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Abstract

We shall first give an informal desciption of the N -th lamplighter group LN to allow us to construct it
algebraically. Identifying the underlying operation on the groups Z/N and Z, this gives several properties
around the presentation of LN . Next, we focus on the Cayley graph Γ(LN ) of this group, which turns
out to be a special object on its own : a Diestel-Leader graph. We will present the formal construction
of these graphs, and we identify Γ(LN ) with DL(N). Word length will also be of some interest.

1. Decriptions of the groups

The idea behing these groups is the following : consider an infinite street, with lamp posts every so often,
and consider a lamplighter, whose role is to go across the street, lighting up or turning off some of the lamp
posts, and then ending his journey at at the foot of a light. We may picturally give an example in figure 1,
where darkened discs correspond to lamps turned on, where the vertical line represents the origin (assume
the street is the real line and a lamp is set at every integer), where the arrow represents the ending position
of the lamplighter, and where circles not drawn are lamps that are off.

Figure 1. The lamplighter has lit the lamps at positions −4, −2, 1, 3 and 4,
and ended his journey at position −1.

Note that the lamplighter may turn on a lamp, perform some actions elsewhere, to then come back and turn
back off the lamp. This fact will be important when trying to give a presentation for the lamplighter group.

If this gave an informal description of the elements of the group, we may as well give an as-informal description
of the group law. For this, it may be a nice analogy to describe an element as a set of instructions, just
like a Turing machine does (although we do not have conditional statements in out case). For the example
of figure 1, the group element may be described as the following set of instructions, assuming the starting
position of the lamplighter is the origin :

1. Go to the right once. 7. Go to the left six times.
2. Turn the lamp on. 8. Turn the lamp on.
3. Go to the right twice. 9. Go the left twice.
4. Turn the lamp on. 10. Turn the lamp on.
5. Go the right once. 11. Go to the right thrice.
6. Turn the lamp on.
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Now, to compose two elements, simply apply the corresponding two sets of instructions one after the order.
This corresponds to stacking the diagrams of the two elements, but with the origin of the second element
shifted to be aligned with the ending position of the first. Consider the following other element :

Figure 2. The lamplighter has lit the lamps at positions −1, 2 and 3, and ended
his journey at position 2.

Stacking this diagram after the one from figure 1, we obtain the following :

Figure 3. How to compute the composition of two elements in the lamplighter
group

At last, one checks that concatenation of the two sets of instruction boils down to :

1. Turning on or off the lamps accordingly to the XOR rule (component-wise).

2. The origin of the product is the origin of the first element.

3. The ending position is the ending position of the second element.

For out previous example, it yields :

Figure 4. The result of the previous composition

Now, to give a more algebraic description of this group, notice that an element is characterized by two
things :

1. An integer k ∈ Z, corresponding to the position of the lamplighter.

2. A finitely-supported sequence (an)n∈Z, where an ∈ Z/2 represents the state of the lamp at position n.

Therefore, the underlying set for the lamplighter group L2 is :

L2 = Z×
⊕
n∈Z

Z/2.
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Already, this 2 subscript suggests we shall not restrein ourselves to lamps having only two states. We may
therefore define (with N > 2, because L1 ∼= Z) :

LN = Z×
⊕
n∈Z

Z/N,

where in this case, lamps have N possible states. Again, this can be compared to Turing machines, where
the construction is similar.
We now need to define composition of elements. Positions are just added together, and the sequences are
shifted and then composed component-wise. That is, given (k,a), (`, b) ∈ LN , we may define :

(k,a) ? (`, b) = (k + `, (an + bn−k)n∈Z)

Proposition 1.1. (LN , ?) is a group.

Proof. The neutral element is (0,0). For associativity, we have :

[(k,a) ? (`, b)] ? (m, c) = (k + `, (an + bn−k)n∈Z) ? (m, c)
= (k + `+m, (an + bn−k + cn−k−`)n∈Z)
= (k,a) ? (`+m, (bn + cn−`)n∈Z)
= (k,a) ? [(`, b) ? (m, c)].

At last, one checks that an inverse for (k,a) is (−k, (−an+k)n∈Z). �

Picturally, in L2, the inverse of the element of figure 1 would be :

Figure 5. The inverse of the element in figure 1. Try stacking the diagrams
together to visualize it.

Now, to give a presentation of LN , we may first derive a generating set for the group, and compute some of
the relations. Using the algortihmic point of vue we adopted to define the group law, we can see that two
actions are sufficient to generate any element :

1. Moving the lamplighter once to the right.

2. Switching the current lamp to its next state.

Algebraically, those are the following two elements :

T = (1,0) and A = (0, δ0),

where δ0 is the sequence (..., 0, 0, 1, 0, 0, ...), with the one being at position zero (recall that 1 is a generator
for Z/N). We therefore have :

Proposition 1.2. {T,A} is a generating set for LN , that is LN = 〈T,A〉.

Proof. Choose an element (k,a) ∈ LN . We shall proceed by induction over the number r of non-zero
elements of the sequence a.
If r = 0, then (k,a) = T ?k.
Suppose that (k,a) is an element of 〈T,A〉 whenever r = n, and assume that r = n + 1. Let m ∈ Z be
such that am 6= 0, and let b = N − am. Then, define g = A?b ? T ?(m+k) = (m, bδm+k), where bδm+k is the
sequence whose only non-zero term is b at position m+ k. The hard work is done, since :

(k,a) ? g = (k +m,a + bδm),
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with (a − kδm)i = ai if i 6= m and (a − bδm)m = 0. Therefore, (k,a) ? g is an element whom we can
apply the induction to, that is : (k,a) ? g ∈ 〈T,A〉, and thus, by inverting, since g−1 ∈ 〈T,A〉, we obtain
(k,a) ∈ 〈T,A〉. �

Heuristically, in the proof, we turned off a lamp to reduce the number of lamps that are not off, to then
apply the induction to this new element. The idea behind is exactly this algorithmic interpretation for LN .
However, another description is possible for LN , that is not involving sequences but rather polynomials. The
core idea is just the same, it’s just a rephrasing of the previous description :

Proposition 1.3. Considering the ring AN = (Z/N)[X,X−1] of polynomials in the formal variables X and
X−1 whose coefficients are in Z/N , we can identify LN as a subgroup of GL(2,An) by :

LN ∼= GN :=
{(

Xk P
0 1

)
, k ∈ Z, P ∈ An

}
.

As a remark, recall that AN is defined as a quotient ring :

AN = (Z/N)[U, V ]/〈UV 〉,

where we identify X to be the class of U and X−1 the class of V .

Proof. The isomorphism is explicit :

Φ : LN → GN

(k,a) 7→

Xk
∑
n∈Z

anX
n

0 1

.
Φ is indeed well-defined, since by hypothesis over a, the sum is finitely-supported. Moreover, if

P =
∑
n∈Z

anX
n and Q =

∑
n∈Z

bnX
n,

then we have :
XkQ+ P =

∑
n∈Z

anX
n +

∑
n∈Z

bnX
n+k =

∑
n∈Z

(an + bn−k)Xn,

and thus, by computing the matrix product, we get that Φ is a morphism. Injectivity is quite evident : if
Φ(k,a) = Φ(`, b), then by comparing the first two coefficients of the matrix, we get k = ` for the first, and
a = b for the second, by comparing the coefficients of the two polynomials this time. For surjectivity, it is
easy to construct a suitable element. �

Now, we shall make use of proposition 1.2 and try to derive relations satisfied by those generators, to then
give a presentation of LN . Evidently, we already see the relation AN = (0,0). There will be two kinds of
relations, with this first being the only one of the sort. The following lemma gives the other relations :

Lemma 1.4. For all i, j ∈ Z, we have that T iAT−i and T jAT−j commute, that is :

[T iAT−i, T jAT−j ] = (0,0).

Once again, the idea behind these relations is to see it with the algorithmic point of vue : go switching the
state of a lamp, coming back, go switching the state of another lamp and coming back again is the same as
doing the same actions but with the opposite order for these lamps. Note that, having the presentation in
mind, we do not need to consider powers of A, since we can always take i = j.

Proof. We shall in fact prove that these relations hold in GN , by making use of proposition 1.3. We have :

Φ(T k) =
(
Xk 0
0 1

)
and Φ(A) =

(
1 1
0 1

)
,
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from which we obtain :
Φ(T kAT−k) =

(
1 Xk

0 1

)
.

By computing that (
1 Xi

0 1

)(
1 Xj

0 1

)
=
(

1 Xi +Xj

0 1

)
=
(

1 Xj

0 1

)(
1 Xi

0 1

)
,

we obtain the result. �

Finally, this allows us to give a presentation for LN :

Theorem 1.5. We have LN ∼= 〈t, a|aN , [tiat−i, tjat−j ], i, j ∈ Z〉.

However, a direct proof considering the morphism Ψ : F2 → LN is not so easy in that setting, since we
are dealing with an infinite group. We will therefore use a general construction and the presentation of
semi-direct products, that is :

Theorem 1.6. Let G = 〈X|R〉 and H = 〈Y |S〉 be two groups given by presentation, and let φ : H → Aut(G).
We have the following presentation for their semi-direct product :

Goφ H ∼= 〈X,Y |R,S, yxy−1 = φ(y)(x), (x, y) ∈ X × Y 〉.

For a proof, see [4].

This is useful, because LN is a particular semi-direct product, that is a wreath product :

Definition 1.7. Let G and H be two groups. Their (regular, restricted) wreath product is the group G oH
defined as follows : take

K =
⊕
ω∈H

G,

and define an action of H on K by h • (gω)ω∈H = (gh−1ω)ω∈H . This gives a morphism φ : H → Aut(K),
and this morphism allows us to define G oH = K oφ H.

Now, it is straight-forward verifications to check that

LN = (Z/N) o Z.

Moreover, a presentation of Z/N is simply 〈a|aN 〉, and a presentation of Z is 〈t〉 = 〈t|∅〉. We give the
following presentation for the direct sum :⊕

n∈Z
Z/N ∼= 〈an, n ∈ Z|aNn , anama−1

n a−1
m , m, n ∈ Z〉.

Here, each an is the sequence (xm)m∈Z whose only non-zero element is at position n and equals the generator
1 of Z/N . At last, the morphism is the following :

φ : Z → Aut
(⊕

n∈Z Z/N
)

m 7→ [(xn)n∈Z 7→ (xn−m)n∈Z].

In particular, we obtain, by keeping in mind that we will use Theorem 1.6 :

φ(t)(an) = an+1.

Therefore, we have the following presentation for LN :

LN ∼= 〈t, an, n ∈ Z|aNn , tant−1 = an+1, n ∈ Z, anama−1
n a−1

m , m, n ∈ Z〉.
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Now, we are almost done. We only need to make use of Tietze transformations. Note that the relation
tant

−1 = an+1 implies that an = tna0t
−n. Therefore, one can replace these generators and re-write the

associated relations to obtain :

LN ∼= 〈t, a0|aN0 , (tna0t
−n)N , ttna0t

−nt−1 = tn+1a0t
−(n+1), [tna0t

−n, tma0t
−m], m, n ∈ Z〉.

By noting that the relation ttna0t
−nt−1 = tn+1a0t

−(n+1) is redundant, by noting that aN0 = 1 if and only if
tnaN0 t

−n = 1, and by re-labeling a0 into a, one obtains the claimed presentation for LN . �

By looking for litterature about Tietze transformations, one may only find mentions of elementary transfor-
mations. In our setting, we made use of an infinite number of transformations (however, each transformation
involved only a finite number of generators and relations, but it is possible to generalize). For more on this
topic, see [5].

As usual, once we have a presentation, a natural question is about knowing whether we can reduce the number
of generators or relations. In this case, we already have the minimal number of generators. Therefore, the
question remains whether we can give a finite presentation for LN , that is, with a finite number of relations,
up to eventually adding some generators. It turns out the answer is no, by making use of a (strong) result
from [1] :

Theorem 1.8. (Baumslag) Let G and H be finitely presented groups. Then their (regular, restricted) wreath
product G oH is finitely presented if and only if either G = 1 or H is finite.

In our case, it becomes evident that LN is not satisfying the hypothesis of the theorem, and is therefore not
finitely presentable.

2. Diestel-Leader graphs

We will detail the construction presented in [6]. Let Tp be the (p + 1)-valent tree, p > 2. For instance, see
figure 6 for a picture of T4.

Figure 6. A representation of T4. There is only a finite number of edges repre-
sented, the actual construction is fractal and infinite.
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A ray is a sequence (ei)i∈N of edges of Tp such that d(ei, ej) = |i − j| for all i, j ∈ N, where d desnotes the
graph metric on Tp. A geodesic is a sequence (ei)i∈Z with the same property.

Now, define two rays to be equivalent if the symmetric difference of the set of their elements is finite (that
is, if, up to shifting one of the sequences, both agree after a certain rank). An end is an equivalence class of
rays, and we denote the set of ends in Tp by ∂Tp. We also denote T̂p = Tp

∐
∂Tp. The notation comes from

topology, where the hat would denote some kind of compactification of the tree. We also say that a ray R
leads to an end ξ ∈ ∂Tp if ξ is represented by R.

By choice of an end ω ∈ ∂Tp, one could picturally represent the situation as follows :

ω

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∂Tp − {ω}
•
ξ

Figure 7. Representation of the ends (dotted line) and of a ray (bold) leading
to an end ξ 6= ω. Note that we truncated the tree : it goes infinitely far to the
left and the right, as well as to the top and the bottom.

To define the Diestel-Leader graphs, we still have some work. First, note that for each x ∈ Tp and each
ξ ∈ ∂Tp, there exists a unique ray starting at x and leading to ξ. Indeed, for existence, if (ei)i∈N is a ray
leading to ξ, then :
• either x ∈ {ei, i ∈ N}, and by taking x = em, we obtain that (ei+m)i∈N is a ray leading to ξ,

• or x ∈ {ei, i ∈ N}, in which case we may consider the shortest path x e0 (which always exists and
is unique in any tree), and write this path as x = e−m → e−m+1 → ... → e−1 → e0. Then, taking
(ei−m)i∈N gives a ray leading to ξ.

For uniqueness, we may prove it by induction. Let (ei)i∈N and (fi)i∈N both be suitable. We already have
e0 = x = f0. Now, assume that ei = fi for all i 6 n. Suppose that en+1 6= fn+1. We are in this setting :

•
en = fn

•en+1

•fn+1

Figure 8. The inductive step for proving uniqueness.
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By the very definition of a ray, going backwards is not allowed. Therefore, the new rays (ei+n+1)i∈N and
(fi+n+1)i∈N are disjoint, yet both leading to ξ since only differing from the original rays by n+1 terms. This
is contradictory. �

We could also prove in a similar fashion that given two ends ξ 6= χ ∈ ∂Tp, there exists a unique geodesic
linking ξ and χ (that is, denoting this geodesic as (ei)i∈Z, the choice of any m ∈ Z gives two rays (em+i)i∈N
and (em−i)i∈N leading respectively to ξ and χ).

We can use this previous property to define the confluent xf y of two vertices x, y ∈ Tp with respect to an
end ω ∈ ∂Tp. Denote as xω the unique ray leading to ω and starting at x. Then both xω and yω lead to ω,
thus their intersection is also a ray leading to ω. Define xf y to be the starting point c of this new ray :

xω ∩ yω = cω.

On a picture, it is simply the point at which the geodesics cross and start coïnciding :

•
y

•
xf y

ω

...
...
...
...

•x
...
...
...
...

...
...
...
...

...
...
...
...

Figure 9. Locating the confluent of two vertices.

Now, fix both an end ω ∈ ∂Tp and a vertex o ∈ Tp. Define the Busemann function (also called height
function) on Tp by :

h(x) = d(x, xf o)− d(o, xf o).
It is convenient to define the horocycles of this function by :

Hk = {x ∈ Tp / h(x) = k}.

We immediately see that o ∈ H0. Horocycles allow us to represent the Busemann function :

•o

ω

...
...
...
...

...
...
...
...

...
...
...
...

...
...
...
...

H−1

H0

H1
H2

Figure 10. The busemann function and its horocycles.
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The horocycles satisfies the following :

Proposition 2.1. Each horocycle is infinite, and (Hk)k∈Z is a partition of Tp. Moreover, each x ∈ Hk has
one neighbor in Hk−1 (its parent) and p neighbors in Hk+1 (its children).

Proof. The partition is evident. The rest is intuitive, but proofs are no so straight-forward.

Let us first prove that Hk is infinite. We will construct arbitrarily many elements of Hk as follows : denote
as (en)n∈N = oω the ray starting at o and leading to ω. For any n ∈ N such that n+ k > 0, take n+ k steps
starting at en that are not backtracking (the set of all steps has maximal cardinality) and such that the only
such step lying on oω is en itself. For instance, in figure 9, if y = o, we have drawn the case k = 2 and n = 1.

By denoting as γn the n + k steps starting at en, we end up at a vertex xn and γn is the shortest path
en  xn. We have :

1. xn ∈ Hk. Indeed, by taking the reversed path γ−n : xn  en, and then following the ray (en, en+1, ...),
we obtain, by uniqueness, the ray xnω. Similarly, the ray (en, en+1, ...) is enω. Therefore, we obtain :

xnω ∩ oω = enω,

that is xn f o = en. This property can be seen on figure 9 as well. We can now compute :

h(xn) = d(xn, en)− d(o, en) = n+ k − n = k,

that is xn ∈ Hk.

2. For m 6= n, we have xm 6= xn. Indeed, by taking the shortest path φ : em  en, we obtain, by the
non-backtracking hypothesis of γ• and by γ•∩oω = {e•}, that the concatenate γ−m •φ •γn is the shortest
path em  en. Therefore, we have :

d(xm, xn) = `(γ−m) + `(φ) + `(γn) > m+ k + n+ k > 0

since m 6= n.

In particular, we have constructed an injective sequence (xn)n>|k| of elements of Hk, so Hk is infinite.

Now, fix x ∈ Tp. Denote as y0 the neighbor of x along xω (that is : xω = (x, y0, ∗, ...)), and let y1, ..., yp
be the remaining p neighboors of x. We shall prove that h(y0) = h(x) − 1 and that h(yi) = h(x) + 1 for
i > 1. We can construct yiω from xω by either removing x from xω if i = 0, or by appending yi prior to
xω otherwise. Those observations will allow us to express yi f o conveniently. We need to distinguish two
cases :

1. First case : x ∈ oω. If x = o, then y0 f o = y0 and yi f o = o for i > 1, and thus we obtain :

h(y0) = d(y0, y0)− d(o, y0) = −1 and h(yi) = d(yi, o)− d(o, o) = 1 for i > 1.

Now, if x 6= o, then y0 f o = y0 and yi f o = x for i > 1 (and xf o = x). We then have :

h(y0) = d(y0, y0)− d(o, y0) = −[d(o, x) + 1] = d(x, xf o)− d(o, xf o)− 1 = h(x)− 1

and
h(yi) = h(x) + 1

by a similar argument for i > 1.

2. Second case : x /∈ oω, in which case we obtain yi f o = x f o for all i > 0. In this case too, we can
compute directly :

h(y0) = h(x)− 1 and h(yi) = h(x) + 1 for i > 1.
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The previous result will allow us to label the tree Tp. Recall that for any graph Γ = (V,E) and any set X,
a labelling in X of Γ is a function f : E → X.

In Tp, since every vertex has p children, we can choose1 a labelling of Tp in Z/p such that given any vertex
x ∈ Tp and its children y1, ..., yp, the edges (x, y1), ..., (x, yp) are all labelled with distinct elements of Z/p.
This definition is correct, since all edges are connecting two vertices, with one being the child of the other.
Moreover, we can always choose this labelling such that all edges appearing in the ray oω are labelled 0. We
shall denote as Lh the labelling function of Tp (which is dependant on h !).

Now, we can give another description of Tp and its horocyclic structure :

Proposition 2.2. Define Σp to be the set of finitely-supported sequences in Z/p. Then, there is a bijection
Tp ∼= Σp × Z, where an element x ∈ Tp is sent to ((σn)n∈N, k), with k = h(x) and σn = Lh(en → en+1),
where (en)n∈N = xω. Moreover, if x corresponds to (σ, k), then its parent vertex corresponds to (T (σ), k−1),
where T is the truncation operator, that is : T ((σn)n∈N) = (σn+1)n∈N.

Before we give the formal proof of this statement, let us make yet another picture to represent the labelling
and the correspondance. When drawing the situation, we can always assume that we order the edges by
their label, which provides in particular that the ray oω is on the right-most part of the picture :

•o

ω

0

2 01

•x
2 01

...
...

...
...

...
...

...
...

...

2 01

...
...

...
...

...
...

...
...

...

2 01

...
...

...
...

...
...

...
...

...

Figure 11. Labelling edges on Tp and locating vertices. Here, x corresponds to
(...0021, 1), where the sequence (1, 2, 0, 0, ...) is represented in number notation.
Its parent corresponds to (...002, 0).

Proof. First, the application is well-defined, that is, if x is mapped to ((σn)n∈N, k), we have that (σn)n∈N
has finite support. Indeed, let xω = (en)n∈N, and let m ∈ N be such that xf o = em. Then, we have :

n > m =⇒ en ∈ oω,

and thus : n > m =⇒ σn = 0, by using the fact that we chose to label the edges of oω as 0.
1This requires the axiom of choice !
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Now, if x has x− as parent, we have that x−ω is obtained from xω by removing the starting x. Therefore,
if x is mapped to (σ, k), we indeed have that x− is mapped to (T (σ), k − 1).

We shall prove that the application is bijective in two steps :

1. The application is injective : assume both x and y are mapped to ((σn)n∈N, k). We shall prove by
induction over max{n > / σn 6= 0} that x = y. Indeed :

• If σ ≡ 0, we have that x, y ∈ oω, and by h(x) = k = h(y), we obtain x = y.
• Assume the result holds whenever max{n > 0 / σn 6= 0} = N , and suppose we are in the case
where max{n > 0 / σn 6= 0} = N + 1. By the previous observation, we have that both x− and y−
are represented by (T (σ), k−1). Therefore, we can apply the induction hypothesis, and we obtain
that x− = y−, that is, x and y are siblings (children of the same vertex). Now, the labelling Lh

is one-to-one from the edges linked to the children of x− to Z/p, and thus x = y.

2. The mapping is surjective : choose any (σ, k) ∈ Σp × Z. It can also be proven by induction over
max{n > 0 / σn 6= 0} that we can find a vertex x mapped to the prescribed element :

• If σ ≡ 0, then two cases are to be seperated. At first, if k > 0, then take x = ek, where we wrote
oω = (en)n∈N. However, if k < 0, then start from o, and take the path f0 = e0 → f1 → ... from
o to its successive descendants, by only choosing the edge labelled 0 at each generation. Taking
x = fk also yields a suitable element.
• Now, assume we can find a vertex x mapped to (σ, k) (this is taken to be true for all k ∈ Z) when

max{n > 0 / σn 6= 0} = N , and suppose max{n > 0 / σn 6= 0} = N + 1. We can therefore find
a vertex y mapped to (T (σ), k − 1). Now, choose the child of y that is linked to y by the edge
labelled σ0. This is a suitable element.

�

As a side note, one can notice that if x is represented by (σ, k), then the quantity to which we applied
induction is :

max{n > 0 / σn 6= 0} = d(x, xf o).

We are now ready to define the Diestel-Leader graphs :

Definition 2.3. Let p, q > 2. The Diestel-Leader graph DL(p, q) is the graph whose vertex set is

{(x, y) ∈ Tp × Tq, h(x) + h′(y) = 0},

with h and h′ two Busemann functions on Tp and Tq respectively, and where adjacencies are given by :

(x, y)↔ (x′, y′) ⇐⇒ x↔ x′ and y ↔ y′.

It is not immediate however that this is a well-defined object. Indeed, it may depend on the choices of the
Busemann functions on Tp and Tq. However, we will prove that in fact, it yields isomorphic graphs.

Let us first make yet another picture of what the Diestel-Leader graph looks like. For this, plot the two rooted
trees next to one another, one being flipped upside down, so that their respective horocycles with opposite
heights are on the same level. Then, couples of vertices on the same level are vertices of the Diestel-Leader
graph, and adjacencies are given by pairs of edges in the trees. See figure 12 for an example of DL(2, 3).

Evidently, DL(p, q) and DL(q, p) are isomorphic, where the isomorphism is ϕ(x, y) = (y, x). Moreover, we
shall denote as DL(p) = DL(p, p) the case where q = p. Also, from now on, we shall denote a horocycle as
Hk = {h = k}, to take the dependancy on the Busemann function into account.
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•
x1

•
x2

•o

ω

•
o′

•
y1

•
y2

ω′

{h = −1} {h′ = 1}

{h′ = 0}{h = 0}

{h = 1} {h′ = −1}

Figure 12. An example of a portion of DL(2, 3), where (T2, h) and (T3, h
′) are

rooted respectively at o ∈ T2 and o′ ∈ T3, and with respective ends ω ∈ ∂T2
and ω′ ∈ ∂T3. Here, the vertices (x1, y1) and (x2, y2) are in DL(2, 3), and are
adjacent, as indicated by the bold lines.

We shall now prove that the construction of DL(p, q) does not depend on the choices of the Busemann
functions. Let h1 and h2 be two Busesmann functions on Tp, with respective roots o1 and o2 and fixed and
ω1 and ω2. Similarly, let h′1 and h′2 be two Busemann functions on Tq associated to roots and ends o′1, ω′1 and
o′2, ω

′
2. Define X to be the Diestel-Leader graph whose vertices are {(x, y) ∈ Tp×Tq / h1(x)+h′1(y) = 0}, and

similarly, define Y to be the Diestel-Leader graph whose vertices are {(x, y) ∈ Tp × Tq / h2(x) + h′2(y) = 0}.

By Proposition 2.2, one has isomorphisms

(Tp, h1) ∼= Σp × Z ∼= (Tp, h2) and (Tq, h′1) ∼= Σq × Z ∼= (Tq, h′2),

which we can compose to get two automorphisms ϕ : Tp → Tp and ψ : Tq → Tq. One checks that, by
definition of the labelling in Proposition 2.2, we have for the horocycles :

ϕ({h1 = k}) = {h2 = k} and ψ({h′1 = k}) = {h′2 = k},

as well as ϕ(o1) = o2 and ψ(o′1) = o′2. Therefore, defining f : X → Y by

f(x, y) = (ϕ(x), ψ(y))

indeed defines an isomorphism from X to Y , by direct computations. �

As a remark, because of Proposition 2.1, one sees that each vertex of DL(p, q) has exactly p+ q neighbors.

What does DL(p, q) look like in a neighborhood of a vertex ? Up to changing the origins on Tp and Tq, we
see that a neighborhood of any vertex will be the same as a neighborhood of (o, o′). In figure 12, denote as
z1, z2, z3 ∈ {h′ = 1} the three children of o′ in T3. Then, the following path is a non-contractible loop in
DL(2, 3) :

(o, o′)→ (x1, z1)→ (x2, o
′)→ (x1, z2)→ (o, o′).

This behaviour generalizes to any DL(p, q). In particular, even though each vertex has a constant number
of neigboors, DL(p, q) is not a tree.

What would balls (centered at (o, o′)) of increasing radius look like in DL(p, q) ? Something complicated, as
in figure 13.
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Figure 13. Balls in DL(2, 3) centered at (o, o′) whose radii increase from 1 to 3.

We shall digress a bit and describe the Python algorithm that was made to generate such images. First, the
data structure used for the graph is :

import networkx as nx
import matp lo t l i b . pyplot as p l t

class GraphVisua l i zat ion :
def __init__( s e l f ) :

s e l f . v i s u a l = [ ]
def addEdge ( s e l f , a , b ) :

s e l f . v i s u a l . append ( [ a , b ] )
def v i s u a l i z e ( s e l f ) :

G = nx . Graph ( )
G. add_edges_from ( s e l f . v i s u a l )
nx . draw_networkx (G, with_labe l s=False , node_size=20, node_color="k " )

Now, we first need to generate the trees Tp and Tq. In fact, we only need the balls of radius R centered at o
or o′. This is done by a similar labelling system than in proposition 2.2 :

•0

•1

•
10

•o = 11

•110 •111
•1100 •

1101
•

1110
•1111

Figure 14. Labelling elements in the ball of radius 2 neighborhood in T2.
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Therefore, it is possible to generate the balls in the trees recursively :

def T(p ,R) :
T = GraphVisua l i zat ion ( )
def addChildren ( vertex , gen ) :

i f ( gen>0) :
for k in range (p) :

T. addEdge ( vertex , ver tex+str ( k ) )
addChildren ( ver tex+str ( k ) , gen−1)

o = R∗ str (p−1)
addChildren (o ,R)
for k in range (1 ,R+1) :

addChildren ( o [ : ( R−k ) ] ,R−k )
T. addEdge ( " 0 " , str (p−1) )
return T

Indeed, we check that o is represented by the string composed with R times the digit p − 1. Also, notice
that this algorithm is far from being efficient : lots of edges are calculated several times.

Now, one sees that the height of a vertex x represented by a string of length ` is given by the relation :

h(x) = `−R.

Moreover, by simply applying the definition of the Diestel-Leader graph :

E(DL(p, q)) = {(e, f) ∈ E(Tp)× E(Tq) / h(ı(e)) + h′(ı(f)) = h((e)) + h′((f)) = 0},

where ı(e) denotes the starting point of the edge e, and (e) its ending point, one obtains the code :

def he ight (v ,R) :
i f ( v==" 0 " ) : return −R
return len ( v )−R

def DL(p , q ,R) :
Tp = T(p ,R)
Tq = T(q ,R)
G = GraphVisua l i zat ion ( )
for e1 in Tp. v i s u a l :

for e2 in Tq . v i s u a l :
i e1 , j e 1 = e1 [ 1 ] , e1 [ 0 ]
i e2 , j e 2 = e2 [ 0 ] , e2 [ 1 ]
i f ( he ight ( ie1 ,R)+he ight ( ie2 ,R)==0 and he ight ( je1 ,R)+he ight ( je2 ,R)==0) :

G. addEdge ( i e 1+" , "+ie2 , j e 1+" , "+j e2 )
G. v i s u a l i z e ( )
p l t . show ( )

One checks that the three calls DL(2,3,1), DL(2,3,2) and DL(2,3,3) gives the three pictures in figure 13.

3. The Cayley graph of LN

Recall that an element of LN is a couple (σ, k) with k ∈ Z and σ = (σn)n∈Z a doubly-infinite sequence.
Now, thanks to proposition 2.2, one can associate to (σ, k) a unique element x ∈ TN , where we denote by
ϕ : ΣN × Z→ TN the labelling, by :

L(σ, k) = ϕ((σk−n)n>0, k).
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Similarly, we can also associate a unique element of TN by :

R(σ, k) = ϕ((σk+n+1)n>0,−k).

Here, L(σ, k) may be called the left part of (σ, k), and R(σ, k) its right part. This allows to define a map
Φ : LN → DL(N) by :

Φ(σ, k) = (L(σ, k), R(σ, k)).
Indeed, we have

h(L(σ, k)) = k = −h(R(σ, k))
by definition of ϕ, so that Φ is well-defined. This is in fact important because of the following :

Proposition 3.1. The map Φ : LN → DL(N) is one-to-one.

Proof. Assume first that Φ(σ, k) = Φ(ς, `). Since ϕ is one-to-one, we obtain from the left parts :

k = ` and σk−n = ςk−n for all n > 0.

Similarly, we obtain σk+n+1 = ςk+n+1 for all n > 0 from the right parts, so that (σ, k) = (ς, `). Now, if
(x, y) ∈ DL(N), then x = ϕ(σ, k) and y = ϕ(ς,−k) for some sequences (σn)n>0 and (ςn)n>0 and some k ∈ Z,
since, once again, ϕ is one-to-one. Now, consider the sequence

λn =
{
σk−n if n 6 k
ςn−k−1 if n > k

.

Then (λ, k) ∈ LN is such that L(λ, k) = x and R(λ, k) = y, by construction, that is :

Φ(λ, k) = (x, y).

�

Now, we will prove that DL(N) is the Cayley graph of LN with respect to the following generating set :

LN = 〈T,AT, ..., AN−1T 〉,

where we denoted T = (0, 1) and A = (δ0, 0).
Fix an element (x1, x2) ∈ DL(N), and choose y1 to be the child of x1 downwards the edge labelled w, and
denote as x−2 to be the parent of x2 :

•

•

x1

y1

•

•

x2

x−2

{h′ = −k}

{h′ = −k − 1}

{h = k}

{h = k + 1}

NwN

Figure 15. Moving in the Diesteal-Leader graph DL(3).

By the one-to-one correspondance established previously, we can choose a unique (σ, k) ∈ LN such that
(x1, x2) = Φ(σ, k). In fact, we even have (and this justifies the terminology) :

x1 = L(σ, k) = ϕ((σk−n)n>0, k) and x2 = R(σ, k) = ϕ((σn+k+1)n>0,−k).
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Recall that in proposition 2.2, we denoted as T (un)n>0 = (un+1)n>0 the truncation operator. Denote as
w • (un)n>0 the appending of w to the beginning of the sequence (un)n>0, so that :

y1 = ϕ(w • (σk−n)n>0, k + 1) and x−2 = ϕ(T (σk+n+1)n>0, k − 1).

We therefore have (y1, x
−
2 ) = Φ(σ̃, k+1), with σ̃ being the gluing of the two tweaked sequences x • (σk−n)n>0

and T (σk+n+1)n>0. Schematically, we have :

N (σn+k+1)n>0• • • •k + 1
k + 2

k + 3
k + 4N(σk−n)n>0 •••• k

k − 1
k − 2

k − 3
N

T (σn+k+1)n>0• • •k + 2
k + 3

k + 4

Nw • (σk−n)n>0 •◦w•••• k

k − 1
k − 2

k − 3

Figure 16. Cutting, tweaking and gluing.

In paticular, we see that σ̃ differs from σ only at position k + 1, where we replaced σk+1 by w. This means
that

(y1, x
−
2 ) = Φ((σ, k) ? A`T )

for some ` such that σk+1 + ` = w in Z/N , that is for ` = w−σk+1. We could argue the exact same if taking
the parent x−1 of x1 and a child y2 of x2, and we would instead have

(x−1 , y2) = Φ((σ, k) ? (A`T )−1)

for some `.

By the labelling, this gives a one-to-one correspondance between edges from (x1, x2) and products of (σ, k)
with the 2N elements T,AT, ..., AN−1T and their inverses. That is, we have proven that the Cayley graph
of LN with respect to the generating set as above is DL(N). �

Here are the balls of radii 2 and 3 in the Cayley graph of L2 :
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Figure 17. Balls of radii 2 and 3 in DL(2), that is, in the Cayley graph of L2.
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4. Word length in LN

Recall the group presentation for LN :

LN ∼= 〈a, t|aN , [tiat−i, tjat−j ], i, j ∈ Z〉.

Defining αi = tiat−i, we can re-write this as :

LN ∼= 〈a, t|aN , [αi, αj ], i, j ∈ Z〉.

Now, let g = (σ,m) ∈ LN be an element of the lamplighter group. By definition, Supp(σ) is finite. Define :

Supp(σ) ∩ N = {i1, ..., ik} and Supp(σ) ∩ (−N?) = {−j1, ...,−j`},

with 0 6 i1 < ... < ik and 0 < j1 < ... < j`. Now, for all s ∈ [[1, k]], define es = σis , and for t ∈ [[1, `]], define
ft = σjt

. This allows us to define :

Definition 4.1. Using the previous notations, one can check that g = αe1
i1
? ... ? αek

ik
? αf1
−j1

? ... ? αf`

−j`
? tm.

This is called the normal form of g.

To represent g, this is doing the following :

1. Go to the first positive index where a lamp is not off, and turn it to its state.

2. Move right to the next one, rinse and repeat until the right-most lamp has been lit.

3. Go to the first non-positive index where a lamp is not off, and turn it to its state.

4. Move left to the next one, rinse and repeat again, until done.

5. Move to the ending position.

Indeed, in the normal form, one sees that the αi ? αj have cancelling pairs of the form t−i ? tj = tj−i, so this
boils down to doing exactly this algorithm. Note that αi moves to position i, moves the lamp to its next
state, and goes back to the origin.

Proposition 4.2. Let g ∈ LN have normal form g = αe1
i1
? ... ? αek

ik
? αf1
−j1

? ... ? αf`

−j`
? tm. Define :

D(g) =
k∑
s=1

es +
∑̀
t=1

ft + min
{

2ik + j` + |m+ j`|, 2j` + ik + |m− ik|
}
.

Then D(g) is the word length of g with respect to the generating set LN = 〈A, T 〉.

Proof. Denote a L(g) the word length of g.

• We first have L(g) 6 D(g). Indeed, taking the normal form of g, we see that (dropping the star
symbols) :

g = ti1ae1ti2−i1ae2 ...tik−ik−1aekt−j1−ikaf1tj1−j2af2 ...tj`−1−j`af`tm+j` .

We can count that there are e1 + ...+ ek + f1 + ...+ f` occurrences of a, and the number of occurrences
of t is :

��i1 + ��i2 − ��i1 + ...+ ik −���ik−1 +��j1 + ik +��j2 −��j1 + ...+ j` −�
��j`−1 + |m+ j`| = 2ik + j` + |m+ j`|.

In particular, we have :
L(g) 6

∑
es +

∑
ft + 2ik + j` + |m+ j`|.

In a similar fashion, we can take the normal form and re-arrange terms :

g = αf1
−j1

? ... ? αf`

−j`
? αi1

e1 ? ... ? αek
ik
? tm.

Expanding everything yields this time :

L(g) 6
∑

es +
∑

ft + 2j` + ik + |m− ik|.

Taking minima provides L(g) 6 D(g).
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• To get a lower bound, notice that if g = (σ,m) with #Supp(σ) = n, then there must be at least n
occurrences of powers of a to light the corresponding lamps. We see that therefore, there must be at
least n′ occurences of a with n′ being the sum of the powers of a, that is n′ =

∑
es +

∑
ft.

Choosing any minimal representative for g, notice that the sum of the exponents of all occurrences of
t adds up to m. Moreover, the partial sums of exponents of all occurrences of t up to being at position
p adds up to p. For instance, at the time when the right-most lamp is being lit, the exponent sum of
occurrences of t adds up to ik. Similarly, at the time of lighting up the left-most lamp, the exponent
sum is −j`.

There are two cases (still considering a minimal representative for g) :

(a) If the right-most lamp is lit before the left-most, then the partial sums of the exponents of all
occurrences of t take the successive values 0, ik, −j` and finally m. In particular, in between,
there must be at least ik, ik + j` and |m+ j`| occurrences of t to go from each of these states to
the next. This means that there are at least 2ik + j` + |m+ j`| occurrences of t.

(b) Similarly, if the left-most lamp is lit before the right-most, then the partial sums take the values
0, −j`, ik and then m, meaning that at least j` + ik + j` + |m− ik| = 2j` + ik + |m− ik| steps are
needed.

In either case, we need at least the least of both values occurrences of t, which gives the desired
lower-bound L(g) > D(g).

�

Notice that using this result, it is possible to use the normal form as in the proof to explicitly give a minimal
representative of g :

1. Compute the normal form.

2. Compute the word length.

3. Accordingly to whichever of the two quantities to minimize is the smallest, choose the minimal normal
form representing g accordingly.

4. Expand and reduce the cancelling pairs.

This pseudo-code translates directly to Python code as follows :
def wordLength ( sigma , m) :

ind I = [ ]
indJ = [ ]
for x in sigma :

i f x [0] >=0: ind I . append (x )
else : indJ . append((−x [ 0 ] , x [ 1 ] ) )

ind I = sorted ( indI , key=lambda x : x [ 0 ] )
indJ = sorted ( indJ , key=lambda x : x [ 0 ] )
EF = sum( [ x [ 1 ] for x in sigma ] )
i k = indI [ −1 ] [ 0 ]
j l = indJ [ −1 ] [ 0 ]
l ength = EF+min(2∗ i k+j l+abs (m+j l ) , 2∗ j l+ik+abs (m−i k ) )
w = " "
i f (2∗ i k+j l+abs (m+j l )<=2∗ j l+ik+abs (m−i k ) ) :

i f ( ind I [ 0 ] [ 0 ] ! = 0 ) : w += " t ^{ "+str ( ind I [ 0 ] [ 0 ] )+" } "
w += " a^{ "+str ( ind I [ 0 ] [ 1 ] )+" } "
for i in range ( len ( ind I )−1) :

w += " t ^{ "+str ( ind I [ i +1][0]− i nd I [ i ] [ 0 ] )+" }a^{ "+str ( ind I [ i +1 ] [ 1 ] )+" } "
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w += " t ^{ "+str(− i nd I [ −1] [0] − indJ [ 0 ] [ 0 ] )+" }a^{ "+str ( indJ [ 0 ] [ 1 ] )+" } "
for j in range ( len ( indJ )−1) :

w += " t ^{ "+str ( indJ [ j ] [ 0 ] − indJ [ j +1 ] [ 0 ] )+" }a^{ "+str ( indJ [ j +1 ] [ 1 ] )+" } "
i f (m+indJ [ −1 ] [ 0 ] !=0) : w += " t ^{ "+str (m+indJ [ − 1 ] [ 0 ] )+" } "

else :
i f ( indJ [ 0 ] [ 0 ] ! = 0 ) : w += " t ^{ "+str(− indJ [ 0 ] [ 0 ] )+" } "
w += " a^{ "+str ( indJ [ 0 ] [ 1 ] )+" } "
for j in range ( len ( indJ )−1) :

w += " t ^{ "+str ( indJ [ j ] [ 0 ] − indJ [ j +1 ] [ 0 ] )+" }a^{ "+str ( indJI [ j +1 ] [ 1 ] )+" } "
w += " t ^{ "+str ( indJ [ −1] [0 ]+ indI [ 0 ] [ 0 ] )+" }a^{ "+str ( ind I [ 0 ] [ 1 ] )+" } "
for i in range ( len ( ind I )−1) :

w += " t ^{ "+str ( ind I [ i +1][0]− i nd I [ i ] [ 0 ] )+" }a^{ "+str ( ind I [ i +1 ] [ 1 ] )+" } "
i f (m−i nd I [ −1 ] [ 0 ] !=0) : w += " t ^{ "+str (m−i nd I [ − 1 ] [ 0 ] )+" } "

return l ength , w

To run it, simply input a list of couples (i,s) with i being the index of a lit lamp and s its state (i.e. an
integer in [[1, N ]]), as well as the ending position of the lamplighter. The program returns the word length
as well as a minimal representative. For example :

1 22 1 2 1

Figure 18. This element in L3 is represented as the list
[(1,1),(3,2),(4,2),(5,1),(-4,1),(-6,2)] with ending position -1. The
program returns a world length of 30, and tat2a2ta2tat−9at−2a2t5 as a minimal
representative.

As a final remark, note that this program does not depend on the rank N of the lamplighter group LN .
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