0
E[(X ′(t)+)1{t∈R}|X(t) = u]pX(t)(u)dt,

wherepX(t)(·) is the probability density ofX(t) andR is the set of record times, i.e.R = {t ∈
[0, 1]: X(s) < X(t),∀s ∈ [0, t)}. The latter result is derived from Rychlik’s formula, which in
turn is based on the idea that

P (M ≥ u) = P (X(0) > u) +P (∃t ∈ R: X(t) = u) =
P (X(0) > u) +E[#{t ∈ R: X(t) = u}],

since the number of record timest such thatX(t) = u is either 0 or 1. Then, upon using a
discretization of the condition{X(s) < X(t),∀s ∈ [0, t)}, one can use formula (∗∗) to obtain
explicit upper bounds onP (M > u):

P (X(0) > u)

+
∫ 1

0
E

[
(X ′(t)+)1{X(0)<u,...,X(t(n−1)/n)<u}|X(t) = u

]
pX(t)(u)dt.

On the other hand, a similar time discretization provides the trivial lower bound

P (M > u)≥ 1−P (X(0)≤ u, . . . , X((n− 1)/n)≤ u),

where (at least forn up to 100) the integrals in the above upper and lower bounds can be easily
computed using the Matlab toolbox MAGP developed by Mercadier (2005). Subsequently this
record method is adapted by the authors to deal with the case of a two-parameter Gaussian random
field.

Chapter 10 presents asymptotic results for one-parameter stationary Gaussian processes on time
intervals whose size tends to infinity. First, provided that the levelu tends to infinity jointly with
the size of the time interval so that the expectation of the number of up-crossings remains constant
and under the assumption of some local regularity (given by Geman’s condition) and some mixing
(given by Berman’s condition) of the underlying process, the Volkonskiı̆-Rozanov theorem [V. A.



Volkonskĭı and Yu. A. Rozanov, Teor. Veroyatnost. i Primenen.6 (1961), 202–215;MR0137141
(25 #597)] is proved, showing that the asymptotic distribution of the number of up-crossings
is Poisson. The latter in turn implies that the suitably renormalized maximum of the process
converges to a Gumbel distribution. On the other hand, when the levelu is fixed, under certain
conditions, the number of (up-)crossings is shown to satisfy a central limit theorem. In terms of
extensions of these results to a multiparameter setting, the authors quote Piterbarg’s theorem [V. I.
Piterbarg,Asymptotic methods in the theory of Gaussian processes and fields, Translated from the
Russian by V. V. Piterbarg, Amer. Math. Soc., Providence, RI, 1996;MR1361884 (97d:60044)] for
a multiparameter analogue of the Volkonskiı̆-Rozanov theorem. The multiparameter extensions of
the central limit type results for up-crossings are not directly developed in the book, but several
useful references are provided.

Chapter 11 deals with applications of Rice formulas to the study of some geometric charac-
teristics of random sea surfaces. The random sea surface is modeled as a Gaussian stationary
3-parameter field which is the limit of the superposition of infinitely many elementary sea waves.
Namely, if one considers a moving incompressible fluid in a domain of infinite depth, then the
classical Euler equations, after some approximations, imply that the sea levelX(t, x, y), wheret
is time and(x, y) are spatial variables, satisfies

X(t, x, y) = f cos(λtt +λxx+λyy + θ),

wheref andθ are the amplitude and phase, and the pulsationsλt, λx andλy are some parameters

satisfying the Airy relationλ2
x +λ2

y = λ2
t

g , whereg is the acceleration of gravity. If units are chosen
so thatg = 1 and iff andg are independent random variables withf having Rayleigh distribution
andθ being uniform on[0, π], thenX(t, x, y) is the Gaussian sine-cosine process of the form

X(t, x, y) = ξ1 sin(λtt +λxx+λyy) + ξ2 cos(λtt +λxx+λyy),

whereξ1 andξ2 are independent standard normal random variables. The Rice formula is used
to derive from the directional spectrum of the sea various properties of the distribution of such
geometric characteristics like length of crests and velocities of contours. In addition, two non-
Gaussian generalizations of the above Gaussian sea surface model are also briefly discussed.

Chapter 12 is devoted to the application of the Rice formula to the study of the number of real
roots of a system of random equations, with a particular emphasis placed on large polynomial
systems with random coefficients. The authors start by proving the Shub-Smale theorem [M. Shub
and S. J. Smale, inComputational algebraic geometry (Nice, 1992), 267–285, Progr. Math., 109,
Birkhäuser Boston, Boston, MA, 1993;MR1230872 (94m:68086)] showing that ifNX equals the
number of roots of the system of equationsXi(t) = 0 for all i = 1, . . . ,m, where

Xi(t) :=
∑

j1+···+jm≤di

a
(i)
j1,...,jm

tj1
1 · · · t

jm
m ,

with coefficients{a(i)
j1,...,jm

: i = 1, . . . ,m; j1 + · · ·+ jm ≤ di} being centered independent Gauss-

ian random variables with variancesVar(a(i)
j1,...,jm

) = di!
j1!···jm!(di−(j1+···+jm))! , then E(NX) =√

d1 · · · dm. Next, assuming thatdi = d for all i = 1, . . . ,m, where2 ≤ d ≤ d0 < ∞ for some
constantd0 independent ofm, the authors establish the asymptotic behavior asm →∞ of the
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variance ofNX/
√

dm. Namely, it is shown that ford = 2 the asymptotic variance ofNX/
√

dm

is log(m)
2m , for d = 3 the asymptotic variance is3 log(m)

2m2 , while for d ≥ 4 the asymptotic variance is
Kd

m3∧(d−2) for certain known constantsKd. Further extensions of the Shub-Smale result to other sys-
tems that are invariant under the orthogonal group of the underlying Euclidean spaceRm and to
certain systems with noncentered random coefficients are also developed.

The last chapter (Chapter 13) of the book is devoted to the application of the Rice formula to
the study of condition numbers of random matrices. Condition numbers arise when one wants
to understand how the solutionx ∈ Rn of a linear system of equationsAx = b is affected by
perturbations in the input(A, b), in which case the condition number is defined ask(A) = ‖A‖ ·
‖A−1‖, where‖A‖ denotes the usual operator norm. The meaning ofk(A) is that of a bound for
the amplification of the relative error between output and input when the input is small. This type
of application is a new field aiming to further the understanding of algorithm complexity via the
randomization of the problems that the algorithms are designed to solve.

The book is a very valuable addition to the literature on Gaussian processes, random fields and
extreme value theory. It is well written and self-contained and presents a significant number of
detailed and original applications to genomics, oceanography, the study of systems of random
equations and condition numbers of random matrices. In comparison with another recent book [R.
J. Adler and J. E. Taylor,Random fields and geometry, Springer, New York, 2007;MR2319516
(2008m:60090)] (with which it has some overlap in the material on the Rice formula and Rice
series and on tails of the distribution of the maximum), this book has a distinct analytic rather
than geometric flavor, making it more accessible to audiences with no background in differential
geometry (albeit at the expense of omitting some beautiful results on the geometry of excursion
sets, for example). Since the approaches adopted in these two books are very different and there
is generally little overlap in the material, the two books complement each other well. Another
valuable feature of the book under review, both from the self-study point of view and for its use
as a textbook in graduate classes, is the inclusion of end-of-chapter exercises. The latter not only
reinforce the material presented but also expose readers to a variety of new topics and ideas.

Reviewed byAnna Amirdjanova
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