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Introduction and acknowledgments
Gay and Kirby introduced in their 2012 seminal paper [10] the notion of trisection of a 4-
manifold, totally analogous to the 3-dimensional concept of Heegaard splittings. Their work
relied on the theory of Morse 2-functions to prove both a result of existence and of uniqueness,
the latter having a truly equivalent statement as the Reidemeister-Singer theorem.

The theory of Morse 2-functions was somewhat necessary, because of the lack of combinatorial
results regarding triangulations of smooth manifolds in dimension 4 (mainly the Hauptvermu-
tung). Moreover, the distinction between topological and smooth structures means that some
results concerning trisections, such as the Alexander lemma, or the conjectured Waldhausen–
Haken theorem, must be approached differently.

In the present work, we may detail the work of Gay and Kirby, as well as the combinatorial
representation of a trisection that is a trisection diagram.

Along the road, we shall give some examples and results regarding trisections with specific
properties, and also explain how trisections can be used to compute topological invariants.
Natural (still open) questions shall also be mentioned here and there.

I would like to express my deepest gratitude to M. Fiedler, who always proved to be generous
and helpful, and who allowed me to present my work at this year’s session of the Matemale.

I am also thankful to Mrs. Moussard for all the time she gave me, and who was of great advice
and suggested I attend the Summer Trisectors pre-workshop.

My special thanks are extended to my friend, Pablo, who was very patient in listening to me
while experiencing the difficulties of the work.

Finally, this work wouldn’t have been possible without the support of Lucile.

All the pictures in this document have been made in the open-source vector graphics editor
Inkscape, and exported from svg to pdf graphics.
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1 Preliminaries and notations
Throughout this work, all manifolds will be smooth, connected, compact and oriented. Besides
handlebodies, we will also assume that they have no boundary.

We will denote the connected-sum of boundaryless manifolds as #, and the boundary connected-
sum as \.

1.1 Handlebodies and handle decompositions
An n-dimensional k-handle, or an (n, k)-handle for short, is a Dk ×Dn−k, along with an
attaching map (see below). If the dimension n is understood, we may simply speak about
k-handles.

Given an n-manifold M with boundary ∂M 6= ∅, an attaching map for a(n n-dimensional)
k-handle is an embedding f : Sk−1×Dn−k → ∂M . The process of attaching a k-handle to M
is the construction of the new manifold N by

N = M ∪f (Dk × Dn−k),

where ∪f denotes the gluing of the two manifolds along f :

N = M q (Dk × Dn−k)/ ∼,

with x ∼ y ⇐⇒ f(y) = x.
Now, an (n, k)-handlebody of genus g is the manifold obtained after attaching g times a
k-handle to Dn. Examples include :

Hg = \g(S1 × D2) the genus g (3, 1)-handlebody,

and
Zk = \k(S1 × D3) the genus k (4, 1)-handlebody.

The genus g surface is Σg = ∂Hg, and we note that ∂Zk = #k(S1 × S2).

Given an n-manifold, a handle decomposition for it is a decomposition

Dn q · · · q Dn = M0 ⊂M1 ⊂ · · · ⊂Mn = M,

where Mk is obtained from Mk−1 by attaching k-handles. If Mk is obtained from Mk−1 by
attaching rk handles, and if M0 has r0 connected components, we call such a decomposition
an (r0 : r1 : . . . : rn)-handle decomposition.

Given a handle with attaching map f : Sk−1 × Dn−k → ∂M , we call (framed) attaching
sphere the submanifold f(Sk−1 × {0}). In the particular case of attaching 2-handles to a
4-manifold, we obtain a framed link in the boundary by taking all the attaching maps.

A handle decomposition always provides us with a cellular decomposition, by deformation
retracting all the Dk×Dn−k and Sk−1×Dn−k to Dk×{0} and Sk−1×{0} respectively – note
that the number of k-cells equals the number of k-handles.
In particular, a manifold with a handle decomposition consisting of no 1-, 2-, ..., k-handles is
k-connected.
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1.2 Heegaard splittings
Given two solid tori S1 ×D2, there are several ways to glue them along their boundary. One
could choose to glue them along the identity map, which would produce S1×S2, or one could
instead use a map interverting the two copies of S1 in the boundary, resulting in S3. This
leads us to define a special kind of decomposition :

Definition 1.1. Given a 3-manifold M , a Heegaard splitting of it is a decomposition
M = V1 ∪ V2 and an integer g such that V1 and V2 are diffeomorphic to Hg, and such that
V1 ∩V2 = ∂V1 = ∂V2. The integer g is called the genus of the splitting, and the H = V1 ∩V2,
diffeomorphic to Σg, is called the Heegaard surface.

In dimension three, one can always choose a triangulation of any manifold (Moise, [27]). Doing
so and thickening the 1-skeleton and the dual 1-skeleton of that triangulation – by means of a
regular neighborhood of it – produces a 1-handlebody of some (potentially large) genus, thus
a Heegaard splitting. �

However, if we have in mind to generalize the construction to the dimension above, we need
to come up with a way to prove the result without resorting to this combinatorial argument.
By connectedness and smoothness of M , one can always find a Morse function f : M → R
with exactly one index zero and one index three critical points, and such that f(x) < f(y)
for critical points x and y of respective indexes k < `. Such a function therefore has g index
one and g index two critical points, and provides us with a 1 : g : g : 1-handle decomposition
for M .
This handle decomposition is what we need : the 0- and 1-handles are one handlebody V1,
and the remaining handles are the other handlebody V2.

In the beginning of this section, we introduced a genus one Heegaard splitting for both the
3-sphere and S1 × S2. It turns out S3 has a genus zero splitting, by taking the northern and
southern hemispheres decomposition, and it is the only such splitting :

Lemma 1.2. (Alexander) Any 3-manifold having a genus zero Heegaard splitting is diffeo-
morphic to S3.

In the proof (which boils down to the Alexander radial extension trick, and the fact that in
dimension three, Top = Diff), we even have better : we map the splitting of the manifold to
the genus zero splitting of S3. This leads us to defining an equivalence relation on Heegaard
splittings :

Definition 1.3. Let M = V1 ∪ V2 = W1 ∪W2 be a manifold with two Heegaard splittings.
The two splittings are said to be equivalent if there exists a diffeomorphism of M mapping
Vi to Wi.

Obviously, two splittings of different genera can never be equivalent. However, there is still a
way to state a uniqueness theorem, by means of stabilization.

Given two Heegaard splittings M = V1 ∪ V2 and N = W1 ∪W2, the manifold M#N has a
Heegaard splitting given by M#N = (V1\W1)∪ (V2\W2). In particular, the Heegaard surface
for M#N is the connected sum of those of M and N .
Now, S3 being neutral regarding the connected sum, this is a way to increment the genus of a
Heegaard splitting by taking the connected-sum with its genus one splitting described above :
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Definition 1.4. Given a Heegaard splitting M , its stabilization is the splitting obtained
after connected-summing with the genus one splitting of S3.

Here, we are speaking about the splitting of genus one as if it had always been unique. It
turns out it is the case, by the following theorem :

Theorem 1.5. (Waldhausen) Every splitting of S3 is equivalent to some number of stabili-
zations of its genus zero splitting.

Now that we have a way to increase the genus of any splitting, we can take two, stabilize
them so they have the same genus, and ask again the question whether they are equivalent
or not. They will not necessarily be equivalent, but the following tells us there is a way to
make it true :

Theorem 1.6. (Reidemeister-Singer) Any two Heegaard splittings of a 3-manifold can be
made equivalent after a suitable number of stabilizations for each.

Again, there is a purely combinatorial proof of this result, relying on the Hauptvermutung,
which can be seen in details in [29]. However, for generalization sake, we shall continue with
Morse functions. Take two splittings, and take Morse functions associated to them. Note that
this is always possible, because a genus g splitting gives a (1 : g : g : 1)-handle decomposition,
itself giving us that Morse function.
Now, by results from section 1.4, it is always possible to homotope the first function into
the second, with only births and deaths of pairs of critical points, all births appearing before
all deaths (see figure 1). Birth of pairs of critical points corresponding to stabilization of a
splitting, the only thing left to do is to pick a Morse function after the last birth and before
the first death, which is the stabilization for both we were looking for. �
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Genus 3
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Figure 1. Homotoping one function to the other yields two equivalent stabili-
zations.

We will see that the same philosophy applies in proving the results for trisections. One last
meaningful example is the one of the splitting of ∂Zk. We take k 6 g two integers, and we
take the k-fold connected-sum of the Heegaard splitting of genus one of S1 × S2. This yields
a genus k splitting of ∂Zk, which we can stabilize g− k times to obtain what we will call the
standard genus g splitting of it, written as :

∂Zk = Y +
k,g ∪ Y

−
k,g.

It is called the standard splitting, because of the following :
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Theorem 1.7. (Waldhausen–Haken) The only Heegaard splittings of #k(S1×S2) are the sta-
bilizations of its unique genus k splitting obtained by connected-summing k times the standard
splitting of S1 × S2.

1.3 A Note on 4-dimensional handlebodies
The paper [18] is about handlebodies in dimension four, and the attaching of 3- and 4-handles.
The main result is that, up to isotopy, there is only one way to attach the 3- and the 4-handles
to a 4-manifold (so long as the resulting 4-manifold is closed). Here are reformulations of this
fact

Theorem 1.8. Any diffeomorphism of ∂Zk = #k(S1 × S2) extends to a diffeomorphism of
the bounding Zk = \k(S1 × D3).

Corollary 1.9. Let X be the manifold obtained after attaching k 3-handles to \k(S2 × D2).
Assume that ∂X ∼= S3. Consider a 4-handle attached through a diffeomorphism g : ∂D4 → ∂X.
Then X ∪g D4 is diffeomorphic to S4.

1.4 From Morse functions and Cerf theory to Morse 2-functions
In this section, we recall the definitions regarding Morse function, generic homotopies between
them, Cerf theory, Morse 2-functions and generic homotopies between them. See [7] for a more
in-depth look at the notions.

Definition 1.10. A generic homotopy between two Morse functions f0, f1 : M → R is a
homotopy ft : M → R that is Morse at all but finitely many times t∗ ∈]0, 1[. The homotopy
is the function f : [0, 1] ×M → R, and the image of the fold locus is the image under h
of the singular locus of the functions ft. We ask that at all times t∗ where ft∗ is not Morse,
exactly one of the following events occur :

(i) Two critical values cross at t∗, that is, the image of the fold locus is embedded except
for one double point (see figure 2a). We speak of a crossing.

(ii) A pair of cancelling critical points of consecutive indices is born, that is, around t∗,
there is a ball where ht is Morse with no critical points in that ball for t < t∗, and
with two critical points for t > t∗ (see figure 2b). We speak of a birth, and when that
happens with the t parameter reversed, we speak of a death (see figure 2c).

(a) (b) (c)

Figure 2. (a) A crossing. (b) A birth. (c) A death.

The three graphics in the previous figure are called Cerf graphics. Here is an example of a
more general Cerf graphic :
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It is a standard fact from Cerf theory that generic homotopies between Morse functions are
indeed generic and stable. They allow to speak of Morse 2-functions :

Definition 1.11. A Morse 2-function is a function f : M → R2 that is locally at all
points in M a generic homotopy between Morse functions.

Given a Morse 2-function, it needs not make sense to speak about the index of a fold. However,
choosing a transverse direction to the fold, we obtain locally a Morse function, whose index
of a critical point is well-defined. For instance, for the previous example, here is a labelling
of the indices of the folds :

1

2

3

2

1

1

2

2

0

Now, what are homotopies of Morse 2-functions ? We must talk about generic homotopies of
generic homotopies of Morse functions :

Definition 1.12. Given two generic homotopies of Morse functions h0,t, h1,t : M → R, a
generic homotopy between them is a homotopy hs,t : M → R that is a generic homotopy
between Morse functions at all but finitely-many times s∗ ∈]0, 1[, where exactly one of the
following events occurs :

(i) hs∗,t is not a generic homotopy between Morse functions because exactly two of the
events listed in definition 1.10 occur at the same time.

(ii) hs∗,t is not a generic homotopy between Morse functions because its singular locus has
a non-transverse double point, see figure 3a. We call that event a Reidemeister II
fold crossing.

(iii) hs∗,t is not a generic homotopy because its singular locus has a transverse triple point,
see figure 3b. We call that event a Reidemeister III fold crossing.
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(iv) hs∗,t is not a generic homotopy because its singular locus has a birth (or a death)
occuring at the same location than a crossing, see figure 3c. We call that event a
cusp-fold crossing.

(v) hs∗,t is not a generic homotopy because its singular locus contains an isolated point,
which bounds in time a birth-death event with nothing, see figure 3d (or nothing with
a birth-death with the s-time reversed). We call that event an eye birth (or death)
singularity.

(vi) hs∗,t is not a generic homotopy because a death and a birth merge at the same time,
see figure 3e. We call that event a merge singularity (or unmerge when the s-time
is reversed).

(vii) hs∗,t is not a generic homotopy because the fold locus has a cusp bounding in time a
definite fold to a birth-crossing-death singularity (or a death-crossing-birth when the
s-time is reversed), see figure 3f. We call that event a swallowtail birth (or death)
singularity.

Here we list all the mentioned events, where the middle graphic is the time at which it it not
a Cerf graphic (note that in all these events, the time can be reversed and the homotopy read
“backwards”) :

s s

(a) A Reidemeister II crossing.

s s

(b) A Reidemeister III crossing.

s s

(c) A cusp-fold crossing. The other three mirrored versions also exist.

s s

(d) An eye birth singularity.
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s s

(e) A merge singularity.

s s

(f) A swallowtail birth. An upside-down version also exists.

Figure 3. All the possible events in a generic homotopy between generic homo-
topies of Morse functions.

This allows us to define :

Definition 1.13. A generic homotopy between two Morse 2-functions f0, f1 : M → R2

is a homotopy ft : M → R2 that is locally at all points in M a generic homotopy between
generic homotopies of Morse functions.

One could study the singular locus of a generic homotopy between Morse functions, which
would give an immersed surface in R3, totally analogous to the Cerf graphics. However,
working with these folds is another story than the mere 2D Cerf graphics we had so far, and
no one had ever done this yet.

9



2 Trisections : building the theory
2.1 Definition and first properties
Definition 2.1. A trisection of a 4-manifold M is a decomposition M = X1∪X2∪X3 with
Xi smoothly embedded, and two integers k 6 g, such that :

(i) Xi is diffeomorphic to Zk = \k(S1 × D2).
(ii) Hij = Xi ∩Xj is diffeomorphic to Hg = \g(S1 × D2).
(iii) X1 ∩X2 ∩X3 is diffeomorphic to Σg.

The previous decomposition is called a (g, k)-trisection, and g is the genus of the trisection.
The triple intersection F = X1 ∩X2 ∩X3 is called the trisecting surface.

For the sake of keeping things simple, we will only deal with balanced trisections (where we
fix the genus of all three sectors Xi to be the same), although the more general theory isn’t
much more work.

Here is the typical way to represent a trisection, referred to as the “cartoon picture of a
trisection” in [10] :

M
X1 X2

X3

H12

H23H13

F

Figure 4. The schematic representation of a trisection.

In defining the genus of a trisection, why do we only care about g ? In dimension three,
Poincaré duality provides χ(M) = 0, so we couldn’t relate the genus of a Heegaard splitting
to the Euler characteristic. However, in dimension four, it does carry information, which we
can use by means of the inclusion-exclusion principle :

χ(M) = 2 + g − 3k.

In particular, once we know the genus, k is fixed. Moreover, we will see later that the genus
that matters is the one of the trisecting surface.

The 4-sphere has a genus zero trisection, totally analogous to the Heegaard splitting of S3.
Embed S4 ⊂ C× R3, and define

Xi = {(reiθ,x) ∈ S4 | 2iπ/3 6 θ 6 2(i+ 1)π/3}.
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The definition is a translation of figure 4 in terms of subsets of S4, and this provides a genus
zero trisection : S4 = X1 ∪X2 ∪X3.

It turns out that lemma 1.2 still holds in this context :

Lemma 2.2. If a 4-manifold has a genus zero trisection, then it is diffeomorphic to S4.

Proof. This time, the Alexander radial extension trick will simply not work, because we want
a diffeomorphism and not a mere homeomorphism (Top 6= Diff). However, by corollary 1.9
with k = 0, we directly obtain the result. �

Pre-imaging three sectors in the image of a projection map is something quite common to
define a trisection. The idea can be used to define a trisection of S1 × S3 ⊂ S1 × C× R2 in a
similar fashion :

Xi := {(s, (reiθ,x)) ∈ S1 × S3 | 2iπ/3 6 θ 6 2(i+ 1)π/3}.

This time, the trisection is of type (1, 1), and by lemma 2.2, it is of minimal genus. This leads
to the following definition of a topological invariant :

Definition 2.3. Given a 4-manifold M , its trisection genus, denoted as gT (M), is the
minimal genus of its trisections.

We therefore have :

gT (M) = 0 ⇐⇒ M ∼= S4 and gT (S1 × S3) = 1.

Now, from the very definition of the trisection, we see that ∂Xi = Hij ∪Hih (with i, j and h
distinct) is a Heegaard splitting. Its genus equals g, therefore it is the standard splitting, by
theorem 1.7 :

∂Xi = Hij ∪Hih = Y +
k,g ∪ Y

−
k,g.

We will see later a proof of the following important fact :

Proposition 2.4. If M has a (g, k)-trisection, then M has a (1 : k : g − k : k : 1)-handle
decomposition.

This has three immediate consequences :
(i) Since a handle decomposition deformation retracts to a cellular decomposition, we see

that π1(M) has a presentation with k generators and g− k relations. In particular, we
see that k > rk π1(M). Plugging this inside the Euler characteristic formula in terms
of the type of the trisection, we obtain a lower bound on the trisection genus of a
manifold :

gT (M) > χ(M)− 2 + 3 rk π1(M).

This estimate is sharp, in the sense that there is equality for lots of manifolds with
prescribed fundamental group. See [4] for more details.

(ii) If M has a (g, 0)-trisection, then M is simply-connected.
(iii) Dually, if M has a (g, g)-trisection, then by [18], with some work, we obtain that M is

diffeomorphic to #g(S1 × S3).
Now, we end this section with defining what we mean by “two trisections are the same” :
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Definition 2.5. Given two trisectionsM = X1∪X2∪X3 = Y1∪Y2∪Y3 of the same manifold,
they are said to be equivalent if there is a diffeomorphism f : M → M and a permutation
σ ∈ S3 such that f(Xi) = Yσ(i) for all i = 1, 2, 3.

One sees that if two trisections have different genera, they have no hope to be equivalent.
However, if one could find a way to produce a new trisection with a different genus, it would
be possible to modify those two trisections to have their genus agree, and re-ask the question
whether they are equivalent or not. The Gay–Kirby theorem will provide some way to answer
this question positively.

2.2 Morse 2-functions and trisecting functions : a proof of existence
As was described earlier, thickening the 1-skeleton of a triangulation of a 3-manifold had
the effect to yield a Heegaard splitting of that manifold. However, combinatorial arguments
related to the Hauptvermutung aren’t available in dimension four, so we may want to describe
a Morse-theoretic proof of existence. The proof given here is taken from [10].

We start with a (1 : i1 : i2 : i3 : 1)-handle decomposition of M4. We will construct a certain
Morse 2-function on the different parts of that handle decomposition, and glue them together
by adding Cerf graphics. At last, we will homotope the resulting Morse 2-function to make it
trisecting.

Let X1 be the union of the 0- and the 1-handles. Then X1 ∼= \i1(S1 ×D3) ∼= I × \i1(S1 ×D2).
There is a standard Morse function g : \i1(S1 × D2) → R with one index zero critical point,
and i1 of index one that gives its handle decomposition. This induces a Morse 2-function
f1 : X1 → R2 by defining f1 : (t, p) ∈ I×\i1(S1×D2) 7→ (t, g(p)) (ignoring the diffeomorphism
of X1 on the left). Its Cerf graphic is shown in figure 5b.

0

i

1

1

1

1

z

g

(a)

0

i

1

1

1

1

z

t

f1

(b)

Figure 5. (a) The standard Morse function g on \i1(S1×D2). (b) The associated
Morse 2-function f1 : X1 → R2.

We can always post-compose with a diffeomorphism of the image to the left half-disc to obtain
a new Morse 2-function G1 : X1 → D2 whose image of the fold locus is as in figure 6a. Note
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that we indicate the indices of the folds in blue by choosing a transverse direction to those
folds.

10

X1

(a)

0

1
1

2
2

3

(b)

Figure 6. (a) The image of the fold locus of G1, whose image is the left half-disc.
(b) The vertical Morse function on the boundary ∂X1.

In particular, restricting the vertical Morse function z◦G1 to the boundary ∂X1 gives a Morse
function whose critical points are indicated in figure 6b above. Note that ∂X1 ∼= #i1(S1×S2),
which means that this function induces the standard genus i1 splitting on it.

Now, consider the framed attaching link L ⊂ ∂X1 for the 2-handles. We can move L in ∂X1
by isotoping it so that it generically lies in between the level sets of the last index one and
the first index two critical points of the Morse function z ◦ G1|∂X1 . This means that L is in
a regular neighborhood of the Heegaard surface Σ of the previously-mentionned Heegaard
splitting ∂X1 = H1 ∪Σ H2. In particular, we can follow the gradient flow lines to project L
onto an immersed curve L on Σ. Generically, we can assume that this immersed curve only
has double points self-intersections.

The previous Heegaard splitting can now be stabilized to resolve those crossings as follows :

By Cerf theory, this corresponds to homotoping the Morse function z ◦ G1|∂X1 into a new
one by a generic homotopy ht where its only non-Morse times correspond to birth of pairs of
cancelling points :
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0

h    z  G1

2
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3

2

2
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X1
h=0 1

We can now view this homotopy as a Morse 2-function to be glued to the previous one, which
in turn gives an extension of G1 to a collar neighborhood X1 ∪ ∂X1× [0, 1], and whose image
of the fold locus is indicated in figure 7.

10 1

2

2

3

Figure 7. The fold locus of the extension of G1 to a collar X1 ∪ (∂X1 × [0, 1]).

The attaching link for the 2-handles now lies in the stabilized surface Σ′ with corresponding
Heegaard splitting ∂X1 = H ′1 ∪Σ′ H

′
2. The Morse function for that splitting is the vertical

function on the boundary at the right of figure 7.

Because attaching a 3-dimensional 2-handle corresponds to having an index 2 critical point,
attaching a 4-dimensional 2-handle corresponds to having an I’s worth of 3-dimensional 2-
handles, and in turn, an I’s worth of index 2 critical points. This means that attaching a
2-handle to the previous construction corresponds to gluing the Cerf graphic made of only
one definite fold of index 2.
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We can apply the following procedure for as many link component L has (that is i2, the
number of 2-handles to be attached) :

2

(a)

2

(b)

2

1

2

(c)

2
1

2

(d)

Figure 8. (a) Gluing the Cerf graphic for the attaching 2-handle. (b) Applying
a diffeomorphism of the image to fit this all in the half-disc. (c) Homotoping the
vertical Morse function at the boundary by performing a crossing (possible, by
Cerf theory). (d) Again, applying a diffeomorphism to fit in the half-disc.

This results in a Morse 2-function G2 : X2 → D2 on X ′1 the union of the 0-, 1- and 2-handles,
whose image of the fold locus is as follows :

1

2

0

3

We can now repeat the construction for X1 to the union X3 of the 3- and the 4-handles, and
obtain another Morse 2-function on X3 whose image of the fold locus is the vertical mirror
image of figure 7. Those two Morse 2-functions can be glued together by homotoping one into
the other (we know it is possible, by Cerf theory), which translates to adding a suitable Cerf
graphic G, to produce a final function G : M → D2 whose image of the fold locus is as in
figure 9.
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1

2

G

0

3

1

2

0

3

Figure 9. The image of the fold locus of the so-far constructed Morse 2-function
G : M → D2.

The idea is now to homotope this function into a more standard position that will allow for
pre-imaging sectors into a trisection. Note that homotoping is made possible by [7]. First, we
can perform cusp-fold crossings to the Cerf graphic G to move all births and deaths out to
its left and right, respectively. The procedure is as follows :

(a) (b)

Figure 10. (a) Moving births to the left by performing cusp-fold crossings. (b)
Moving deaths to the right.

The remaining Cerf graphic being only made of crossings of critical points, it can be split
into two Cerf graphics, by separating them by the indices of the folds. This sets us in the
following position :

0

3

0

3
2

2

1 1
G2

G1
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Now, we move the cusps from the right to the left of the “kinks” by the following procedure :

(a) (b) (c) (d) (e)

Figure 11. (a) A cusp to the right of a “kink”. (b) Perform a cusp-fold crossing.
(c) Perform a Reidemeister II move. (d) Perform a Reidemeister III move in the
middle. (e) Perform a Reidemeister II move.

Applying this for each kink, one cusp at a time, we end up in this situation :

G2

G1

Note that all the crossings created by this procedure (circled in red) can be moved inside the
Cerf graphic boxes. The last move we want to perform is this one :

2
1

2

(a)

2

1 2

1

1

(b)

2

1
1

(c)

Figure 12. (a) A “kink”. (b) Perform a swallowtail birth singularity. (c) Perform
a Reidemeister II move.
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After doing it for each kink, this has the effect of setting us in the following position :

0

3

0

3

1

1 1

22

By applying a diffeomorphism of the image again, we can see that we are in the more general
case of figure 13. One comment is that we place ourselves in a more general setting where we
added an additional Cerf graphic box. This will be necessary for the next part.

Figure 13. The general form of the fold locus. Except for the outermost fold, all
folds have index one by choosing a transverse direction to be pointing “inwards”.
Each Cerf box is only made of crossings of critical points.

The number of cusps in each sector is not necessarily the same, and this also goes for the
number of folds without cusps. However, we can perform one last modification to our Morse
2-function, to make it trisecting :
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(a) (b) (c)

Figure 14. (a) The general form for the image of the fold locus. (b) Performing
an eye birth singularity. (c) Moving the eye by performing Reidemeister II moves
and cusp-fold crossings.

Doing the previous moves has the effect of increasing by one the number of folds without cusps
in one prescribed sector only. Also note that after this move, up to moving all the crossings
we created inside the Cerf graphic boxes, we are still in the general position of figure 13.

Finally, pre-imaging each sector indeed gives a 4-dimensional handlebody, by an argument
converse to what we did in figure 7.

For the pairwise intersections, we see that it corresponds to taking the radial Morse function
on the boundary of each sector. This function induces a handle decomposition on the 3-
manifold, which makes it a handlebody of corresponding genus.

For the triple intersection, we see that it bounds each of the pairwise intersections. Therefore,
it is a closed surface with genus.

This means that pre-imaging through this Morse 2-function indeed provides us with a trisec-
tion of M . �

Definition 2.6. If a trisection of manifold is obtained by a Morse 2-function as in figure 13,
we call that Morse 2-function trisecting for that trisection.

Any trisection admits a trisecting Morse 2-function. Indeed, each sector has a Morse 2-function
as in figure 7, and all three functions can be glued together by homotoping the radial Morse
functions on the boundaries. This function needs not be trisecting, but it can generically be
perturbed to become trisecting.

2.3 Trisection diagrams and stabilization
We aim to give a combinatorial and lower-dimensional description of trisections, just the same
way we can do for Heegaard diagrams. Recall the cartoon picture of a trisection in figure 4.
For each of the handlebodies Hij , pick a system of g compressing curves on Σg such that
compression along those curves produces that handlebody.

More precisely : pick a system of g disjoint simple closed curves such that cutting Σg along
those curves gives a 2g-punctured sphere, embedded in M . One can glue discs to those punc-
tures to obtain an actual sphere, and this sphere bounds a ball inside M . Then, re-glue the
discs we attached to the punctures pairwise to obtain a handlebody bounding Σg.
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Note that the resulting handlebody is embedded in M4, but needs not be embedded in a
3-submanifold of M , and rather immersed. The following picture depicts such an example :

(i)

(ii)

Figure 15. Compression along the two indicated curves on Σ2. Step (ii) corres-
ponds to attaching the ball inside and gluing the punctures back together. Try
to picture where the ending handlebody is in the originating surface : ”inside”
or “outside” ?

Denote by α a set of g compressing curves for H13, as β one for H12 and as γ one for H23
(see figure 4).

Definition 2.7. Given a trisection of a manifold, the data (Σg, α, β, γ) constructed previously
is called a trisection diagram associated to that trisection.

It is common to draw the curves in each set of curves in a different colour, as indicated in the
construction. Although the choices made are almost surely inconsistent across the literature,
we shall stick to those choices here.

For instance, here are two trisection diagrams associated to the two examples of S4 and S1×S3

indicated previously :

(a) (b)

Figure 16. (a) The example of the (0, 0)-trisection of S4. No curves are drawn
because none are needed. (b) The (1, 1)-trisection diagram for S1 × S3.

By theorem 1.7 again, it turns out that each (Σg, α, β), (Σg, α, γ) and (Σg, β, γ) are standard
diagrams for the Heegaard splitting Y +

k,g ∪ Y
−
k,g. This means that, selecting two colors out of

the three, up to sliding the curves, there is a diffeomorphism of the surface Σg that carries
those curves into standard position :
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......

k g-k

Figure 17. A trisection diagram in standard position. The green curves are not
shown, and need not be either meridian or longitude.

More precisely, this is what we mean by a Heegaard diagram in standard position :

Definition 2.8. A Heegaard diagram (Σg, α, β) is called standard if there is some k 6 g
such that :

• αi = βi for i 6 k.
• card(αi ∩ βj) = δij for i, j > k + 1.

This necessarily implies that the Heegaard diagram in question is the one of the Heegaard
splitting Y +

k,g∪Y
−
k,g. Back to trisection diagrams, we see that even though we can always place

one selected pair of colors into standard Heegaard position, this needs not act as we want on
the remaining third colors (and the remaining two pairs of colors). This leads to the following
definition :

Definition 2.9. A trisection is called standard if it has a trisection diagram such that all
three choices of pairs of colours are already in standard (Heegaard) position.

For instance, the examples of figure 16 are both standard trisections. From [20], we cite the
following result :

Theorem 2.10. (Meier–Schirmer–Zupan) If M has a (g, k)-trisection with k > g − 1, then
that trisection is standard.

Moreover, it turns out that all genus two trisections are standard, by work from [23].

A natural question arises : given three sets of compression curves α, β and γ on Σg, does it
come from a trisection ? A necessary condition is that each pair of colors gives a standard
genus g splitting of #k(S1×S2) for some fixed k common to all three choices of pairs. It turns
out this condition is also sufficient :

Proposition 2.11. Given three sets of compression curves α, β and γ on Σg such that each
choice of pairs is a Heegaard diagram for #k(S1×S2), there exists a unique trisected manifold
M = X1 ∪X2 ∪X3 such that (Σg, α, β, γ) is a diagram for that trisection.

Proof. This result relies on the work from [18], see section 1.3. The idea is to thicken the
surface into Σg × D2, and to compress along each set of curves α, β and γ to obtain three
handlebodiesH13,H12 andH23 respectively. Then, we can glue eachHij×I to a neighborhood
of Σ × {eθij} for three different values of θij . This gives a 4-manifold whose boundary has
three copies of #k(S1 × S2). From [18], there is only one unique way to retrieve a trisected
manifold by attaching the remaining handles. �
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Let us now describe the stabilization operation on a trisection. Start with a trisected manifold
M = X1 ∪X2 ∪X3. Recall that Hij = Xi ∩Xj is a 3-dimensional handlebody, and the triple
intersection F = X1 ∩X2 ∩X3 is a genus surface. For all i, j, choose a boundary parallel arc
aij ⊂ Hij with endpoints in F , such that all six endpoints of the three arcs are distinct in F .
Choose regular neighborhoods Nij ⊂ M for each arc. If we extrude the cartoon picture of a
trisection from figure 4, we obtain the following schematic representation of the situation :

M

X1

X2

X3

F

H13

H23

H12

a13

a12

a23

The idea is to increase the genus of each Xi, so we can attach the opposite Njk to it to do
so. However, this would make the double intersections not as we would like them, so we need
to remove the other two neighborhoods from that Xi. This results in defining :

X ′i := (Xi ∪Njk)− (
◦
Nij ∪

◦
Nik).

It is now an easy computation to see that this gives a new trisection. Moreover, if the origina-
ting one was of type (g, k), then this new one is of type (g+3, k+1). At last, the construction
is independent of the choices of the arcs (and of the regular neighborhoods), because we chose
them to be boundary parallel. This yields :

Definition 2.12. Given a trisection of a manifold, the stabilization of that trisection is the
operation of replacing it by the new one constructed above.

Stabilization has an interpretation in terms of the trisecting Morse 2-function. Recall the re-
balancing of the number of folds without cusps from figure 14. It corresponds to stabilization in
one sector ; therefore, the whole process of stabilization corresponds to applying the procedure
in figure 14 with the following three eyes :
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Note that the order in which we apply those eyes doesn’t matter, for we can always perform
the moves described in figure 14 to swap the order in which they appear. Moreover, the
stabilization operation has an interpretation in terms of trisection diagrams. Indeed, here is
the diagram obtained from stabilizing the genus zero trisection :

Figure 18. The stabilization diagram, a (3, 1)-trisection of S4.

Stabilization of a trisection translates to taking the connected sum of its diagram with the
one from figure 18 above.

2.4 Uniqueness : the Gay–Kirby theorem
First, we shall prove an extended version of proposition 2.4 :

Proposition 2.13. Let M = X1 ∪ X2 ∪ X3 be a (g, k)-trisection. Then M has a handle
decomposition with (1 : k : g − k : k : 1) handles, such that :

(i) X1 is the union of the 0- and 1-handles.
(ii) In the Heegaard splitting ∂X1 = H12∪H13, whose Heegaard surface is F , the attaching

link L for the 2-handles lies in the interior of H12.
(iii) The framed attaching link L = K1∪ ...∪Kg−k is isotopic in H12 to a framed attaching

link L′ = K ′1 ∪ ... ∪K ′g−k in F , with framings equal to the ones induced by F .
(iv) There exists a system of compression discs D1, ...,Dg for H12 such that for all j =

1, ..., g − k, the curve K ′j intersects ∂Dj exactly once, and is disjoint from the other
∂Di.

23



(v) H12 has a tubular neighborhood N = [−ε, ε] ×H12 such that N ∩X1 = [−ε, 0] ×H12
and X2 is obtained by attaching the 2-handles to [0, ε]×H12.

Proof. Take a trisecting Morse 2-function for that trisection (see definition 2.6). The image
of the fold locus is as in figure 13, with k folds without cusps and g − k folds with cusps.
By post-composing with a diffeomorphism of the image, we can always set ourselves in the
position of figure 19 (note that, without loss of generality, we pre-image differently than from
the existence proof here, where X2 doesn’t contain a Cerf graphic and X3 has two of them).

Calling that previous Morse 2-function G : M → R2, we can take the horizontal Morse
function t ◦ G : M → R, whose critical points are the vertical tangencies of the Morse 2-
function G. This indeed provides us with a handle decomposition with as many handles as
announced, and X1 is the union of the 0- and 1-handles. Moreover, X2 is seen as g − k 2-
handles attached to the handlebody H12 × I seen on the blue segment. This means we only
need to show that the attaching link for the 2-handles satisfies the properties we announced.

X1 X2
X3

z

t

Figure 19. Reading the handle decomposition from the trisecting Morse 2-
function. To the right is a zoom on a fold in the X2 region.

This is also seen in figure 19 : each attaching knot for each 2-handle is a longitude on the
surface, whereas the compression discs’ boundaries are meridional curves (recall from figure
8 that attaching a 2-handle corresponds to the fold colored blue, and that the fold colored
red is the 1-handle it is attached to). �

It turns out if we have a handle decomposition of M with (1 : k : g − k : k : 1) handles
satisfying the properties of proposition 2.13, then M has a (g, k)-trisection. Proving this
statement is a verification, and Gay and Kirby used it to give an alternative proof for the
existence of trisections.

We shall now prove the following :

Theorem 2.14. (Gay–Kirby, 2012) Any two trisections of the same manifold can be stabilized
a suitable number of times each to yield equivalent trisections.

Proof. (Sketch) Start with two trisectionsM = X1∪X2∪X3 = Y1∪Y2∪Y3. Proposition 2.13
can be applied to give two handle decompositions HX and HY . Both handle decompositions
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induce a Heegaard splitting of ∂X1 or ∂Y1 with respective framed attaching links LX and LY
for their 2-handles behaving as previously-stated.

Handle decompositions being purely Morse-theoretic, Cerf theory applies and tells us that we
can get from HX to HY by a sequence of :

(i) Add cancelling pairs of 1- and 2-, or 2- and 3-handles to both decompositions.
(ii) Slide k-handles over k-handles (k = 1, 2, 3).
(iii) Isotope a handle without performing handle slides.

By the trisecting function interpretation of stabilization we made in the previous section, we
see that this operation translates into adding both a pair of 1- and 2- and of 2- and 3-handles.
In particular, by seeing that we have as many 1- and 3-handles in each associated handle
decomposition, we see that we must perform step (i) as many times for both pairs, and this
can be achieved by stabilization. Also note that this operation doesn’t break the properties
regarding the attaching link for the 2-handles in each associated handle decomposition.

Sliding or isotoping 1- and 3-handles doesn’t affect the trisection. It doesn’t change the
properties from proposition 2.13 neither. Therefore, it suffices to check what effects the sliding
or the isotoping of 2-handles.

First, assume we only want to perform one 2-handle sliding on the decomposition HX . We
have a Heegaard splitting ∂X1 = H12∪H13 from the corresponding trisection, with attaching
link L for the 2-handles in H12. As given by proposition 2.13, we can isotope L in F = ∂H12
so that the components of L are geometrically dual to compression curves on F (point (iv)
from proposition 2.13).

The handle sliding corresponds to the choice of an arc between two components K1 and K2 of
L. We can project that framed arc onto F by following the gradient flow lines, but this gives
an immersed curve with crossings. As seen in the proof for existence, we need to stabilize
to resolve those crossings, and this is done by stabilization of the whole trisection. We check
that this stabilization operation can be done so to assure we still have the desired properties
regarding the attaching link, and so that performing the sliding of the 2-handle also maintains
them. When stabilizing this trisection, we must also stabilize the other one.

Lastly, assume we only need to perform one isotopy of a 2-handle ofHX . Then, by assumption,
this isotopy extends to one of the whole M . This means that the X1 = Y1, and we have two
Heegaard splittings ∂X1 = H12 ∪H13 ∪H ′12 ∪H ′13 induced by each trisection. The attaching
link for both handle decompositions lies in H12 and in H ′12, and satisfies point (iv) from
proposition 2.13 in both cases. Now, because both Heegaard splittings of ∂X1 are of genus g,
Waldhausen–Haken provides an isotopy of ∂X1 taking H12 to H ′12.

However, this isotopy needs not carry L to itself ; we need to find one that fixes L to be done.
The details – which we shall not give here – involve another Cerf-theoretic argument, which
in turn involves stabilizing the Heegaard splittings. This again can be done by stabilization
of the whole trisection. �

A more natural way of proving the theorem would be by trying a method analogous to the
proof of the Reidemeister-Singer theorem, which involves a homotopy of the Morse functions
associated to the two Heegaard splittings.
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In that case, it would be a homotopy of the two trisecting Morse 2-functions that is needed,
but this involves the study of the surface of folds of homotopies of Morse 2-functions. These
surfaces are highly non-trivial to deal with, and a nice Cerf-like argument is likely to be harder
to prove in all generality.

Therefore, the technical proof involving the handle decompositions is impossible to avoid for
now.

Remark 2.15. Just like with Heegaard splittings, even though two trisections have the same
genus, they need not be equivalent. Even for the 4-sphere, we do not have a complete classifi-
cation of its trisections yet. This means that, possibly, there exists a genus three trisection of
S4 that isn’t the stabilization of the trivial trisection (i.e. the Waldhausen theorem hasn’t been
proven yet). The only examples are for trisections with genus g 6 2, which we list in figure
21.
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3 More thorough examples and applications
3.1 CP2, S2 × S2 and trisections in small genera
Recall the moment map from the toric action on CP2 :

µ([z0 : z1 : z2]) =
(

|z0|2

|z0|2 + |z1|2 + |z2|2
,

|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
.

The image for that moment map (the Delzant polytope) is a triangle, the convex hull of the
three points (1, 0, 0), (0, 1, 0) and (0, 0, 1) :

(0,0,1)

(1,0,0)

(0,1,0)

Here, we list the preimages of generic points in that triangle :

(a) (b) (c)

Figure 20. (a) The preimage is a generic fiber T2 = S1×S1. (b) One of the circle
collapses to a point, the preimage is S1 × {∗}. (c) Both circles have collapsed,
the preimage is {∗} × {∗}.

For exact computations, we refer to [15]. The idea is again to preimage three sectors in a
trisection of that image, just as in figure 4. We can take the barycentric subdivision of the
Delzant polytope, and preimage each sector into Xi :

X1

H13

X3X2

H12

H23

F
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Each piece of the trisection has a simple description :

Xi = {[z0 : z1 : z2] | |zj |, |zh| 6 |zi|} and Hij = {[z0 : z1 : z2] | |zh| 6 |zi| = |zj |}.

Therefore, we have Xi
∼= D4, and by the observation of the collapsing circle made in figure

20, we have that each Hij is a solid torus. This provides us with a (1, 0)-trisection of CP2,
whose trisection diagram can be seen in figure 21.

We could use a similar principle (see [10]) with the moment map µ : S2 × S2 → I2 to obtain
a (2, 0)-trisection of S2 × S2. See figure 21 for its diagram.

So far, we have seen all the trisections in genus less than two. That is, we have the following :

Theorem 3.1. If M has trisection genus gT (M) = 1, then M is either S1×S3, CP2 or CP2,
where the trisection diagram for CP2 is the mirror image of the one for CP2.

For the genus two, this is highly more difficult :

Theorem 3.2. (Meier-Zupan, 2014, see [23]) If M has trisection genus gT (M) = 2, then M
is either S2×S2, or a connected sum of S1×S3, CP2 and CP2 with two summands. Moreover,
each of these 4-manifolds has a unique genus two trisection, up to diffeomorphism.

This means that we can list all the (irreducible) trisections (that is, those that are not the
connected-sum of two trisections) with genus g 6 2 :

(a) (b) (c)

(d)

Figure 21. The exhaustive list of irreducible genus one and two trisections. (a)
CP2. (b) CP2. (c) S1 × S3. (d) S2 × S2. One can always take any selection of
two genus one trisections and produce a genus two trisection by taking their
connected-sum, but that trisection would be reducible.

Now, genus three is a whole different story. Recall that different Lens spaces admit inequivalent
Heegaard diagrams (the red curve is meridional and the blue curve is the corresponding torus
knot). From [19], we have the following :
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Theorem 3.3. (Meier, 2017) If M3 has a genus g Heegaard splitting, then S(M) and S∗(M)
admit (3g, g)-trisections.

Here, S(M) and S∗(M) denote respectively the spin and twisted-spin of M , a construction
of a 4-manifold. In fact, we have that M , S(M) and S∗(M) have same fundamental group.
TakingM = L(p, q) a lens space, we have rk π1(M) = 1, andX = S(M) has a (3, 1)-trisection.
By rk π1(X) 6 1 from the handle decomposition (see 2.13), which means k = 1 is the minimal
value we can have. From χ(X) = 2 + g − 3k, we also see that g = 3 is the minimal value, so
that the (3, 1)-trisection is minimal.

This means that we have obtained as many (3, 1)-trisected manifolds as there are values for
p, for π1S(L(p, q)) ∼= Z/p, meaning that different lens spaces yield manifolds with different
fundamental groups. See figure 22a for the trisection diagram for S(L(2, 1)). This proves the
case (g, k) = (3, 1) of the following :

Corollary 3.4. (Meier, 2017) For any g > 3 and k 6 g−2, there are infinitely many distinct
4-manifolds admitting minimal (g, k)-trisections.

However, the question of knowing whether we have obtained all genus three trisections by
these means is still open :

Conjecture 3.5. (Meier) Every irreducible 4-manifold with trisection genus three is either
the spin of a Lens space, or a Gluck twist on a specific 2-knot in the spin of a Lens space.

3.2 Trisections in context : computing topological invariants
We want to compute the homology from a (g, k)-trisection diagram. Start with a trisection
diagram (Σ, α, β, γ). There is a trisected manifold M = X1 ∪ X2 ∪ X3 associated to that
diagram, whose pairwise intersections are denoted as H13 = Hα, H12 = Hβ and H23 = Hγ .
For ν ∈ {α, β, γ}, define Lν to be the subgroup of H1(Σ) generated by the homology classes
of the curves in ν. For convenience, denote as Lµν = Lµ ∩ Lν .

We callM the unique trisected 4-manifold associated to that diagram. Let Y = Hα∪Hβ∪Hγ

be the spine of the trisection, and letN be a regular neighborhood of it. We see thatN is the 4-
manifold obtained after gluing the thickened Hν to the Σ×D2 (see 2.11 for the construction).
In particular, N has three boundary components all diffeomorphic to \k(S1 × S2), and N
deformation retracts to Y (in particular, they have the same homology). The idea (see [6]) to
compute the homology is to use the Mayer-Vietoris sequence on the decomposition :

M = (M −
◦
N) ∪∂N N.

We shall first prove the following two homological results :

Lemma 3.6. The homology of the pair (Hν ,Σ) is given by :

H2(Hν ,Σ) = Lν , H3(Hν ,Σ) ∼= Z, Hk(Hν ,Σ) = 0 if k 6= 2, 3.

Proof. Using the long exact sequence for the pair (Hν ,Σ), we obtain the result by making
the following observations :

(i) H2(Σ)→ H2(Hν) is the zero map, because H2(Hν) = 0.
(ii) H1(Σ) u→→ H1(Hν), so that H2(Hν ,Σ) = Lν the kernel of u, because the curves in ν

bound discs in Hν , by a dimension argument.
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Lemma 3.7. We have H2(∂N) ∼= Lαβ ⊕ Lβγ ⊕ Lαγ , as well as H•(Y,Σ) ∼= H•(Hα,Σ) ⊕
H•(Hβ ,Σ)⊕H•(Hγ ,Σ). Moreover, for the homology of N , we have :

H1(N) ∼= H1(Σ)/(Lα + Lβ + Lγ), H2(N) ∼= ker[Lα ⊕ Lβ ⊕ Lγ → H1(Σ)], H3(N) ∼= Z2.

Proof. For H•(Y,Σ) ∼= H•(Hα,Σ)⊕H•(Hβ ,Σ)⊕H•(Hγ ,Σ), this is analogous to the fact that
the homology functor sends a wedge to the direct sum, by using the Mayer-Vietoris sequence
in relative homology for the decomposition Y = Hα ∪Σ Hβ ∪Σ Hγ .

For H2(∂N), we have ∂N = ∂X1q ∂X2q ∂X3, so the computation boils down to calculation
of H2(∂Xi). From the Heegaard splitting ∂Xi = Hµ ∪Σ Hν , we can apply Mayer-Vietoris
again to obtain H2(∂Xi) = Lµ ∩ Lν , because H2(Hµ) = H2(Hν) = 0, so that H2(∂Xi) =
ker[H1(Σ)→ H1(Hµ)⊕H1(Hν)].

For the homology of N , it is the same as the homology of Y . Use the long exact sequence for
the pair (Y,Σ), and use that the map H2(Σ)→ H2(Y ) is zero. �

Now, we can compute the homology of the whole manifold M :

Proposition 3.8. The homology of M is given by :

H1(M) ∼= H1(Σ)/(Lα+Lβ+Lγ), H2(M) ∼= Lα∩(Lβ+Lγ)/(Lαβ+Lαγ), H3(M) ∼= Lαβγ .

Proof. It is just a matter of plugging everything into the Mayer-Vietoris sequence for the
decomposition M = (M −

◦
N) ∪∂N N . Note that M −

◦
N is a disjoint union of handlebodies,

and ∂N is its boundary. �

For an example, recall the trisection diagram for S2 × S2 from figure 21. It is immediate that
Lα + Lβ + Lγ = H1(Σ) and Lαβγ = 0, so that H1(S2 × S2) = H3(S2 × S2) = 0. Next, we see
that Lα ∩ (Lβ + Lγ) = Lα, and Lαβ = Lαγ = 0, so that H2(S2 × S2) ∼= Lα ∼= Z2.

For more invariants, there is also a way to compute the intersection form of M , simply by
counting the intersection numbers of pairwise choices of curves on the diagram. See [5, 6] for
the details.

At last, recall that the handle decomposition (proposition 2.13) implied that π1(M) had
a presentation with k generators and g − k relations. There is a way to compute a full
presentation for the fundamental group by using the trisection diagram (thanks to Delphine
for that explanation). Recall that, given a trisection fiagram, the manifold associated to it
was obtained by gluing 3- and 4-handles to the spine of the trisection, that is, the union
of the three 3-dimensional handlebodies. Gluing those 3- and 4-handles doesn’t change the
fundamental group, so that it is uniquely determined by the one of that spine.

Taking one first handlebody, say, H13, one has g generators. Gluing another one, say, H12,
we obtain relations accordingly to meridian discs. This means that we obtain a relation given
by the crossings of the blue curves with the successive red curves, with the generator or its
inverse determined by the framings. We do the same for H23, and obtain relations accordingly.
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Note that we can always consider a diagram in standard position as in figure 17, so that g−k
relations are killed by the red-blue relations. Therefore, we are left with k generators and
relations given by the red-green crossings.

For trivial examples, one can verify that we obtain the correct fundamental groups for the
diagrams in figure 21. For less trivial examples, here are diagrams taken from [1] :

(a) (b)

Figure 22. (a) The spin lens space S(L(2, 1)). (b) T2 × S2.

We check that the procedure indeed produces π1S(L(2, 1)) ∼= Z/2 and π1(T2 × S2) ∼= Z2.

Some people are hoping that this may be a first step in the right direction towards (dis)proving
the smooth Poincaré conjecture. Here are some still-open questions in that regards :

• What other topological invariants can a trisection diagram allow to compute ?
• Can trisections define new invariants ? In particular, is it possible to describe an inva-

riant that distinguishes between smooth structures on S4 ? (Note that gT is one such
smooth invariant, but computing it can be very difficult, especially in those exotic
scenarii. See [14] for another step in that direction.)

One last big conjecture is whether the Haken lemma (see [12]) for Heegaard splittings also
holds for trisections :

Conjecture 3.9. (Additivity conjecture, Lambert-Cole–Meier, see [16]) Let M = M1#M2
be a connected-sum of two 4-manifolds. Then, any trisection of M is the connected-sum of
two trisections of M1 and M2. That is : gT (M1#M2) = gT (M1) + gT (M2).

This has an important corollary :

Corollary 3.10. (Lambert-Cole–Meier) If conjecture 3.9 is true, then gT is a topological
invariant. In particular, there are no exotic versions of the following manifolds : S4, CP2,
S1 × S3, S2 × S2, CP2#CP2 and CP2#CP2.

This follows from the following theorem of Wall and Gompf, see [11, 31] :

Theorem 3.11. (Gompf) If M1 and M2 are homeomorphic but not diffeomorphic, then there
exists k such that M1#S(k) and M2#S(k) are diffeomorphic, where S(k) = #k(S2 × S2).
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3.3 Trisecting more manifolds : going further
Throughout this work, we have been dealing with balanced trisections. That is, each sector, as
a 4-dimensional handlebody, had the same genus. However, contrary to Heegaard splittings
where both handlebodies had to be of the same genus, there is no need to make this assumption
here :

Definition 3.12. Given a 4-manifold M , an unbalanced (g; k1, k2, k3)-trisection is a de-
composition M = X1 ∪X2 ∪X3 with :

(i) Xi is diffeomorphic to Zk = \ki(S1 × D2), with ki 6 g.
(ii) Hij = Xi ∩Xj is diffeomorphic to Hg = \g(S1 × D2).
(iii) X1 ∩X2 ∩X3 is diffeomorphic to Σg.

Note that each ∂Xi = Hij∪Hik is still a Heegaard splitting, so that we have, by Waldhausen–
Haken :

∂Xi = Hij ∪Hik = Y +
ki,g
∪ Y −ki,g

.

The stabilization operation needs not be symmetric anymore, and we may talk about an
i-stabilization when adding a handle to the sector Xi. This means that i-stabilization has
the effect of transforming a (g; k1, k2, k3)-trisection into a (g + 1; k1 + δi1, k2 + δi2, k3 + δi3)-
trisection. In particular, the balanced stabilization is the process of performing a 1-, a 2- and
a 3-stabilization. Note that the order in which those are made doesn’t matter.

Note that existence of unbalanced trisections is implied by the particular case of the balanced
ones, and that the Gay–Kirby still holds, for we can always stabilize an unbalanced trisection
to make it balanced again. The diagrammatic aspects of unbalanced trisections also hold in
this context, but allow for more leeway since we don’t ask anymore that any selection of two
colors is not for the same number of summands of S1 × S2 in ∂Xi.

At last, the theory of trisections can be extended to more general cases. For instance :
• Relative trisections are trisections of manifolds with boundary, see [2, 3].
• For trisections of non-orientable manifolds, see [24].
• For bridge trisections, that is, how trisections behave with knotted surfaces in the
4-manifold, see [21, 22].
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