WHAT IS SO EXOTIC ABOUT DIMENSION FOURY?

ANTHONY SAINT-CRIQ

ABSTRACT. We give an overview about what goes wrong in higher dimensions, especially regard-
ing smooth structures on 4-manifolds. References are given, when possible, but a lot the things
discussed are still open problems and conjectures. We also try to show sketches of the construc-
tions and the proofs. But because we don’t want to oversize the notes and because this is very
technical and difficult, we try to avoid too much detail.

First, a quick refresher about manifolds:

e A topological manifold is one whose atlas has continuous transition maps.
e A smooth one, on the contrary, has smooth transition maps.

Then, we say that a topological manifold is smoothable if its atlas is compatible with a smooth
one (recall that two atlases & and £ are compatible if &/ UZ is a continuous atlas). The underlying
idea is that one can extend the topological structure into a smooth one.

e Two topological manifolds M and N are homeomorphic if there exists a bijection f :
M — N such that both f and f~! are continuous.
e Two smooth ones are diffeomorphic if f and f~! are smooth.

Some facts:

(1) In dimensions < 3, all topological manifolds are smoothable, and in an essentially unique
way (two smooth atlases on the same manifold are always compatible). In particular, two
homeomorphic manifolds are diffeomorphic.

(2) This is no longer true in dimensions > 4.

Part of the problem is revealed when looking at the classification of manifolds:

(1) Classifying 1-manifolds is trivial.

(2) Classifying surfaces is easy: the triple (o,b,x) is a complete invariant, with o = 0 or 1
depending on whether the surface is orientable, b the number of boundary components, and
x the Euler characteristic of the surface that has been capped with discs.

(3) For 3-manifolds, it is more difficult, but:

e Prime decomposition, torus decompositions, presentation by Dehn surgery, etc.
e Haken manifolds, prime/irreducible manifolds, Seifert-fibered manifolds, etc.
(4) For 4-manifolds and higher: this becomes undecidable!

To show that the problem is really undecidable, the idea is that one can build an n-manifold
whose fundamental group is any given finitely presented group (n > 4). Indeed, consider such a
grroup G = (g1, ...,9k|r1,...,7s). Just like one defines a 2-dimensional CW-complex, start with
1%(S' x B"71) (these are just thickened edges), and glue s copies of B? x B"~2, with attaching
maps given by the relations. This describes a handle decomposition of the resulting manifold,
and this manifold deformation retracts to the 2-dimensional CW-complex built analogously. In
particular, its m has presentation that of G. We know that the word problem (deciding if two
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finitely presented groups are isomorphic or not) is undecidable; see [Nov55] for the first proof of
this fact. This implies that:

e There cannot be an algorithm to recognize n-manifolds, otherwise this could be applied to
solve the word problem.

e The word problem is also undecidable for the trivial group; thus, there cannot be an algo-
rithm to decide if an n-manifold is simply-connected or not.

Note that there may be a procedure that fully computes the fundamental group of a manifold (e.g.
by Kirby calculus), but then one still needs to solve the word problem for that specific presentation.
Some further comments:

(1) Not every finitely presented group arises as the fundamental group of a 3-manifold (see
[AFW15)).

(2) Simply-connected smooth manifolds in dimensions > 5 are classified (for instance, see
[Sma62b] or [Bar65] for 5-manifolds). This comes mostly from the h-cobordism theorem
(see [Sma62a]) and from surgery theory. In particular, in dimension five, it suffices to
classify them up to homotopy equivalence.

(3) Simply-connected topological 4-manifolds have been classified by Freedman (see [Fre82]),
by means of intersection theory and the Kirby—Siebenmann invariant.

Classifying smooth simply-connected 4-manifolds is still a widely open problem. This is mostly
due to the following phenomena:

e A wild manifold is one that is not smoothable.

e An exotic pair is a pair of smooth manifolds that are homeomorphic but not diffeomorphic.
Equivalently, a choice of a smooth structure on a smoothable topological manifold is a
smooth equivalence class of atlases. In this regard, an exotic pair corresponds to a choice
of two incompatible smooth structures.

Wild manifolds are bad, but not so much in terms of dealing with smooth manifolds (for they do
not arise at all). The first such example is the Eg manifold, which comes from intersection theory.
We will roughly sketch how it was first discovered, but the two main ingredients’ proofs are beyond
this exposition.

Claim. For any compact oriented topological manifold X*, there exists a well-defined quadratic
form Qx : Ho(X;Z) — Z, called the intersection form of X*.

We now mention the following theorem, due to Freedman:

Theorem. Given any unimodular symmetric Q € M, (Z), there exists an oriented simply-connected
closed topological manifold X with Qx = Q). Moreover:

(1) If Q(x,x) is even for all x, then X is unique up to homeomorphism.

(2) If there exists x for which Q(x,x) is odd, then there are exactly two non-homeomorphic
satisfactory manifolds X and X', and at least one of them is wild. Those manifolds are
distinguished by their Kirby—Siebenmann invariant.

In particular, two (closed oriented) smooth simply-connected 4-manifolds with the same inter-
section form are homeomorphic. Indeed, in the even case, there is only one possibility, and in the
odd case, they cannot be the wild one of the two, for both are already smooth.

There is a form of converse of this theorem, due to Donaldson (see [Don83] and [Don87]), that
restricts the possible intersection forms arising from smooth manifolds:
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Theorem. If X* is a smooth simply-connected 4-manifold that has a positive definite (or negative
definite) intersection form, then this intersection form is diagonalizable over the integers.

Take the following matrix:

(2 —1
~12 -1
-12 -1
-12 -1
Es = 12 -1 -1
~12 -1
12
~1 2

This is a unimodular symmetric bilinear form, and it is even. By Freedman’s theorem, there exists
a unique (up to homeomorphism) closed oriented simply-connected manifold, also denoted FEg, that
has it as its intersection form. Now, this form is definite positive, but not it is not diagonalizable
over the integers. By Donaldson’s theorem, Fg cannot be smooth; that is, Fg is a wild manifold.

For exotic manifolds, this is a different story. One can construct an exotic structure on non-
compact 4-manifolds by using the following theorem, due to Quinn:

Theorem. Take any non-compact topological manifold X*, and fix a smooth structure on 0X.
Then this structure extends to the whole X.

For instance, on R*, one can think of OR* as S? or as a point. In any case, one obtains the
standard structure on R*. Gompf used this theorem, together with the Trace Embedding Lemma,
to obtain exotic R*’s. The following phenomenon occurs:

e For any n # 4, any smooth manifold homeomorphic to R"” is also diffeomorphic to it. That
is, there are no exotic R™’s for n # 4. The proof for n > 5 is due to Stallings, see [Sta62].

e R* has uncountably many smooth structures. This is due to Taubes, see [Tau87].

e Some exotic R*’s embed as an open subset of the standard R*, and some don’t (those are
respectively called small and large exotic R*’s). But there is a maximal exotic R* in
which all the others embed as open subsets (Freedman—Taylor, see [FT806]).

Question ([Kir78, Problem 4.77]). An exotic R* crossed with R is diffeomorphic to R®. How
can we usefully see the exotic R* in R5?

Now, what happens in the compact case?
(1) Capell and Shaneson constructed exotic RP*’s, see [CS76].
(2) There are exotic Kummer surfaces, called the K3 surfaces, see [Kod70].
(3) In higher dimensions, there are exotic spheres. Here is a table for the OEIS entry A001676:
n 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of exotic 8™’s ‘ 1 1 28 2 8 6 992 1 3 2 16256 2 16
Note that this counts the number of oriented diffeomorphism classes of smooth struc-
tures on the sphere. The first exotic spheres were exotic S7’s constructed by Milnor, see
[Mil56].
One may formulate the following conjecture, known as the Poincaré conjectures:

Conjecture. Let X™ be a topological (resp. smooth) manifold homotopy equivalent to S™. Then,
X is homeomorphic (resp. diffeomorphic) to S™.
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In fact, we have:

(1)
(2)
(3)

(4)

For n < 2, this is given by the classification of manifolds.

For n = 3, this is true, and the is due to Perelman.

For n > 5, this is true in the topological case (by work of Smale and the h-cobordism
theorem again), and false in most dimensions in the smooth case (see the table above,
where it holds in dimensions 5, 6, 12, etc.).

For n = 4, this is true in the topological case (due to Freedman), and still open in the
smooth case. This is one of the most difficult (if not the most) problems in topology today.
Not everyone trusts it is true, but all attempts at finding exotic S*’s have failed so far.

Some more "fun facts" about dimension four and exotic topology in general:

(1)

(2)

[AP10a]
[AP10b]

The Schoenflies conjecture, which states that if S?~! is smoothly embedded in S™, then
it bounds a smothly embedded B™, is true for all n # 4. For n = 2, this is the Jordan
curve theorem. For n = 3, this is the Schoenflies theorem. For n > 5, this comes from the
h-cobordism theorem. The problem is still open for n = 4.

By work from Akhmedov and Park (see for instance [AP10a] and [AP10Db]), one has infinitely

many smooth structures on manifolds such as 3CP2#7@2 or S? x 82,

By work from Kirby and Siebenmann (see [KS77]), we know that any n-manifold with
n > 5 has only finitely (eventually none) many smooth structures. On the other hand, all
examples of smooth 4-manifolds so far have infinitely many. The question whether there
exists a smooth 4-manifold with only finitely many smooth structures is still open.

Wall has proven (see [Wal64]) that given any exotic pair (X4, Y*) of closed oriented smooth
4-manifolds, there exists k € N* such that X#k(S? x S?) and Y#k(S? x S?) become
diffeomorphic.

A 4-manifold is geometrically simply-connected if it admits a handle decomposition
with no 1-handles. It is conjectured ([Kir78, Problem 4.18]) that a simply-connected 4-
manifold is geometrically simply-connected. However, in [HMP21], the authors prove that
there are infinitely many pairs of topological 4-manifolds that are homeomorphic but one
is geometrically simply-connected and the other is not. This demonstrates that geometric
simple-connectedness can depend on the smooth structure.

The Hauptvermutung is not true anymore in dimension 4 (two triangulations of the same
4-manifold need not be combinatorially equivalent). This was first shown by Freedman.
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