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Abstract. Connections on a vector bundle should be introduced/reviewed.
Parallel transport should be discussed, and in what sense does the curvature
measure the failure of the parallel transport to only depend on the homotopy
class of the path along which we transport.

There are invariants of bundles called characteristic classes. For instance,
a hermitian bundle E → X of rank 2 on a 4-manifold is classified by its first
Chern class c1(E) ∈ H2(X; Z) and second Chern class c2(E) ∈ H4(X; Z) (this
no longer holds in dimension 5 and higher).

Chern-Weil theory expresses characteristic classes through expressions in-
volving the curvature of a connection. We will need the expressions for the
first and second Chern classes.

We let k = R or C. Recall that a rank r vector bundle over a smooth manifold
X is a smooth surjection p : E → X with E a smooth manifold such that:

(1) for all x ∈ X, Ex = p−1(x) is a k-vector space;
(2) any x ∈ X has some neighborhood U ∋ x for which there exists a diffeo-

morphism ψU : p−1(U) → U × kr such that p = pr1 ◦ ψ on U ;
(3) for any x ∈ X, the map ψU : Ex → {x} × kr is a linear isomorphism.

We resume the situation in the following diagram:

p−1(U) U × kr

U

p

ψU

pr1

A smooth map s : X → E is called a section if p ◦ s = idX . We denote as Γ(E)
the space of (global) sections of E → X. A local section is a section defined on
U ⊂ X, and we denote it as s ∈ Γ(E,U).

Given two bundles E → X and F → Y , a map f : X → Y is called a bundle
map if there exists g : E → F such that the following diagram commutes:
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E F

X Y
f

g

An isomorphism of bundles is simply a bundle map such that f and g are home-
omorphisms.

§1. Affine Connections on a Vector Bundle

Recall that Ωk(X) denotes the space Γ(
∧k

T
∗
X,X) of differential k-forms. The

special case k = 0 is Ω0(X) = C∞(X,R).

Definition 1. Let E → X be a vector bundle over X. Set Ωk(X,E) = Γ(E ⊗∧k
T

∗
X) to be the space of differential k-forms on X with values in E.

The special case k = 0 is Ω0(X,E) = Γ(E).

Definition 2. Let E → X be a vector bundle over X. An affine connection
on E is a continuous linear map ∇ : Ω0(X,E) → Ω1(X,E) such that for all
f ∈ C∞(X,k) and s ∈ Ω0(X,E), we have the Leibniz rule:

∇(fs) = df ⊗ s+ f∇s.

Alternatively, ∇s ∈ Ω1(X,E) = Γ(T ∗
X ⊗ E) can be thought of a vector bundle

map TX → E (i.e. a fiber-preserving map which is linear on each vector space).
This means that ∇ can be seen as a map ∇ : Γ(E) × Γ(TM) → Γ(E) by setting
∇ξs = ∇s(ξ) for s ∈ Γ(E) and ξ ∈ Γ(TX) a vector field.

In a local trivialization U ⊂ X, an affine connection is uniquely determined by
the images ∇s1, . . . ,∇sr of a basis of sections (s1, . . . , sr). In particuler, for each
i, there exist coefficients ωi,1, . . . , ωi,r such that

∇si =
r∑
j=1

ωi,jsj .

The coefficients (ωi,j)1⩽i,j⩽r make an r × r matrix of smooth 1-forms on U , and
this is the local description of the connection.

An example is that of the exterior derivative. Let E = X × kr be the trivial
rank r bundle, where Ω0(X,E) = C∞(X,kr). For s : X → kr, we have ds : TX →
Tkr = kr × kr defined, for (x, ξ) ∈ TX, by: ds(x, ξ) = (s(x),dxs(ξ)). This induces
an element ∇s ∈ Γ(T ∗

X ⊗E) = Ω1(X,E). This connection is called the standard
flat connection of rank r on X. The local description in terms of the ωi,j follows
from choosing a basis and inspecting the differential of those functions.

Proposition 3. The space a(E) of affine connections is an affine space over the
vector space Ω1(X,End(E)).

Proof. Partitions of unity (paracompacity) imply existence of affine connections
(glue the standard flat connections on local trivializations). Next, if ∇1,∇2 ∈ a(E)
are two connections, then for any f ∈ C∞(X,k) and s ∈ Γ(E,X), we have:

(∇1 − ∇2)(fs) = df ⊗ s+ f∇1s− df ⊗ s− f∇2s = f(∇1 − ∇2)s.
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That is: ∇1 − ∇2 is C∞(X,k)-linear. As such: ∇1 − ∇2 ∈ Hom(Γ(E),Γ(T ∗
X ⊗

E)) = Γ(E)∗ ⊗ Γ(T ∗
X ⊗ E) = Γ(T ∗

X ⊗ End(E,E)) = Ω1(X,End(E)). ■

A connection can be extended to form maps d∇ : Ωk(X,E) → Ωk+1(X,E) for
any k, by imposing the following Leibniz rule:

d∇(η ⊗ s) = dη ⊗ s+ (−1)deg(η)η ∧ ∇s.
For k = 1, the map d∇ : Ω1(X,E) → Ω2(X,E) satisfies the following identity, for
f ∈ C∞(X,k) and η ⊗ s ∈ Ω1(X,E):

d∇(fη ⊗ s) = df ∧ η ⊗ s+ fd∇(η ⊗ s).
We have a sequence

Ω0(X,E) d∇

−→ Ω1(X,E) d∇

−→ Ω2(X,E) d∇

−→ · · ·
which is, however, usually not exact (i.e. d∇ ◦ d∇ ̸= 0 in general).

Definition 4. Let K∇ : Γ(E) → Ω2(X,E) be the map defined by d∇ ◦ d∇.

Proposition 5. The map K∇ is C∞(X,k)a-linear. Hence, it defines a section
K∇ ∈ Ω2(X,End(E)), which is called the curvature of the connection.

Proof. Again, a direct computation gives:
K∇(fs) = d∇(df ⊗ s+ f∇s) =����d2f ⊗ s−����df ∧ ∇s+����df ∧ ∇s+ fK∇s.

To conclude, the same arguments as before work. ■

If ∇si =
∑
ωi,jsj is the local expression of the connection in the basis (s1, . . . , sr),

then one checks that K∇(si) =
∑

Ωi,jsi, with the Ωi,j = dωi,j −
∑
ωi,kωk,j making

an r × r matrix (Ωi,j)1⩽i,j⩽r of 2-forms.
We now focus on the relation between parallel transport and curvature. Fix

γ : [0, 1] → X a smooth path with γ(0) = x and γ(1) = y, and let s : [0, 1] → E be
a section along γ; that is, p◦ s(t) = γ(t) for all t ∈ [0, 1]. The pull-back bundle γ∗E
is a vector bundle over [0, 1] with fibers (γ∗E)t = Eγ(t). We also have a pull-back
connection γ∗∇. Because s ∈ Γ(γ∗E), it makes sense to look at γ∗∇s. The section
s is called parallel if γ∗∇s = 0. This equation is an order one differential equation
(by using Peetre’s theorem on differential operators). By Cauchy–Lipschitz, this
means that for any v ∈ Ex, the following problem has a unique solution:{

γ∗∇s = 0
s(0) = v

This allows to define a linear map
γ//yx : Ex → Ey

by setting γ//yx(v) = s(1). The particular case of a loop x = y is interesting; each
loop γ induces an endomorphism γ//xx ∈ End(Ex). The holonomy at the point
x ∈ X is the subgroup Hol∇(E, x) of End(Ex) generated by those maps.

Theorem 6 ([AS53, Theorem 2]). Let x ∈ X. The subgroup Hol0∇(E, x) of
Hol∇(E, x) generated by parallel transport along null-homotopic loops based at x
is equal to the subgroup generated by the K∇(v, w) for v, w ∈ TxX (i.e. by the
(Ωi,j(v, w))i,j).
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That is: the curvature measures how dependant on the homotopy class of a loop
the parallel transport is.

§2. Characteristic Classes: Chern Classes

The details of the constructions and the proofs can be found in [MS74].

Theorem 7. There exist unique invariants (ck(E))k∈N of complex vector bundles
E → X that satisfy the following properties:

(1) Cohomology classes: ck(E) ∈ H2k(X), and c0(E) = 1.
(2) Naturality: if f : E → F is a bundle map, then ck(E) = f⋆ck(F ).
(3) Stability: if C is the trivial bundle, then ck(E ⊕ C) = ck(E).
(4) Whitney sum: ck(E ⊕ F ) =

∑
i+j=k

ci(E) ⌣ cj(F ).

(5) Normalization: if E → CPn is the tautological bundle (i.e. EL = {y ∈
Cn+1 | x ∈ L}), then c1(E) is a generator of H2(CPn).

The total Chern class is the formal sum c(E) = c0(E) + c1(E) + · · · + cn(E) ∈
H∗(X). If one interprets the Whitney sum as a product on the cohomology ring,
then the formula reads as c(E ⊕ F ) = c(E)c(F ).

Example 8. Let E → CPn be the tautological bundle. If a = −c1(E) denotes a
generator of H2(CPn), then c(TCPn) = (1 + a)n+1.

A complex bundle comes with a natural orientation of the underlying real bundle.
As such, the Euler class e(E) is well-defined, and we have:

Proposition 9. The top Chern class and the Euler class agree: cn(E) = e(E),
where n = rk(E).

This suggests that one can define the Chern classes recursively:

(1) Set cn(E) = e(E) and ck(E) = 0 for k > n.
(2) Given 0 < k < n, consider the bundle F → Y , where Y = E ∖ 0E and

Fy = Ex/⟨y⟩ with y ∈ Ex ∖ {0}. Then the Gysin sequence

· · · −→ Hk(X) φ∗

−→ Hk(Y ) −→ · · ·

for φ : Y → X gives an isomorphism for k < 2n − 1. Define ck(E) =
(φ∗)−1ck(F ), by noting that rk(F ) = rk(E) − 1.

Theorem 10. Complex vector bundles over a manifold X of dimension ⩽ 4 are
uniquely determined by their rank and first two Chern classes. Moreover, for any
choice of n > 1 and cohomology classes α ∈ H2(X) and β ∈ H4(X), there exists a
rank n complex bundle E → X with c1(E) = α and c2(E) = β.

This comes from the universal bundle perspective; for any rank n complex bun-
dle E → X, there exists a bundle map f : X → BU(n) such that E ∼= f∗EU(n).
Moreover, two bundles f∗EU(n) and g∗EU(n) are isomorphic if and only if the
maps f and g are homotopic. As such, it suffices to compute [X,BU(n)4] =
[X,K(Z, 2) ×K(Z, 4)] = H2(X) ⊕H4(X).
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§3. Chern–Weil Theory

Consider any polynomial function P : Mn(C) → C such that P (AB) = P (BA),
which we call an invariant polynomial. Examples include the trace, the deter-
minant, or any coefficient of the characteristic polynomial, from the well-known
χAB = χBA. In fact, these are, in some sense, the only examples. Indeed, let

det(In + tA) = 1 + tσ1(A) + · · · + tnσn(A).

Then, any invariant polynomial P can be expressed as Q(σ1, . . . , σn) for some
polynomial Q ∈ C[X1, . . . , Xn]. The proof goes as follows:

(1) Trigonalize A to have arbitrarily small upper diagonal part. By continuity,
this means that P only depends on the eigenvalues of A.

(2) P is therefore a symmetric function of those eigenvalues, and the classical
theory of symmetric functions applies.

Recall that the curvature is K∇ ∈ Ω2(X,End(E)). Given an invariant polyno-
mial, one can look at the 2-form P (K∇) ∈ Ω2(X). By working in local coordinates
K∇ = (Ωi,j)), one can prove that dP (K∇) = 0. In particular, this determines a De
Rham cocycle, and thus an element P (K∇) ∈ H∗(X; C).

Proposition 11. The element P (K∇) is independant of the connection ∇.

Proof. Consider the induced bundle π⋆E → X × I, with π : (x, t) ∈ X × I 7→ x.
If ∇0 and ∇1 are two connections on E → X, then there are induced connections
π⋆∇1 and π⋆∇2. For fixed t, let ∇ = (1 − t)π⋆∇0 + tπ⋆∇1, which is a connection
on π⋆E → X × I. Then P (K∇′

t
) ∈ H∗(X × I; C).

Taking the inclusions ıt : X → X × I to be ıt(x) = (x, t), we see that ı⋆0∇ = ∇0
and ı⋆1∇ = ∇1, hence:

ı⋆εP (K∇) = P (K∇ε
), ε ∈ {0, 1}.

But ı0 and ı1 are homotopic through ıt, so the claim follows. ■

There is one part that we will not show: the bundle invariants P (K∇) are
characteristic classes, i.e. they verify naturality among other conditions.

Theorem 12. The cohomology class σk(K∇) is equal to (2iπ)kck(E). In particular,
we obtain the following expressions for the first two Chern classes:

c1(E) = i

2πTr(K∇) and c2(E) = Tr(K2
∇) − Tr(K∇)2

8π2 .

The two explicit formulas come from the following observations:

det(I +A) = det(exp(log(I +A))) = eTr(A−A2/2+A3/3+··· ).

Proof. We first prove it for complex line bundles (which is an analogue of the Gauss–
Bonnet theorem), then for any decomposable bundle. The general case follows from
a universal bundle argument. For a bundle E → X, denote as σ(E) the following
invariant:

σ(E) = det(I +K∇/2iπ) =
∑
k

σk(K∇)
(2iπ)k ∈ H∗(X; C),

where we have chosen any connection ∇.
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(1) If E → X is a line bundle, then σ(E) = 1 + σ1(K∇)/2iπ. Now, the only
H2(−)-characteristic classes of real oriented plane bundles are multiples of
the Euler class1. As such, there exists a universal constant α ∈ C for which
σ1 = αc1 (because c1 is also a multiple of e). To find the value of α, we use
the Gauss–Bonnet theorem. Indeed: we can choose a suitable connection
∇R on the real plane bundle so that its connection and curvature matrices
are skew-symmetric, i.e.:

∇R =
[

0 −ω1,2
ω1,2 0

]
and K∇R =

[
0 −Ω1,2

Ω1,2 0

]
with Ω1,2 = dω1,2. This can be done by fixing a metric so that the complex
structure is rotation by π/2 and using the associated Levi–Civita connec-
tion. This induces a (complex) connection ∇ on the line bundle whose
connection matrix is (iω1,2) ∈ M1(C) and curvature (iΩ1,2) ∈ M1(C). For
the bundle TCP1 → CP1, whose real plane bundle is the tangent bundle of
the sphere, we can apply Gauss–Bonnet to find α = 2iπ, by noting that Ω1,2
corresponds to the Riemannian curvature κ by the relation Ω1,2 = κdA.

(2) If E = E1 ⊕ · · · ⊕ Ep with each Ei → X a line bundle, then choose a
connection ∇i on Ei to form the connection ∇ = ∇1 ⊕ · · · ⊕ ∇p on E.
The curvature matrix K∇ will be block-diagonal diag(K∇1 , . . . ,K∇p

), so
that σ(K∇) = σ(K∇1) · · ·σ(K∇p

), and σ(Ei) = c(Ei) by the previous case.
This yields σ(E) = c(E) from the Whitney sum formula.

(3) For the general case, we denote as EU(n) → BU(n) the universal rank
n bundle, where BU(n) = Gn(C∞). We can always assume that we are
working over the m-skeletons EU(n)m → BU(n)m = Gn(Cm) for m large.
For any rank n complex bundle E → X, there exists a bundle map f : X →
BU(n) such that E → X is isomorphic to f∗EU(n). Therefore, it suffices
to show the claim for EU(n) → BU(n), by naturality.

Now, if Γ1 → CPm denotes the tautological line bundle, then we have:
c(Γ1 ⊕ · · · ⊕ Γ1) = σ(KΓ1⊕···⊕Γ1),

by the previous point. This bundle itself factors through Γ1 ⊕ · · · ⊕ Γ1 f−→
EU(n)m, so that:
f∗σ(KEU(n)m

) = σ(Kf∗EU(n)m
) = c(f∗EU(n)m) = f∗c(EU(n)m).

Finally, we claim that f∗ is injective fromH•⩽2m(BU(n)m) toH•⩽2m(CPm×
· · · × CPm), so that the result follows.

■
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