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Abstract

In the thesis, the coloring of digraphs is studied. The chromatic number of a digraph D is

the smallest integer k so that the vertices of D can be partitioned into at most k sets each

of which induces an acyclic subdigraph.

A set of four topics on the chromatic number is presented. First, the dependence of the

chromatic number of digraphs on the maximum degree is explored. An analog of Gallai’s

Theorem is proved and some algorithmic questions involving list colorings are studied. Sec-

ondly, an upper bound on the chromatic number of digraphs without directed cycles of length

two is obtained, strengthening the upper bound of Brooks’ Theorem by a multiplicative fac-

tor of α < 1. Thirdly, evidence is provided for the global nature of the digraph chromatic

number by proving that sparse digraphs with maximum degree ∆ can have chromatic num-

ber as large as Ω(∆/ log ∆), as well as showing the existence of digraphs with arbitrarily

large chromatic number where every constant fraction of the vertices is 2-colorable. Finally,

a generalization of digraph coloring to acyclic homomorphisms is considered, and a result

linking D-colorability and girth is presented.
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Chapter 1

Preliminaries

Digraphs have not been as thoroughly studied in the literature as (undirected) graphs. In

this thesis, we study the chromatic number of digraphs. One of the most common ways

of defining the chromatic number of a directed graph D is to forget the orientation of the

edges of D and define the chromatic number of D as the chromatic number of the underlying

graph (we call this the orientation-forgetful chromatic number of D). This seems to be the

most common coloring parameter for digraphs studied in the literature by researchers. The

disadvantage of this definition is that digraphs with very different structures can have the

same chromatic number if their underlying graphs are the same.

We study a particular coloring variant of digraphs called the dichromatic number in [49].

This is the smallest integer k such that the vertex set of the digraph D can be partitioned

into k acyclic sets. We have decided to call this parameter the chromatic number of D for

the reasons that will become apparent later. The problem does not seem to have received

much attention in the literature until recently. We will show that the chromatic number

is the natural coloring invariant for digraphs by presenting some old and new results that

generalize analogous results from graph coloring.

In the next section, we present some common notation and definitions used in the thesis.

More specific terms are defined throughout the thesis when they are needed.

1.1 Basic notation and definitions

In this section we give the main definitions and terminology that is used in the thesis. The

basic definitions below can be found in [63].

1
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A graph G = (V,E) consists of a set V of vertices and a set E of edges and a relation

that associates with each edge two vertices called its endpoints. The edge uv ∈ E joins

vertices u and v. A loop is an edge vv ∈ E from a vertex v to itself. Multiple edges are

edges having the same pair of endpoints. A graph is called simple if it does not have any

loops or multiple edges. Every graph considered in this thesis is simple unless otherwise

stated. The order of G is the number of vertices of G and the size of G is the number of

edges. Vertices u and v are said to be adjacent or neighbors if they are the endpoints of

the same edge. The degree of a vertex v, denoted by deg(v), is the number of neighbors of

v. The maximum degree of a graph G is denoted by ∆(G). G is a d-regular graph if every

vertex of G has degree d. Given a vertex v ∈ V , the open neighborhood of v, denoted N(v),

is defined as N(v) = {u : uv ∈ E}. A path is a simple graph whose vertices can be ordered

so that two vertices are adjacent if and only if they are consecutive in the list. A cycle is

a graph with an equal number of vertices and edges whose vertices can be placed around

a circle so that two vertices are adjacent if and only if they appear consecutively along the

circle. The length of a cycle is the number of vertices in the cycle. The girth of a graph is

the length of its shortest cycle. If the graph does not have any cycles, its girth is infinite. A

subgraph of a graph G is a graph H such that V (H) ⊂ V (G) and E(H) ⊂ E(G). Let S be

a subset of vertices. We denote by G[S] the graph that has the vertex set S and edge set

E(S) where uv ∈ E(S) if and only if uv ∈ E(G). G[S] is called the induced subgraph on

S. G is connected if for all u, v ∈ V there is a path in G containing u and v. A cut-vertex

in a graph G is a vertex v whose removal increases the number of connected components

of G. A maximal connected subgraph of G that has no cut-vertex is called a 2-connected

component or a block of G. A cut-edge (or bridge) is an edge whose removal increases the

number of connected components of G. A graph is planar if it can be drawn in the plane so

that no two edges cross. A set S ⊂ V is independent if no two vertices in S are adjacent. We

denote by α(G) to be the size of the largest independent set in G. The chromatic number

of G, denoted by χ(G), is the smallest integer k so that V (G) can be partitioned into k

independent sets.

Now, we introduce some definitions and notations for digraphs. The notation is standard

and we refer the reader to [6] for an extensive treatment of digraphs. A digraph is obtained

from a graph by giving each edge an orientation. We use xy to denote the arc joining

vertices x and y, where x is called the initial vertex and y is called the terminal vertex of

the arc xy. We denote by A(D) the set of arcs of the digraph D. The vertex set of D will
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be denoted by V (D). Digraphs discussed in this thesis will not have loops or parallel arcs.

Such digraphs are called simple. We do allow, however, the existence of two arcs between

two vertices going in opposite directions. For v ∈ V (D) and e ∈ A(D), we denote by D− v
and D − e the subdigraph of D obtained by deleting v and the subdigraph obtained by

removing e, respectively. We let d+
D(v) and d−D(v) denote the out-degree (the number of arcs

whose initial vertex is v) and the in-degree (the number of arcs whose terminal vertex is v)

of v in D, respectively. The total degree of a vertex v is d+(v) + d−(v). A vertex v ∈ V (D)

is said to be Eulerian if d+(v) = d−(v). The digraph D is Eulerian if every v ∈ V (D)

is Eulerian. We say that u is an out-neighbor (in-neighbor) of v if vu (uv) is an arc. We

denote by N+(v) and N−(v) the set of out-neighbors and in-neighbors of v, respectively.

Every undirected graph G determines a bidirected digraph D(G) that is obtained from G

by replacing each edge with two oppositely directed edges joining the same pair of vertices.

If D is a digraph, we let G(D) be the underlying undirected graph obtained from D by

“forgetting” all the orientations of the arcs. A digraph D is said to be (weakly) connected if

G(D) is connected. The blocks of a digraph D are the maximal subdigraphs D′ of D whose

underlying undirected graph G(D′) is 2-connected. We say that D is strongly connected if

for every vertex u and v, there is directed path from u to v. A cycle in a digraph D is a cycle

in G(D) that does not use parallel edges. A directed cycle in D is a subdigraph forming

a directed closed walk in D whose vertices are all distinct. A directed cycle consisting of

exactly two vertices is called a digon. A vertex set S ⊂ V (D) is called acyclic if the induced

subdigraph D[S] has no directed cycles. A k-coloring of D is a partition of V (D) into k

acyclic sets. The minimum integer k for which there exists a k-coloring of D is the chromatic

number χ(D) of the digraph D.

1.2 Overview of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we discuss the known results

in the literature and motivate the problem. In Chapter 3, we prove Gallai’s Theorem for

list coloring of digraphs and study the algorithmic complexity of list coloring digraphs.

In Chapter 4, we derive an upper bound on the chromatic number of digon-free digraphs

in terms of maximum average degree of the digraph. In Chapter 5, we derive analogs of

two well-known theorems in graph theory which show that the chromatic number, like the

chromatic number, is not a local parameter. In Chapter 6, we look at the extension of the
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chromatic number to acyclic homomorphisms and derive a result about D-colorability and

girth. In Chapter 7, we highlight related problems and future work.



Chapter 2

The Chromatic Number of a

Digraph

In this chapter we introduce the problem studied in this thesis - the chromatic number

of a digraph (see Chapter 1). We give a motivation for studying this digraph invariant

by discussing some results for the chromatic number of (undirected) graphs and see how

they generalize to digraphs. We will see that the digraph chromatic number introduced in

Chapter 1 is the natural coloring invariant for digraphs. We also discuss some results in the

literature and look at related problems.

Recall, that given a digraph D, the chromatic number χ(D) of D is the smallest integer

k such the vertices of D can be colored with k colors so that no directed cycle is monochro-

matic. This coloring parameter was first introduced by Neumann-Lara [49] in 1982. There

are a few papers that appeared in the literature on the topic in the following decade. How-

ever, recently there seems to be a newfound interest in the chromatic number due to some

results that highlight its close relationship with the chromatic number of an (undirected)

graph. In the rest of this chapter, we closely study this relationship.

2.1 Brooks theorem for graphs and digraphs

Recall that the chromatic number χ(G) of a graph G is the smallest integer k such that

the vertices of G can be colored with k colors so that no two adjacent vertices receive the

same color. Note that chromatic number of a graph G is equal to the chromatic number of

5
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its bidirected digraph D(G). One of the earliest results in graph coloring is the following

theorem of Brooks [13].

Theorem 2.1.1. Let G be a connected graph of maximum degree ∆. Then χ(G) ≤ ∆ + 1

with equality only for odd cycles and complete graphs.

For digraphs, it is not hard to see that the following tight upper bound holds, as proved

by Neumann-Lara [49].

Theorem 2.1.2 ([49]). Let D be a digraph and denote by ∆o and ∆i the maximum out-

degree and in-degree of D, respectively. Then

χ(D) ≤ min{∆o,∆i}+ 1.

It turns out that Brooks’ Theorem has an analog for digraphs. We say that a digraph

D is k-critical if χ(D) = k and for every vertex v, χ(D− v) < χ(D). Mohar [46] proved the

following theorem.

Theorem 2.1.3 ([46]). Suppose that D is a k-critical digraph in which every vertex v

satisfies d+(v) = d−(v) = k − 1. Then one of the following cases occurs:

1. k = 2 and D is a directed cycle of length n ≥ 2.

2. k = 3 and D is a bidirected cycle of odd length n ≥ 3.

3. D is bidirected complete graph of order k ≥ 4.

(a) (b) (c)

The above theorem shows that the only obstructions preventing a critical k − 1-regular

digraph from being k − 1-colorable are the obvious ones. Note that odd cycles in Brooks’

theorem are replaced by odd bidirected cycles and cliques are replaced by bidirected cliques.

However, we also have an additional structure – the directed cycle. This new structure will

also appear later when we study Gallai’s Theorem for digraphs.
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2.1.1 Spectral version of Brooks’ Theorem

Brooks’ Theorem also has its analog in spectral graph theory. Give a simple graph G of

order n, one can define the adjacency matrix A = A(G) for G. This is the n × n matrix

A = (aij), where aij = 1 if vertex i is adjacent to vertex j, and 0 otherwise. The eigenvalues

of A(G) reveal a lot of information about G and are well treated in the literature, see for

example [17, 31]. Let λn(G) be the largest eigenvalue of A(G). It is not hard to show that

∆(G) is always an upper bound on λn(G). Wilf [64] proved the following Brooks-type result

about the chromatic number. Note that the upper bound in the theorem is at most the

upper bound of ∆ + 1 in Brooks’ Theorem.

Theorem 2.1.4 ([64]). Let G be a simple graph. Then χ(G) ≤ λn + 1 with equality if and

only if G is an odd cycle or a complete graph.

Surprisingly, this result generalizes to the digraph chromatic number. Given a simple

digraph D of order n, the adjacency matrix A(D) of D is the n×n 0-1 matrix where aij = 1

if ij is an arc and 0 otherwise. Note that A(D) not necessarily a symmetric matrix. The

spectral radius of D, denoted by ρ(D), is the largest modulus of an eigenvalue of A(D).

It is known from the Perron-Frobenius theorem (see, for example [36]) that ρ(D) is an

eigenvalue of D with a corresponding non-negative eigenvector. More properties on the

spectra of digraphs can be found in [14]. It turns out that the spectral radius gives a

Brooks-type theorem on the digraph chromatic number, as shown by Mohar [46].

Theorem 2.1.5 ([46]). Let D be a loopless digraph. Then

χ(D) ≤ ρ(A(D)) + 1. (2.1)

If D is strongly connected, then equality holds in 2.1 if and only if D is one of the digraphs

listed in cases (1)-(3) in Theorem 2.1.3 for k = χ(D).

This theorem is further evidence that the digraph chromatic number is the natural

coloring parameter for digraphs. Note that the assumption of strong connectivity in the

above theorem is required – it is known that transitive tournaments (tournaments which

are acyclic) have all eigenvalues equal to zero. Incidentally, this also shows that the upper

bound in the above theorem will not hold for the “orientation-forgetful” chromatic number

of digraphs.
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Lin and Shu [43] recently obtained another spectral result for the chromatic number

of digraphs. Let Dn,k be the set of digraphs of order n and chromatic number k. They

characterize the digraph which has the maximal spectral radius in Dn,k.

2.2 Further motivation - the circular chromatic number

In recent years, researchers have worked on different coloring invariants of graphs that

refine the chromatic number. One of the well-studied problems in this area is the circular

chromatic number. The circular chromatic number of a graph G is greater than χ(G) − 1

and at most χ(G). Thus, it is a refinement of the chromatic number. Recently, the circular

chromatic number was generalized to digraphs. In this section, we explore the relationship

between the circular chromatic number and the chromatic number of a digraph. As we shall

see, the circular chromatic number of a digraph refines the digraph chromatic number in

much the same fashion as the circular chromatic number of a graph refines the chromatic

number.

2.2.1 Circular chromatic number of graphs

Let G be a simple graph. For q ∈ Q, we define a circular q-coloring of G to be a map φ :

V (D)→ Sq, where Sq is the circle of perimeter q, such that for all xy ∈ E(G), φ(x) 6= φ(y)

and the shortest distance dS(φ(x), φ(y)) from φ(x) to φ(y) on the circle is at least 1. We

say that G is q-circular colorable if there exists a circular q-coloring φ for G. The circular

chromatic number of G, denoted by χc(G), is defined as

χc(G) = inf{q : G has a circular q-coloring}.

This notion is studied by many authors in the literature. We refer the reader to a survey

by Zhu [67]. The circular chromatic number χc(G) refines the chromatic number χ(G) in

the following sense.

Theorem 2.2.1. For any graph G,

χ(G)− 1 < χc(G) ≤ χ(G).

It is known that if χc(G) = r, then G is r-circular colorable, i.e. the infimum is attained.

The circular chromatic number was first introduced by Vince in 1988 [62] as ‘the star-

chromatic number’. The original definition of Vince, which is equivalent to the above
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definition, is as follows. For two integers 1 ≤ d ≤ k, a (k,d)-coloring of a graph G is a

coloring c of the vertices of G with colors {0, 1, ..., k − 1} such that for all xy ∈ E(G),

d ≤ |c(x)− c(y)| ≤ k − d. The circular chromatic number is defined as

χc(G) = inf{k/d : there is a (k, d)-coloring of G}.

The definition of circular chromatic number has a natural extension to digraphs as

treated by Mohar [45] and Bokal et. al [8]. A circular q-coloring of a digraph D is a function

φ : V (D) → Sq such that for all xy ∈ E(D), φ(x) 6= φ(y) and the distance dS(φ(x), φ(y))

from φ(x) to φ(y) in the clockwise direction on the circle is at least 1. If D has at least one

arc, we define the circular chromatic number χc(D) as

χc(D) = inf{q : D has a circular q-coloring}.

If D has no arcs, then we define χc(D) = 1. The above definition was introduced in

[8]. As opposed to the circular chromatic number for graphs, it is possible that D does not

admit a χc(D)-coloring, i.e., the infimum is not necessarily attained. However, an alternative

definition of a circular coloring overcomes this problem. Let q ≥ 1. A map φ : V (D)→ Sq is

called a weak circular q-coloring of D if, for every arc uv ∈ A(D), either φ(u) = φ(v) or the

distance dS(φ(u), φ(v)) from φ(u) to φ(y) in the clockwise direction on the circle is at least

1, and for every x ∈ Sq, the color class φ−1(x) is an acyclic vertex set of D. It is easy to see

that χc(D) is equal to the infimum of all real numbers q ≥ 1 for which there exists a weak

circular q-coloring of D. It turns out that results by Mohar [45] show that this infimum is

always attained; i.e., every digraph D admits a weak circular χc(D)-coloring. Moreover, it

is also shown in [45] that χc(D) is a rational number for every D.

Interestingly, the circular chromatic number of a digraph is related to its analog for

graphs. If G is a simple graph, then χc(G) = χc(D(G)), where D(G) is the bidirected

digraph obtained from G by replacing each edge with two oppositely oriented arcs. The

following extension of Theorem 2.2.1 shows that the digraph circular chromatic number is

related to the digraph chromatic number.

Theorem 2.2.2 ([8]). For every digraph D, χ(D)− 1 < χc(D) ≤ χ(D).

Since the proof is short, we present it here.
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Proof. Given a k-coloring of D, we can map each of the k color classes to a single point on

Sk so that two points corresponding to two color classes are at least distance 1 apart. This

shows that a k-coloring of D determines a weak circular k-coloring of D, proving the second

inequality.

For the first inequality, let p = χc(D), k = dpe, and ε = p/2n, where n is the order of D.

Let c be a circular (p+ ε)-coloring. Then Sp+ε can be written as the disjoint union of k+ 1

arcs A0, A1, ..., Ak, each of length less than 1, and such that c−1(A0) = ∅. Let Vi = c−1(Ai),

for i = 1, ..., k. Clearly, each Vi is acyclic. The partition of V (D) into these acyclic sets

gives a k-coloring of D.

2.3 Some preliminary results and tournaments

Following the introduction of the chromatic number by Neumann-Lara several papers ap-

peared on the subject. In particular, the study of tournaments has received some attention.

Neumann-Lara and Urrutia [53] proved the existence of an infinite family of vertex-critical

r-chromatic regular tournaments for every r ≥ 3, r 6= 4. In particular, they proved the

following theorems.

Theorem 2.3.1 ([53]). For each pair of positive odd integers r = 2l+ 1, i ≥ 7, there exists

a vertex-critical r-chromatic regular tournament with 3l−1 · i vertices.

Theorem 2.3.2 ([53]). For each even integer r = 2l, l ≥ 3, and each odd i ≥ 7, there exists

a vertex critical 2l-chromatic regular tournament with 3l−1 · i vertices.

The authors actually show a method of constructing such tournaments. They also

conjecture that there exists an infinite family of vertex-critical 4-chromatic circulant tour-

naments. Circulant tournaments are defined as follows. Let Z2n+1 be the set of integers

mod 2n+ 1 and J an n-subset of Z2n+1 − {0} such that for every w ∈ Z2n+1, w ∈ J if and

only if −w /∈ J . The circulant tournament C2n+1(J) is defined by V (C2n+1(J)) = Z2n+1,

A(C2n+1(J)) = {ij : i, j ∈ Z2n+1, j − i ∈ J}.
In [51], Neumann-Lara solves the aforementioned conjecture in the affirmative. He also

conjectures the following:

Conjecture 2.3.3 ([51]). There is an infinite family of vertex-critical r-chromatic circulant

tournaments for each r ≥ 3.
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Neumann-Lara [52], settles the above conjecture for all k ≥ 3, k 6= 7. In [5], the authors

prove the conjecture for k = 7 and construct other infinite families of critical k-chromatic

circulant tournaments for general k.

2.3.1 Extremal results on tournaments

The study of the chromatic number of tournaments has received some attention in the

literature. Neumann-Lara [50] showed that the minimum order of a 3-chromatic tournament

is seven, and the minimum order of a 4-chromatic tournament is eleven. In particular, he

proved the following theorem.

Theorem 2.3.4 ([50]). There are exactly four non-isomorphic 3-chromatic tournaments of

order 7, and one 4-chromatic tournament of order 11.

All the tournaments in the above theorem are also characterized.

Erdős, Gimbel and Kratsch [24] derived an extremal result for general digraphs. For a

graph G, define d(G) = max{χ(D) | D is an orientation of G}. For an integer k, let d(k) be

the minimum number of edges a graph G satisfying d(G) = k can have. Then the following

bounds on d(k) hold.

Theorem 2.3.5 ([24]). There exist positive constants c1, c2 such that

c1k
2 log2 k ≤ d(k) ≤ c2k

2 log2 k.

The first inequality in Theorem 2.3.5 implies that any digraph D of order n has χ(D) =

O( n
logn). The second inequality implies that there exists a digraph D of order k with

χ(D) = Ω( k
log k ). The proof of the above theorem relies on previous results. Here, we give

shorter proofs from first principles. We say that almost all tournaments have a property P if

the probability that the random tournament Tn on n vertices obtained from Kn by randomly

orienting the edges satisfies property P with probability tending to 1 as n approaches infinity.

Given a digraph D, we let α(D) be the largest acyclic set of vertices in D.

Theorem 2.3.6. Almost all tournaments of order n have chromatic number at least 1
2

(
n

logn+1

)
.

Proof. Let Tn be the random tournament of order n. Let A be a fixed subset of vertices of

Tn of size 2 log n+ 2. Note that if the subdigraph Tn[A] induced by A is acyclic then there
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is an ordering of the vertices of A such that all the arcs of Tn[A] go forward with respect to

the ordering. Thus,

P[α(Tn) ≥ 2dlog ne+ 2] ≤
(

n

2dlog ne+ 2

)
P[A is acyclic ]

≤
(

n

2dlog ne+ 2

)
(2dlog ne+ 2)!

(
1

2

)(2dlogne+2
2 )

≤ n2dlogne+2 · 1

n2dlogne+1
· 1

n2
= o(1).

Since χ(D) ≥ |V (D)|
α(D) for any digraph D, the theorem follows.

In the proof of the above theorem we used the fact that with high probability a random

tournament has no acyclic set of size greater than 2 log n+2. On the other hand, it is known

(see, for example, [20, 59]) that every tournament has an acyclic set of size at least c log2 n,

for some positive constant c. The following lemma can be readily derived.

Lemma 2.3.7. Let D be a tournament of order n. Then D has an acyclic set of size at

least log n.

Proof. Greedily pick vertices to be in the acyclic set in the following manner. In the first

step pick any vertex v, and remove from the graph either the set of its in-neighbors or

out-neighbors, whichever is smaller in size. Then pick one of the remaining neighbors and

put it in the acyclic set. Repeat this process until there are no vertices remaining. Clearly,

the resulting set is acyclic. Since in each iteration we remove at most (n − 1)/2 vertices

from the graph, we pick at least log n vertices.

Theorem 2.3.8. Let T be a tournament of order n. Then χ(T ) ≤ n
logn(1 + o(1)).

Proof. The theorem is intuitively clear from lemma 2.3.7. In each iteration, using a single

color we color and remove from the digraph a large acyclic set whose existence is guaranteed

by Lemma 2.3.7. Of course, as we remove a color class from the digraph the size of the

subsequent acyclic set decreases. However, it turns out that we still only need roughly n
logn

colors. We now make the argument more precise.

We color the vertices of the digraph using the procedure described above until there

are at most
⌊

n
log2 n

⌋
uncolored vertices remaining. At this point we stop the procedure and

greedily finish by assigning a new color to each uncolored vertex. This gives a valid coloring.
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During each iteration of the first phase of the procedure we remove at least log
(

n
log2 n

)
≥

log n − 2 log log n vertices. Hence, there are at most n
logn−2 log logn such iterations. Hence

the total number of colors needed is at most n
logn−2 log logn + b n

log2 n
c ≤ (1 + o(1)) n

logn .

Theorem 2.3.8 is thought to have extension to all digraphs, where n is replaced by the

maximum total degree of a vertex. McDiarmid and Mohar [44] conjectured the following:

Conjecture 2.3.9 ([44]). Every digraph D without digons and with maximum total degree

∆ has χ(D) = O( ∆
log ∆).

2.3.2 The digraph chromatic number and the Erdős - Hajnal Conjecture

The chromatic number of tournaments is also related to the well-known Erdős-Hajnal con-

jecture. The Erdős-Hajnal conjecture is one of the fundamental conjectures in Ramsey

theory. Recall that for a graph G, α(G) is the size of the largest independent set in G

and ω(G) is the order of the largest complete graph in G. It is known by Ramsey theory

that if G is a graph of order n, then max{α(G), ω(G)} ≥ 1
2 log2 n (see, [27]). Erdős [21]

showed that this is essentially best possible by proving the existence of a graph G with

max{α(G), ω(G)} < 2 log2 n. However, it may be true that forbidding subgraphs will yield

a polynomial lower bound on max{α(G), ω(G)} rather than logarithmic.

If H is not an induced subgraph of G, then we say that G is an H-free graph. Erdős

and Hajnal [25] conjectured the following.

Conjecture 2.3.10 (Erdős-Hajnal Conjecture). For every graph H, there exists a positive

ε = ε(H) such that every H-free graph G with n vertices has max{α(G), ω(G)} ≥ nε.

The conjecture is known to hold for some classes of graphs. Alon, Pach and Solymosi

[3] raised the following conjecture on tournaments that has a similar flavor. Recall that a

tournament is called transitive if it is acyclic.

Conjecture 2.3.11 ([3]). For every tournament T , there exists a positive constant ε = ε(T )

such that every T -free tournament with n vertices has transitive subtournament of size at

least nε.

We have shown above that every n-vertex tournament has transitive subtournament

of order at least log2 n. Results of Erdős et al. [20] and Spencer [59] show that up to a

multiplicative constant this is best possible. Alon, Pach and Solymosi [3] prove the following.
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Theorem 2.3.12 ([3]). Conjecture 2.3.10 and Conjecture 2.3.11 are equivalent.

P. Seymour [58] raised the following question: is it true that for every tournament H,

there exists a constant c = c(H) such that every H-free tournament T has χ(T ) ≤ c? It

turns out that the answer to this question is negative as shown by Berger et al. [7]. One

can pose the following weaker conjecture.

Conjecture 2.3.13 ([7]). For every tournament H, there exist c > 0 and ε < 1, such that

if T is an H-free tournament, then χ(T ) ≤ c|V (T )|ε.

It is not hard to see that Conjecture 2.3.13 is equivalent to Conjecture 2.3.11, and thus

to the Erdős-Hajnal Conjecture.

2.4 Planar digraphs and vertex-arboricity

For planar digraphs there is the following conjecture, raised by Neumann-Lara (1982) and

Skrekovski (2001).

Conjecture 2.4.1. If D is a planar digraph without directed cycles of length 2, then χ(D) ≤
2.

The conjecture is still very much open and seems quite difficult. Some results in this

area follow from the theory of vertex arboricity of graphs. The vertex arboricity or point-

arboricity of a graph G, denoted by a(G), is the minimum number of sets in a partition of

V (G) into sets each of which induces a forest. The following observation is clear.

Observation 2.4.2. If G is a graph and D is any orientation of the edges of G, then

χ(D) ≤ a(G).

It is known that Conjecture 2.4.1 does not hold for vertex arboricity as proved by

Chartrand, Kronk and Wall [15].

Theorem 2.4.3 ([15]). a(G) ≤ 3 when G is planar, and this bound is sharp.

Note that Theorem 2.4.3 implies that χ(D) ≤ 3 for every digon-free planar digraph D.

For general graphs, the following upper bound on vertex-arboricity is given by Kronk

and Mitchem [42].
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Theorem 2.4.4 ([42]). If G is a connected graph that is neither a complete graph of odd

order nor a cycle, then a(G) ≤ d∆(G)
2 e.

Planar graphs without short cycles have vertex arboricity two, as shown by Raspaud

and Wang [55].

Theorem 2.4.5 ([55]). If k ∈ {3, 4, 5, 6}, then a(G) ≤ 2 for every planar graph G having

no k-cycles.

Raspaud and Wang [55] also show the following.

Theorem 2.4.6 ([55]). If G is a planar graph with no two triangles having vertices that are

shared or adjacent, then a(G) ≤ 2.

Theorem 2.4.5 with Observation 2.4.2 implies that χ(D) ≤ 2 for every planar digon-

free digraph D having no k-cycles if k ∈ {3, 4, 5, 6}. Similarly, Theorem 2.4.6 implies that

χ(D) ≤ 2 for every digon-free digraph D without triangles.

Albertson [1] proposed the following weaker version of Conjecture 2.4.1.

Conjecture 2.4.7 ([1]). Every planar digraph of order n without digons has an acyclic set

of vertices of size at least n/2.

It may be true that n/2 in the above conjecture could be replaced by αn for some

α > 1/2. Below we show that α cannot be greater than 3/5.

Proposition 2.4.8. The largest acyclic set in the digraph D below is at most six.

Proof. Suppose, for contradiction, that D has an acyclic set S of size seven. Then S contains

exactly four vertices from one of the two directed pentagons. By symmetry, we may assume

that the outer pentagon contains four vertices of S. Now, it is easy to see that the inner

pentagon cannot contain more than two vertices of S, a contradiction.

The above conjecture is a weakening of a much older conjecture due to Albertson and

Berman [2].

Conjecture 2.4.9 ([2]). Let G be a planar graph graph of order n and let k be the size of

a largest set of vertices in G which induces a forest. Then k ≥ n
2 .

By results of Borodin [11], it is known that k ≥ 2n/5.
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Figure 2.1: A digraph D on ten vertices with α(D) ≤ 6.



Chapter 3

Gallai’s Theorem and List Coloring

of Digraphs

3.1 Introduction

A theorem of Gallai [30] describes the structure of low degree vertices in graphs that are

critical for the chromatic number. It states that the induced subgraph on the vertices of

degree k − 1 in a k-critical graph is composed of blocks that are either complete graphs

or odd cycles. In this chapter, we consider the chromatic number of digraphs and show

that Gallai’s theorem can be extended to this setting. It is interesting to note that another

structure appears in addition to cliques and odd cycles. These are directed cycles of any

length. For a parallel, we observe that this kind of graphs also occur in the version of

Brooks’ Theorem for digraphs, see Theorem 3.1.3 below.

The Gallai theorem has a natural setting in terms of list colorings. For undirected

graphs, it can be viewed as a list coloring problem where the list at each vertex has the

same number of available colors as the degree of that vertex. The coloring problem for this

type of lists is easily solvable for undirected graphs. However, as we show in Section 3.3,

the list coloring problem of this type on digraphs is NP-hard.

List colorings and Gallai trees

A graph G is k-color-critical or k-critical if χ(G) = k and χ(H) < χ(G), for every proper

subgraph H ⊂ G. The minimum degree of a k-critical graph is at least k − 1. A classical

17
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theorem of Gallai [30] states that in every k-critical graph, the vertices of degree k−1 induce

a graph whose blocks are either odd cycles or complete graphs. Because of this result, a

connected graph all of whose blocks are either odd cycles or complete graphs is called a

Gallai tree.

A natural setting of applying Gallai’s theorem is that of list colorings. Given a graph

G and a list L(v) of colors for each vertex v, we say G is L-colorable if there is a proper

coloring of G (i.e. each color class is an independent set) such that each vertex v is assigned

a color from L(v). Having a k-critical graph G, one may assume that we have (somehow)

colored vertices of degree larger than k − 1 with k − 1 colors and that only vertices whose

degree in G is k − 1 are left to be colored. Denote the subgraph induced by the vertices

of degree k − 1 by S. Now, each vertex v ∈ V (S) has a list L(v) of available colors, and

|L(v)| = degS(v). This setting is used to formulate Gallai’s theorem for list colorings. It

was obtained independently by Borodin [12] and Erdős et al. [26]. Kostochka et al. [41]

generalized it to hypergraphs.

Theorem 3.1.1 ([12],[26]). Let G be a connected graph, and L a list-assignment for G.

Suppose that |L(x)| ≥ deg(x) for each x ∈ V (G), and G is not L-colorable. Then G is a

Gallai tree.

The following strengthening of the previous theorem has been proved by Thomassen

[61], while the generalization to hypergraphs can be found in [41].

Theorem 3.1.2. Let L be an arbitrary list-assignment for a graph G. Let X be a subset

of vertices such that G[X] is connected and |L(x)| ≥ degG(x) for each x ∈ X. Assume that

G−X is L-colorable. If G is not L-colorable, then G[X] is a Gallai tree and |L(x)| = degG(x)

for every x ∈ X.

Digraph colorings and Brooks’ Theorem

Note that the blocks in Gallai’s theorem for undirected graphs are precisely complete graphs

and odd cycles, which also appear in Brooks’ theorem. For digraphs, a version of Brooks’

theorem was proved in [46], as mentioned in a previous chapter.
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Theorem 3.1.3 ([46]). Suppose that D is a k-critical digraph in which for every vertex

v ∈ V (D), d+(v) = d−(v) = k − 1. Then one of the following cases occurs:

1. k = 2 and D is a directed cycle of length n ≥ 2.

2. k = 3 and D is a bidirected cycle of odd length n ≥ 3.

3. D is bidirected complete graph of order k ≥ 4.

Note that the last two cases of Theorem 3.1.3 are the analogues of odd cycles and

complete graphs in the undirected version of Brooks’ and Gallai’s theorems. Thus, it is

expected that the first case of Theorem 3.1.3 will appear in the Gallai’s theorem for digraphs,

which is proved in the sequel.

The rest of the chapter is organized as follows. In Section 3.2, we derive an analogue of

Gallai’s theorem for directed graphs. In Section 3.3, we consider algorithmic questions for

list coloring a digraph.

3.2 List coloring and Gallai’s Theorem

We define list colorings of digraphs in an analogous way as for undirected graphs. Let C be

finite set of colors. Given a digraph D, let L : v 7→ L(v) ⊆ C be a list-assignment for D,

which assigns to each vertex v ∈ V (D) a set of colors. The set L(v) is called the list (or the

set of admissible colors) for v. We say D is L-colorable if there is an L-coloring of D, i.e.,

each vertex v is assigned a color from L(v) such that every color class induces an acyclic

subdigraph in D. We say that D is L-critical if D is not L-colorable but every proper

subdigraph of D is L-colorable. Clearly, by saying that a subdigraph H is L-colorable, we

use the restriction of the list-assignment L to V (H). The main result of this section is the

following digraph analogue of Gallai Theorem.

Theorem 3.2.1. Let D be a connected digraph, and L an assignment of colors to the vertices

of D such that |L(v)| ≥ max{d+(v), d−(v)}. Suppose that D is not L-colorable. Then D is

Eulerian and every block of D is one of the following:

(a) directed cycle,

(b) an odd bidirected cycle, or
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(c) a bidirected complete digraph.

Moreover, for each block B of D, there is a set CB of colors so that for each vertex v ∈ V (D),

we have

L(v) = {∪CB | B is a block of D and v ∈ V (B)}.

Furthermore, |L(v)| = d+(v), implying that the blocks B containing v have pairwise disjoint

color sets CB.

(a) (b) (c)

Figure 3.1: Possible blocks in Gallai trees: (a) a directed cycle, (b) a bidirected odd cycle,
and (c) a bidirected complete graph.

The proof of Theorem 3.2.1 relies on several lemmas. The first of these gives information

about the lists of L-critical Eulerian digraphs.

Lemma 3.2.2. Let D be an Eulerian digraph, and let L be an assignment of colors to the

vertices of D. Suppose that |L(v)| = d+(v) (v ∈ V (D)) and that D is L-critical. Given a

vertex v ∈ V (D), let f be an L-coloring of D − v. Then the following holds:

1. L(v) = {f(u) | u ∈ N−(v)} = {f(w) | w ∈ N+(v)}, and so each color in L(v) appears

exactly once in N−(v) and once in N+(v).

2. If u is a neighbor of v with f(u) = c, then uncoloring u and coloring v with c gives an

L-coloring of D − u.

Proof. If a color c ∈ L(v) would not appear on the out-neighborhood of v, we could color

v by c and obtain an L-coloring of D. Similarly, each color c ∈ L(v) also appears on the

in-neighborhood of v. This establishes the first claim.

To prove the second claim, remove color c from u and color v with c. Suppose, without

loss of generality, that u is an out-neighbor of v. Since c appeared on the out-neighbors of

v only once, we get an L-coloring of D − u.
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Lemma 3.2.3. Let D be a connected digraph. Let L be an assignment of colors to the

vertices of D with |L(v)| ≥ max{d+(v), d−(v)} for each v ∈ V (D). Suppose that D is not

L-colorable. Then

1. D is Eulerian and |L(v)| = d+(v) = d−(v) for every v ∈ V (D).

2. D is L-critical.

Proof. To prove 1), we will use induction on |V (D)|. The claim is clear if |V (D)| = 1. If

|V (D)| = 2, then D is either a directed edge (and hence L-colorable since L(v) 6= ∅ for

v ∈ V (D)) or a digon, in which case 1) holds. So, assume now that |V (D)| ≥ 3.

Suppose there exists a vertex v ∈ V (D) such that d+
D(v) 6= d−D(v). Let D′ = D − v.

If D′ was L-colorable so would be D, since one of the colors in L(v) would not appear

among the in-neighbors or out-neighbors of v. Thus, D′ is not L-colorable. Then D′ has a

connected component D′′ that is not L-colorable. Applying the induction hypothesis to D′′,

we conclude that D′′ is Eulerian and |L(u)| = d+
D′′(u) = d−D′′(u) for every u ∈ V (D′′). Now,

choosing a vertex u ∈ V (D′′) which is a neighbor of v we obtain that d+
D′′(u) = |L(u)| ≥

max{d+
D(u), d−D(u)} ≥ d+

D′′(u)+1, a contradiction. Therefore, |L(v)| = min{d+
D(v), d−D(v)} =

max{d+
D(v), d−D(v)}, and the result follows.

To prove 2), we use induction on |A(D)|. The claim is clearly true when |A(D)| ≤ 2.

So, suppose |A(D)| ≥ 3. Now, let e = uv be any arc, and let D′ = D − e. Let D′′ be

any component of D′. By part 1), D is Eulerian which implies that D′′ is not Eulerian.

Therefore, by the induction hypothesis, D′′ is L-colorable. Similarly, if there exists a second

component of D′, it is also L-colorable. Therefore, D′ is L-colorable, and thus D is L-

critical.

Let C = v1v2...vk be a cycle (not necessarily directed) in a digraph D. Let f be a

coloring of D − v1. A shift of colors around C is a color assignment g for D − v1, where

g(v2) = f(v3), g(v3) = f(v4), ..., g(vk) = f(v2) and g(v) = f(v) for v ∈ V (D)\V (C). Let

us observe that in the case of Eulerian L-critical graphs, Lemma 3.2.2 guarantees that g

is a (proper) L-coloring of D − v1 since g can be obtained by repeatedly using part (2) of

Lemma 3.2.2: first we uncolor v2 and color v1, then uncolor v3 and color v2, etc. until the

last step when we uncolor v1 and color vk. This fact will be used throughout this section.
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Lemma 3.2.4. Let D be a connected digraph, and L an assignment of colors to the vertices

of D such that |L(v)| = max{d+(v), d−(v)} for each v ∈ V (D). Suppose that D is not L-

colorable. Let C be a cycle of length 3 or 4 in the underlying graph G(D). If the orientation

of the edges of C in D is not cyclic (i.e., E(C) does not induce a directed cycle in D), then

V (C) induces a complete bidirected graph in D.

Proof. By Lemma 3.2.3, D is Eulerian and L-critical. First, assume that C = v1v2v3 has

length three. We may assume that the edges of C are directed as follows: v3v1, v1v2 and

v3v2. We will show that the arcs v1v3, v2v3 and v2v1 are also present in D. Consider a

coloring f of D− v1. Let f(v2) = a. If f(v3) = a, then uncoloring v3 and coloring v1 with a

would give an L-coloring of D−v3 where v3 has two out-neighbors colored a, a contradiction

by Lemma 3.2.2. Therefore, f(v3) = b 6= a. Now, the out-neighbor of v1 that is colored

b must be on the cycle C since otherwise doing a shift of colors around C we would get a

new L-coloring of D− v1 with v1 having two out-neighbors colored b, so we could complete

the coloring. The only way the out-neighbor of v1 colored b is on C is when v1v3 ∈ A(D).

By a similar reasoning, v2v1 ∈ A(D). To show the existence of the arc v2v3, consider an

L-coloring of D − v3 and the cycle C ′ consisting of the arcs v1v2, v1v3, and v3v2. The same

proof as above shows that v2v3 ∈ A(D). This settles the case when C is a cycle of length 3.

Suppose now that C = v1v2v3v4v1 is a 4-cycle, and assume that the arcs of C are not

cyclic. We may assume that the vertex v1 has both vertices, v2 and v4, as its out-neighbors.

Now, by criticality, D−v1 is L-colorable. Moreover, every coloring f assigns different colors

to v2 and v4 by Lemma 3.2.2. So suppose f(v2) = a and f(v4) = b, a 6= b. Now, f(v3) 6= a,

since otherwise making the counter-clockwise shift of colors around C we would get two

out-neighbors of v1 colored a. Similarly, if we do a clockwise shift of colors around C we

deduce that f(v3) 6= b. Therefore, assume f(v3) = c, c 6= a, b. Now, if we do a clockwise

shift of colors around C we get that the color a disappears in the out-neighborhood of v,

unless the vertex v3 is an out-neighbor of v1. Thus, by Lemma 3.2.2, v1v3 ∈ A(D).

Now, regardless of the orientation of edges v2v3 and v3v4, the two triangles v1v2v3 and

v1v3v4 have acyclic orientations and therefore by the first part of the proof, these sets

induce bidirected cycles in D. Therefore, we have that C is a bidirected cycle that also

has the chords v1v3 and v3v1. Now we apply the same proof to the cycle C ′ with arcs

v2v3, v3v4, v4v1, v2v1 in which v2 has two out-neighbors. We conclude that also the chords

v2v4 and v4v2 are in D. This completes the proof of the lemma.
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Using Lemma 3.2.4, we now obtain the following.

Lemma 3.2.5. Let D be a connected digraph, and L an assignment of colors to the vertices

of D such that |L(v)| = max{d+(v), d−(v)} for each v ∈ V (D). Suppose that D is not

L-colorable. Let C = v1v2...vkv1, k ≥ 3, be a cycle of length k in the underlying graph.

Suppose that the orientation of the edges of C is not cyclic. Then the following holds:

1. If k is even, then V (C) induces a complete bidirected subdigraph in D,

2. If k is odd, then V (C) either induces a complete bidirected cycle or a complete bidi-

rected subdigraph in D.

Proof. By Lemma 3.2.3, D is Eulerian and L-critical. We proceed by induction on k. The

cases k = 3 and k = 4 are established by Lemma 3.2.4. So we assume that k ≥ 5. First,

suppose that k is odd. We may assume that the two neighbors of v1 on the cycle C, v2 and

vk, are an out-neighbor and an in-neighbor, respectively. Such a vertex must exist by parity.

We consider two cases. First, suppose there is a chord incident to v1, say v1vi, 2 < i < k.

Then regardless of the orientation of the edge v1vi, one of the two cycles v1v2...viv1 and

v1vivi+1...vkv1 has acyclic orientation. By induction, we must have the arcs v1vi and viv1

present in D. The arcs v1vi and viv1 divide the cycle C into an odd cycle and an even

cycle. Suppose C1 = v1v2...vi is the even cycle. We can make sure that C1 has its edges

oriented acyclically by appropriately picking either the arc v1vi or viv1. Thus, by induction,

C1 induces a complete bidirected digraph. Similarly, C2 = v1vivi+1...vkv1 induces either a

bidirected cycle or a bidirected clique. Now, consider the cycle C3 = v2vivi+1...vkv1v2. We

can choose the appropriate bidirected arcs to ensure that C3 has acyclic orientation. Since

C3 is an even cycle and it is shorter than C, it follows that C3, and hence also C2, induces a

complete bidirected digraph. It remains to show that every vertex on C1 has bidirected arcs

to every vertex on C2. But this is clear, since for any vj on C1, v1vjvivi+1...vkv1 is an even

cycle and thus induces a complete bidirected graph by the same argument as used above.

Now, suppose there is no chord incident to v1. Let f be an L-coloring of D − v1. First,

we claim that f(vk) 6= f(v2). Suppose, for a contradiction, that f(vk) = f(v2) = a. By

making a shift of colors around C, we conclude that f(v3) = a. Moreover, by repeatedly

making a shift of colors around C, we conclude that all the original colors on C were equal

to a. Let vi be a vertex on C that has both of its neighbors on C as in-neighbors. Passing

the color of v2 to v1 (by using Lemma 3.2.2(2)), the color of v3 to v2,· · · , the color of vi to
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vi−1, we get a proper L-coloring of D − vi. But now vi has two in-neighbors colored a, so

we can complete the coloring to a coloring of D, a contradiction. So we may assume that

f(v2) = a and f(vk) = b, a 6= b. Now, the out-neighbor of v1 that has color b must be vk for

otherwise doing a shift of colors we would get a coloring of D − v1 with two out-neighbors

colored b. So, v1vk ∈ A(D). By a similar argument, v2v1 ∈ A(D). Now, consider the vertex

v2 and a coloring of D − v2. Since the edges v1v2, v2v1, v1vk, vkv1 exist, we can change C

to a non-directed cycle C ′ in which v2 has an in-neighbor and an out-neighbor. As above,

we either get a bidirected clique or both arcs v2v3 and v3v2. Repeating this argument, we

deduce that V (C) induces a bidirected cycle or a bidirected clique.

Next, suppose k is even. We may assume that v1’s neighbors on C, v2 and vk, are

both in-neighbors. We claim that there is a chord of C incident to v1 and directed inwards

(i.e., v1 has another in-neighbor on C). Suppose not. Consider a coloring of D − v1 and

let f(v2) = a and f(vk) = b. Now if we do a shift of colors around C we deduce that

f(v3) = f(v5) = f(v7) = · · · = f(vk−1) = b. But this is impossible since after performing

a shift of colors in the opposite direction, we will obtain a valid coloring of D − v1 with

vk and v2 both colored b. Therefore, there is an arc viv1 ∈ A(D). If this arc divides C

into two even cycles, then by an inductive argument similar to the case when k is odd we

can deduce that C is a complete bidirected digraph. Therefore, assume that i is odd so

that viv1 splits the cycle C into two odd cycles C1 = v1v2...viv1 and C2 = v1vivi+1...vkv1.

By induction, we have that all the edges of C are actually bidirected arcs. Also, we know

that viv1, v1vi ∈ A(D). Next, we show that there must be further chords incident to v1

in addition to those coming from vi. Suppose not. Consider a coloring g of D − v1, and

suppose g(v2) = a, g(vk) = b and g(vi) = c. Now, if we do shift of colors around C1,

we conclude that g(v2) = g(v4) = · · · = g(vi−1) = a and g(v3) = g(v5)... = g(vi) = c.

Similarly, doing shift of colors around C2 we conclude that g(vi) = g(vi+2) = g(vk−1) = c

and g(vi+1) = g(vi+3) = · · · = g(vk) = b. Since k ≥ 6, if we now do two shifts of colors

around C, we will get a coloring of D − v1 where there is the same color appearing twice

in the neighborhood of v1, contradicting Lemma 3.2.2. Therefore, there are other chords

incident to v1 beside the ones coming from vi. This implies that one of the cycles C1 or C2

is divided into an even cycle and an odd cycle and we are done by a similar argument as in

the case when k is odd.

Now, we can prove the main result of this section.
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Proof of Theorem 3.2.1. By Lemma 3.2.3, D is Eulerian and L-critical. First, we prove the

first claim of the theorem. Let H be a block of D, for which none of (a)-(c) applies. Note

that H cannot be a single arc by L-criticality. The theorem is clear if |V (H)| ≤ 3. Note that

H cannot be a non-directed cycle or a cycle with some but not all edges bidirected, since

every such cycle induces new arcs by Lemma 3.2.5. So we may assume that |V (H)| ≥ 4

and that H (as an undirected graph) is not a cycle. Then there are two vertices in H with

three internally vertex-disjoint paths between them, say P1, P2, P3. Two of these paths, say

P1 and P2, create a cycle C of even length. We claim that the cycle C induces a complete

bidirected graph. Suppose not. Then C is a directed cycle by Lemma 3.2.5. This implies

that at least one of the cycles P1 ∪ P3 or P1 ∪ P2 is not directed. By applying Lemma

3.2.5 again, this new cycle induces at least a bidirected cycle and therefore some of the arcs

of C are bidirected. But this is a contradiction, which shows that C induces a complete

bidirected digraph.

Let v be any vertex of H that is not on C. Since H is a block, there are two paths P

and Q from v to C whose only common vertex is v. Now, simply take an even cycle C ′ that

contains the path P ∪ Q and one or two additional arcs of C. We may choose the arcs of

C ′ so that C ′ is a non-directed cycle. Now, Lemma 3.2.5 shows that C ′ induces a complete

bidirected digraph. By using different vertices of C when making C ′ (by possibly including

more than two arcs of C), we conclude that every vertex of P ∪Q is adjacent to each other

and to every vertex on C. Therefore, if we take any maximal bidirected clique K in H we

conclude that all the vertices of H are on K. Hence, H is a complete bidirected digraph.

It remains to prove the last part of the theorem. Let us consider a block B of D. Note

that B satisfies one of (a)–(c). If B = D, then it is easy to see that the only list assignment

L, for which D is not L-colorable, has all lists L(v), v ∈ V (D), equal to each other. So,

we may assume that B 6= D. Next, we L-color D′ = D − V (B). After this, each vertex

v ∈ V (B) is left with at least d+
B(v) colors that do not appear on N(v). Let L′(v) ⊆ L(v)

denote these colors. Now, every L′-coloring of B gives rise to an L-coloring of D, so B is

not L′-colorable. But since |L′(v)| ≥ d+
B(v) for all v ∈ V (B), we conclude, by the same

arguments as above, that |L′(v)| = d+
B(v) for each v ∈ V (B) and that all lists L′(v) are the

same. By denoting this common color set by CB, we obtain the last part of the theorem.

Since |L(v)| = d+(v), it is easy to see that the color sets CB of all blocks B containing v are

pairwise disjoint.
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Note that the condition |L(v)| ≥ max{d+(v), d−(v)} in Theorem 3.2.1 cannot be strength-

ened to, say, |L(v)| ≥ d+(v), since we could take any digraph which has a vertex with no

out-neighbors and an empty list of colors. However, this becomes possible if we know that

the digraph is L-critical.

Corollary 3.2.6. Let D be a connected digraph and L an assignment of colors to the vertices

of D such that |L(v)| ≥ d+(v), for every v ∈ V (D). Suppose that D is L-critical. Then D

is Eulerian, and hence the conclusions of Theorem 3.2.1 hold.

Proof. If D is not Eulerian, then there exists a vertex v ∈ V with d+(v) > d−(v). Consider

an L-coloring of D − v. Now, since |L(v)| ≥ d+(v) > d−(v), there is a color c ∈ L(v) that

does not appear on the in-neighborhood of v. Coloring v with color c gives an L-coloring of

D, a contradiction.

The next corollary obtains a similar result when the criticality condition is dropped,

but we insist that vertices whose out-degree is larger than their in-degree have an extra

admissible color.

Corollary 3.2.7. Let D be a connected digraph, and L an assignment of colors to the

vertices of D such that |L(v)| ≥ d−(v) if d+(v) ≤ d−(v) and |L(v)| ≥ d−(v) + 1 other-

wise. Suppose that D is not L-colorable. Then D is Eulerian, and hence the conclusions of

Theorem 3.2.1 hold.

Proof. We use induction on |A(D)|. If |A(D)| ≤ 3 and D is not Eulerian, then D is L-

colorable for any choice of L. So, we may assume from now on that |A(D)| ≥ 4.

We first show that D is L-critical. Let e = uv be an arc of D and suppose for a

contradiction that D−uv is not L-colorable. Consider a component C of D−uv that is not

L-colorable. By the induction hypothesis, we have that C is Eulerian and that conclusions

of Theorem 3.2.1 hold. If u ∈ V (C) (say), then u is not an Eulerian vertex in D, so

|L(u)| > d+
C(u), which contradicts the conclusions of Theorem 3.2.1 for C.

Now, suppose that D is not Eulerian. Since
∑

v d
+(v) =

∑
v d
−(v) = |A(D)|, there

exists a vertex v such that d+(v) > d−(v). Then |L(v)| ≥ d−(v) + 1. Remove an arc e

incident to v from D, and choose an L-coloring of D− e. Now, putting the edge e back, we

see that we still have a color in L(v) not appearing on the in-neighborhood of v, allowing

us to complete the coloring to an L-coloring of D, a contradiction.
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The reader may wonder why require an additional color for non-Eulerian vertices. As

we shall see in the next section, the situation changes drastically if this were not the case.

3.3 Complexity of list coloring of digraphs with Brooks’ con-

dition

It is natural to ask whether the condition of Corollary 3.2.7 can be relaxed to |L(v)| ≥
min{d+(v), d−(v)}. It turns out that the answer is negative even if the digraph is L-critical.

There is an example on four vertices; see Figure 3.2, where the numbers at the vertices

indicate the corresponding lists of colors. Further examples of digraphs that are L-critical

with |L(v)| ≥ min{d+(v), d−(v)} for every v ∈ V (D), and yet do not admit a block de-

composition described by Theorem 3.2.1, are not hard to construct, as shown by Figure

3.3. One can extend the construction in Figure 3.3 to get counterexamples of any order by

subdividing any of the arcs.

1,2

1,2

11

Figure 3.2: An L-critical digraph with |L(v)| ≥ min{d+(v), d−(v)} that is not Eulerian

1 1

1,2

1,2

1

1 1

2
1 1

Figure 3.3: Constructing an L-critical digraph with |L(v)| ≥ min{d+(v), d−(v)} of arbitrary
order that is not Eulerian
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Not only are there many such examples, it turns out that the list coloring problem

restricted to such a class of instances is NP-hard. This (surprising) fact and its proof is the

subject of the remainder of this section.

Computational complexity of digraph colorings has been studied by several authors. We

have the following complexity theorem for digraphs proven in Bokal et al. [8].

Theorem 3.3.1 ([8]). Let D be a digraph. It is NP-complete to decide whether χ(D) ≤ 2.

Stronger results were obtained by Feder, Hell and Mohar [28]. These results will be

discussed in a later chapter.

We study the following problem.

Problem: List Coloring with Brooks’ Condition

Instance: A digraph D, a list-assignment L such that for every vertex v ∈
V (D), |L(v)| = min{d+(v), d−(v)}.
Question: Is the digraph D L-colorable?

If we restrict the instances to planar graphs, we get the Planar List Coloring Prob-

lem with Brooks’ Condition.

Theorem 3.3.2. The Planar List Coloring Problem with Brooks’ Condition is

NP-complete.

For a polynomial time reduction, we shall use the following problem, which was proved

to be NP-complete in [29].

Problem: Planar (≤ 3, 3)-Satisfiability

Instance: A formula Φ in conjunctive normal form with a set C of clauses over

a set X of boolean variables such that

(1) each clause involves at most three distinct variables,

(2) every variable occurs in exactly three clauses, once positive and twice nega-

tive, and

(3) the graph GΦ = (X ∪ C, {xc | x ∈ X,x ∈ c ∈ C or ¬x ∈ c ∈ C}) is planar.

Question: Is Φ satisfiable?
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Proof. Clearly, every list coloring problem is in NP since after guessing an L-coloring, one

can check in polynomial time whether each color class induces an acyclic subdigraph using

Breadth-First-Search.

Let the formula Φ be an instance of Planar (≤ 3, 3)-Satisfiability. Note that G =

GΦ is a bipartite graph with bipartition {X,C}. We create an instance of list coloring for

digraphs as follows.

• Direct all the edges of G from X to C.

• For each x ∈ X, we create a new vertex x′ and add the arcs x′x and c1x
′, c2x

′, where

c1, c2 are the two clauses that contain ¬x.

• Add the arc c3x, where c3 is the clause containing the literal x.

• For every variable x ∈ X, we define two colors, x and x̄. For each x ∈ X, set

L(x) = {x, x̄}. For each c ∈ C, we set L(c) = {x̄ | x ∈ c} ∪ {x | ¬x ∈ c}. Finally, let

L(x′) = {x} for every x′.

Let D be the resulting digraph. We first claim that D is planar. Note that the graph GΦ

is assumed to be planar. Clearly, adding the arcs c3x, where c3 is the clause containing the

literal x, preserve the planarity. All that remains to show is that the vertices x′ and their

incident arcs can be added in a way as to preserve the planarity. But this is clear because

we can add the vertices x′ one by one in the face defined by the vertices x, c1 and c2, where

c1 and c2 are the clauses containing ¬x.

Next, we consider the sizes of the lists. Clearly, every x ∈ X has out-degree 3 and

in-degree 2 because x appears in three clauses, twice negative and once positive. Therefore,

|L(x)| = min{d+(v), d−(v)}. For a given clause c ∈ C, for every arc xc we have exactly one

of the two arcs cx or cx′. Therefore, d+(c) = d−(c) = |L(c)|. Now, every x′ has in-degree 2

and out-degree 1, which implies that |L(x′)| = min{d+(x′), d−(x′)}. Therefore, all the list

sizes match with minimum degree. Now, we claim that Φ is satisfiable if and only if D is

L-colorable.

Suppose first that f is an L-coloring of D. Define a truth assignment φ as follows:

φ(x) = true if f(x) = x and φ(x) = false if f(x) = x̄. We need to show that every

clause c is satisfied. If f(c) = x for some variable x, then ¬x ∈ c. Also, f(x) 6= x for

otherwise we would have a monochromatic triangle cx′x of color x. Therefore, f(x) = x̄,
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thus φ(x) = false, and hence c is satisfied. Similarly, if f(c) = x̄, then x ∈ c. Further,

f(x) = x for otherwise we would have a monochromatic digon. Therefore, φ(x) = true and

c is satisfied.

Conversely, let φ be a satisfying truth assignment. Define the following L-coloring f :

f(x) = x if φ(x) = true, and f(x) = x̄ if φ(x) = false. For each clause c, choose a variable

x which satisfies c and set f(c) = x if ¬x ∈ c, and f(c) = x̄, if x ∈ c. Clearly, f(x′) = x for

all x′. To see that f is a coloring, consider an arc xc. We claim that f(x) 6= f(c). Suppose

f(x) = x (the other case is similar) and that ¬x ∈ c. Since f(x) = x, φ(x) = true which

implies that ¬x = false. Therefore, f(c) 6= x. Thus, no arc from X to C is monochromatic,

so f is a coloring. This completes the proof.

We note that the above proof implies the following immediate corollary.

Corollary 3.3.3. List coloring of digraphs is NP-complete even if restricted to planar di-

graphs where each vertex v has d0(v) = min{d+(v), d−(v)} ≤ 3 and the list size for v is

equal to d0(v).

Proof. Note that all the vertices v of the digraph D in the above proof satisfy the conditions

d0(v) ≤ 3 and d0(v) = |L(v)|.

Next, we consider the problem where the list sizes of vertices with d+(v) > d−(v) have

an additional color.

Problem: List Coloring With Relaxed Brooks’ Condition

Instance: A digraph D, a list-assignment L such that for every vertex v ∈ V (D)

with d+(v) ≤ d−(v), |L(v)| ≥ d+(v), and for every vertex v with d+(v) > d−(v),

we have |L(v)| ≥ d−(v) + 1.

Question: Is the digraph D L-colorable?

Theorem 3.3.4. The problem List Coloring With Relaxed Brooks’ Condition can

be solved in linear time O(|V (D)|+ |A(D)|).

Proof. Note that it is sufficient to provide an algorithm for connected digraphs because

we can then apply it to all the components. We first give an algorithm for the Eulerian

instances of D, and then show that the general case can be reduced to the Eulerian case.

So suppose D is Eulerian. We will apply Theorem 3.2.1. If there exists a vertex v ∈ V (D)

such that |L(v)| > d+(v), then D is L-colorable by Theorem 3.2.1. So we may assume that
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|L(v)| = d+(v) for all v ∈ V (D). We first find the blocks of D; this can be done in time

O(|V (D)| + |A(D)|) using Depth-First-Search, see for example [16]. By Theorem 3.2.1, if

there exists a block of D that is not of type (a)–(c), then D is L-colorable. So we may assume

that all blocks of D are of type (a), (b) or (c). Let B be a leaf block in the block-cutpoint

tree of D. If B = D, then as mentioned in the proof of Theorem 3.2.1, D is not L-colorable

if and only if all the lists of D are the same. This can be checked in linear time. Otherwise,

let v ∈ V (B) be the single cut-vertex in B. If there are two vertices in u,w ∈ V (B)\{v}
with L(u) 6= L(w) or there exists a vertex x ∈ V (B)\{v} such that L(x) * L(v), then D

is L-colorable by Theorem 3.2.1. Therefore, we may assume that for all u,w ∈ V (B)\{v},
L(u) = L(w) and L(u) ⊆ L(v). In this case, it is easy to see that D is L-colorable if and

only if D − (V (B)\{v}) is L′-colorable, where L′(v) = L(v)\L(u), for some u ∈ V (B)\{v},
and L′(x) = L(x) for all x ∈ V (D)\V (B). Thus, we can reduce the problem by deleting

a leaf block B at each step by using at most O(|V (B)| + |A(B)|) time, which results in a

O(|V (D)|+ |A(D)|) overall time.

Next, suppose that D is not Eulerian. We give a linear time reduction to the Eulerian

case. Since
∑

v d
+(v) =

∑
v d
−(v) = |A(D)|, there exists a vertex u such that d+(u) >

d−(u). Consider D− u. We claim that D is L-colorable if and only if D− u is L-colorable.

Clearly, if D is L-colorable then D − u is L-colorable. Now, suppose D − u is L-colorable,

and let f be such a coloring. Since d+(u) > d−(u), we have that there is a color in L(u)

that does not appear in the in-neighborhood of u. By using such a color, we can complete

the coloring of D − u to an L-coloring of D.

Repeating this reduction we will obtain a (possibly empty) digraphD∗ such that d+
D∗(v) =

d−D∗(v) for every v ∈ V (D∗). Since d+(v) ≥ d+
D∗(v), it follows that |L(v)| ≥ d+

D∗(v) = d−D∗(v).

Now, using the algorithm for the Eulerian case, we can decide whether each component of

D∗ is L-colorable. Then clearly D is L-colorable if and only if each component of D∗ is

L-colorable.

To keep the list of vertices v with d+(v) > d−(v), and updating this list after every vertex-

removal takes overall linear time. We only need to consider at most min{d+(v), d−(v)}+ 1

colors at v, so when comparing the lists in the blocks we only need O(|V (D)| + |A(D)|)
time. Thus, it takes O(|V (D) + |A(D)|) time to reduce D to the Eulerian digraph D∗.

Since we need linear time to decide whether an Eulerian digraph is L-colorable, we have an

O(|V (D)|+ |A(D)|) algorithm.



Chapter 4

Brooks Theorem for Digraphs of

Girth Three

4.1 Introduction

Brooks’ Theorem states that if G is a connected graph with maximum degree ∆, then

χ(G) ≤ ∆ + 1, where equality is attained only for odd cycles and complete graphs. The

presence of triangles has significant influence on the chromatic number of a graph. A result

of Johansson [38] states that if G is triangle-free, then χ(G) = O (∆/ log ∆). In this chapter,

we show that Brooks’ Theorem for digraphs can also be improved when we forbid directed

cycles of length 2.

Digraph colorings and the Brooks Theorem

Recall that for digraphs, a version of Brooks’ theorem was proved in [46]. Here, a digraph

D is k-critical if χ(D) = k, and χ(H) < k for every proper subdigraph H of D.

Theorem 4.1.1 ([46]). Suppose that D is a k-critical digraph in which for every vertex

v ∈ V (D), d+(v) = d−(v) = k − 1. Then one of the following cases occurs:

1. k = 2 and D is a directed cycle of length n ≥ 2.

2. k = 3 and D is a bidirected cycle of odd length n ≥ 3.

3. D is bidirected complete graph of order k ≥ 4.

32
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A tight upper bound on the chromatic number of a digraph was first given by Neumann-

Lara [49].

Theorem 4.1.2 ([49]). Let D be a digraph and denote by ∆o and ∆i the maximum out-

degree and in-degree of D, respectively. Then

χ(D) ≤ min{∆o,∆i}+ 1.

In this chapter, we study improvements of this result using the following substitute for

the maximum degree. If D is a digraph, we let

∆̃ = ∆̃(D) = max{
√
d+(v)d−(v) | v ∈ V (D)}

be the maximum geometric mean of the in-degree and out-degree of the vertices. Observe

that ∆̃ ≤ 1
2(∆o+∆i), by the arithmetic-geometric mean inequality (where ∆o and ∆i are as

in Theorem 4.1.2). We show that when ∆̃ is large (roughly ∆̃ ≥ 1010), then every digraph

D without digons has χ(D) ≤ α∆̃, for some absolute constant α < 1. We do not make

an attempt to optimize α, but show that α = 1 − e−13 suffices. To improve the value of α

significantly, a new approach may be required.

It may be true that the following analog of Johansson’s result holds for digon-free di-

graphs, as conjectured by McDiarmid and Mohar [44].

Conjecture 4.1.3 ([44]). Every digraph D without digons has χ(D) = O( ∆̃
log ∆̃

).

If true, this result would be asymptotically best possible in view of the chromatic num-

ber of random tournaments of order n, whose chromatic number is Ω( n
logn) and ∆̃ >(

1
2 − o(1)

)
n, as shown by Erdős et al. [24].

We also believe that the following conjecture of Reed generalizes to digraphs without

digons.

Conjecture 4.1.4 ([56]). Let ∆ be the maximum degree of (an undirected) graph G, and

let ω be the size of the largest clique. Then

χ(G) ≤
⌈

∆ + 1 + ω

2

⌉
.

If we define ω = 1 for digraphs without digons, we can pose the following conjecture for

digraphs. Note that a digraph is ∆-regular if d+(v) = d−(v) = ∆ for every vertex v.
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Conjecture 4.1.5. Let D be a ∆-regular digraph without digons. Then

χ(D) ≤
⌈

∆

2

⌉
+ 1.

Conjecture 4.1.5 is trivial for ∆ = 1, and follows from Lemma 4.3.2 for ∆ = 2, 3. We

believe that the conjecture is also true for non-regular digraphs with ∆ replaced by ∆̃.

The rest of the chapter is organized as follows. In Section 4.2, we improve Brooks’ bound

for digraphs that have sufficiently large degrees. In Section 4.3, we consider the problem for

arbitrary degrees.

4.2 Strengthening Brooks’ Theorem for large ∆̃

The main result in this section is the following theorem.

Theorem 4.2.1. There is an absolute constant ∆1 such that every digon-free digraph D

with ∆̃ = ∆̃(D) ≥ ∆1 has χ(D) ≤
(
1− e−13

)
∆̃.

The rest of this section is the proof of Theorem 4.2.1. The proof is a modification of an

argument found in Molloy and Reed [47] for usual coloring of undirected graphs. We first

note the following simple lemma.

Lemma 4.2.2. Let D be a digraph with maximum out-degree ∆o, and suppose we have a

partial proper coloring of D with at most ∆o+1−r colors. Suppose that for every uncolored

vertex v there are at least r colors that appear on vertices in N+(v) at least twice. Then D

is ∆o + 1− r-colorable.

Proof. The proof is easy – since many colors are repeated on the out-neighborhood of v, there

are many colors that are not used on N+(v). In particular, there are at most ∆− r distinct

colors appearing on N+(v). Thus, one can “greedily” extend the partial coloring.

Proof of Theorem 4.2.1. We may assume that c1∆̃ < d+(v) < c2∆̃ and c1∆̃ < d−(v) < c2∆̃

for each v ∈ V (D), where c1 = 1 − 1
3e
−11 and c2 = 1 + 1

3e
−11. If not, we remove all the

vertices v not satisfying the above inequality and obtain a coloring for the remaining graph

with
(
1− e−13

)
∆̃ colors. Now, if a vertex does not satisfy the above condition either one

of d+(v) or d−(v) is at most c1∆̃ or one of d+(v) or d−(v) is at most 1
c2

∆̃. Note that

1 − e−13 > max{c1, 1/c2}. This ensures that there is a color that either does not appear
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in the in-neighborhood or does not appear in the out-neighborhood of v, allowing us to

complete the coloring.

The core of the proof is probabilistic, and we refer the reader to Appendix A for all the

probabilistic tools used in the sequel. We color the vertices of D randomly with C colors,

C = b∆̃/2c. That is, for each vertex v we assign v a color from {1, 2, ..., C} uniformly at

random. After the random coloring, we uncolor all the vertices that are in a monochromatic

directed path of length at least 2. Clearly, this results in a proper partial coloring of D since

D has no digons. For each vertex v, we are interested in the number of colors which are

assigned to at least two out-neighbors of v and are retained by at least two of these vertices.

For analysis, it is better to define a slightly simpler random variable. Let v ∈ V (D). For

each color i, 1 ≤ i ≤ C, let Oi be the set of out-neighbors of v that have color i assigned to

them in the first phase. Let Xv be the number of colors i for which |Oi| ≥ 2 and such that

all vertices in Oi retain their color after the uncoloring process.

For every vertex v, we let Av be the event that Xv is less than 1
2e
−11∆̃ + 1. We will

show that with positive probability none of the events Av occur. Then Lemma 4.2.2 will

imply that χ(D) ≤ (c2 − 1
2e
−11)∆̃ ≤ (1 − e−13)∆̃, finishing the proof. We will use the

symmetric version of the Lovász Local Lemma (see Appendix, Theorem A.3.2). Note that

the color assigned initially to a vertex u can affect Xv only if u and v are joined by a path

of length at most 3. Thus, Av is mutually independent of all except at most (2c2∆̃) +

(2c2∆̃)2 + (2c2∆̃)3 + (2c2∆̃)4 + (2c2∆̃)5 + (2c2∆̃)6 ≤ 100∆̃6 other events Aw. Therefore,

by the symmetric version of the Local Lemma, it suffices to show that for each event Av,

4 · 100∆̃6P[Av] < 1. We will show that P[Av] < ∆̃−7. We do this by proving the following

two lemmas.

Lemma 4.2.3. E[Xv] ≥ e−11∆̃− 1.

Proof. Let X ′v be the random variable denoting the number of colors that are assigned to

exactly two out-neighbors of v and are retained by both of these vertices. Clearly, Xv ≥ X ′v
and therefore it suffices to consider E[X ′v].

Note that color i will be counted by X ′v if two vertices u,w ∈ N+(v) are colored i and no

other vertex in S = N(u)∪N+(v)∪N(w) is assigned color i. This will give us a lower bound

on E[X ′v]. There are C choices for color i and at least
(
c1∆̃

2

)
choices for the set {u,w}. The

probability that no vertex in S gets color i is at least (1− 1
C )|S| ≥ (1− 1

C )5c2∆̃. Therefore,
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by linearity of expectation, and using the inequality (1− p)n > e−pn−p, we can estimate:

E[X ′v] ≥ C

(
c1∆̃

2

)(
1

C

)2(
1− 1

C

)5c2∆̃

≥ c1(c1∆̃− 1) exp(−5c2∆̃/C − 1/C)

≥ ∆̃

e11
− 1

for ∆̃ sufficiently large.

Lemma 4.2.4. P
[
|Xv − E[Xv]| > log ∆̃

√
E[Xv]

]
< ∆̃−7.

Proof. Let ATv be the random variable counting the number of colors assigned to at least

two out-neighbors of v, and Delv the random variable that counts the number of colors

assigned to at least two out-neighbors of v but removed from at least one of them. Clearly,

Xv = ATv−Delv and therefore it suffices to show that each of ATv and Delv are sufficiently

concentrated around their means. We will show that for t = 1
2(log ∆̃)

√
E[Xv] the following

estimates hold:

Claim 1: P [|ATv − E[ATv]| > t] < 2e−t
2/(8∆̃).

Claim 2: P [|Delv − E[Delv]| > t] < 4e−t
2/(100∆̃).

The two above inequalities yield that, for ∆̃ sufficiently large,

P[|Xv − E[Xv]| > log ∆̃
√
E[Xv]] ≤ 2e−

t2

8∆̃ + 4e−
t2

100∆̃

≤ ∆̃− log ∆̃

< ∆̃−7,

as we require. So, it remains to establish both claims.

To prove Claim 1, we use a version of Azuma’s inequality found in [47], called the Simple

Concentration Bound (see Appendix A, Theorem A.4.2).

Theorem 4.2.5 (Simple Concentration Bound). Let X be a random variable determined

by n independent trials T1, ..., Tn, and satisfying the property that changing the outcome of

any single trial can affect X by at most c. Then

P[|X − E[X]| > t] ≤ 2e−
t2

2c2n .
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Note that ATv depends only on the colors assigned to the out-neighbors of v. Note that

each random choice can affect ATv by at most 1. Therefore, we can take c = 1 in the Simple

Concentration Bound for X = ATv. Since the choice of random color assignments are made

independently over the vertices and since d+(v) ≤ c2∆̃, we immediately have the Claim 1.

For Claim 2, we use the following variant of Talagrand’s Inequality (see Appendix A,

Theorem A.4.4).

Theorem 4.2.6 (Talagrand’s Inequality). Let X be a nonnegative random variable, not

equal to 0, which is determined by n independent trials, T1, . . . , Tn and satisfyies the follow-

ing conditions for some c, r > 0:

1. Changing the outcome of any single trial can affect X by at most c.

2. For any s, if X ≥ s, there are at most rs trials whose exposure certifies that X ≥ s.

Then for any 0 ≤ λ ≤ E[X],

P
[
|X − E[X]| > λ+ 60c

√
rE[X]

]
≤ 4e

− λ2

8c2rE[X] .

We apply Talagrand’s inequality to the random variable Delv. Note that we can take c =

1 since any single random color assignment can affect Delv by at most 1. Now, suppose that

Delv ≥ s. One can certify that Delv ≥ s by exposing, for each of the s colors i, two random

color assignments in N+(v) that certify that at least two vertices got color i, and exposing

at most two other color assignments which show that at least one vertex colored i lost its

color. Therefore, Delv ≥ s can be certified by exposing 4s random choices, and hence we

may take r = 4 in Talagrand’s inequality. Note that t = 1
2 log ∆̃

√
E[Xv] >> 60c

√
rE[Delv]

since E[Xv] ≥ ∆̃/e11 − 1 and E[Delv] ≤ c2∆̃. Now, taking λ in Talagrand’s inequality to

be λ = 1
2 t, we obtain that P[|Delv − E[Delv]| > t] ≤ P[|Delv − E[Delv]| > λ+ 60c

√
rE[X]].

Therefore, provided that λ ≤ E[Delv], we have the confirmed Claim 2.

It is sufficient to show that E[Delv] = Ω(∆̃), since λ = O(log ∆̃
√

∆̃). The probability

that exactly two vertices in N+(v) are assigned a particular color c is at least c1∆̃2

2 C−2(1−
1/C)c2∆̃ ≈ 2e−10, a constant. It remains to show that the probability that at least one of

these vertices loses its color is also (at least) a constant. We use Janson’s Inequality (see

Appendix, Theorem A.2.1). Let u be one of the two vertices colored c. We only compute

the probability that u gets uncolored. We may assume that the other vertex colored c is

not a neighbor of u since this will only increase the probability. We show that with large
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probability there exists a monochromatic directed path of length at least 2 starting at u.

Let Ω = N+(u)∪N++(u), where N++(u) is the second out-neighborhood of u. Each vertex

in Ω is colored c with probability 2
∆̃

. Enumerate all the directed paths of length 2 starting

at u and let Pi be the ith path. Clearly, there are at least (c1∆̃)2 such paths Pi. Let Ai be

the set of vertices of Pi, and denote by Bi the event that all vertices in Ai receive the same

color. Then, clearly P[Bi] = 1
(b∆̃/2c)2

≥ 4
∆̃2

. Then, µ =
∑

P[Bi] ≥ 4
∆̃2
· (c1∆̃)2 = 4c2

1. Now,

if δ =
∑

i,j:Ai∩Aj 6=∅ P[Bi ∩Bj ] in Janson’s Inequality satisfies δ < µ, then applying Janson’s

Inequality, with the sets Ai and events Bi, we obtain that the probability that none of the

events Bi occur is at most e−1, and hence the probability that u does not retain its color is

at least 1− e−1, as required. Now, assume that δ ≥ µ. The following gives an upper bound

on δ:

δ =
∑

i,j:Ai∩Aj 6=∅
P[Bi ∩Bj ] =

∑
i,j:Ai∩Aj 6=∅

1

(b∆̃/2c)3

≤ (c2∆̃)2 · 2c2∆̃ · 8

(∆̃− 2)3
< 32,

for ∆̃ ≥ 100. Now, we apply Extended Janson’s Inequality (see Appendix, Theorem A.2.2).

This inequality now implies that the probability that none of the events Bi occur is at most

e−c
2
1/4, a constant. Therefore, by linearity of expectation E[Delv] = Ω(∆̃).

Clearly, since E[Xv] ≤ c2∆̃, Lemmas 4.2.3 and 4.2.4 imply that P[Av] < ∆̃−7. This

completes the proof of Theorem 4.2.1.

4.3 Brooks’ Theorem for small ∆̃

The bound in Theorem 4.2.1 is only useful for large ∆̃. Rough estimates suggest that

∆̃ needs to be at least in the order of 1010. The above approach is unlikely to improve

this bound significantly with a more detailed analysis. In this section, we improve Brooks’

Theorem for all values of ∆̃. We achieve this by using the result on list colorings found in

Chapter 3.

Theorem 4.3.1 ([33]). Let D be a connected digraph, and L an assignment of colors to the

vertices of D such that |L(v)| ≥ d+(v) if d+(v) = d−(v) and |L(v)| ≥ min{d+(v), d−(v)}+ 1

otherwise. Suppose that D is not L-colorable. Then D is Eulerian, |L(v)| = d+(v) for each

v ∈ V (D), and every block of D is one of the following:
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(a) a directed cycle (possibly a digon),

(b) an odd bidirected cycle, or

(c) a bidirected complete digraph.

D is said to be k-choosable if D is L-colorable for every list-assignment L with |L(v)| ≥ k
for each v ∈ V (D). We denote by χl(D) the smallest integer k for which D is k-choosable.

Now, we can state the next result of this section.

Lemma 4.3.2. Let D be a connected digraph without digons, and let ∆̃ = ∆̃(D). If ∆̃ > 1,

then χl(D) ≤ d∆̃e.

Proof. We apply Theorem 4.3.1 with all lists L(v), v ∈ V (D) having cardinality d∆̃e. It

is clear that the conditions of Theorem 4.3.1 are satisfied for every Eulerian vertex v. It

is easy to see that the conditions are also satisfied for non-Eulerian vertices. Now, if D is

not L-colorable, then by Theorem 4.3.1, D is Eulerian and d+(v) = d∆̃e for every vertex v.

This implies that D is d∆̃e-regular. Now, the conclusion of Theorem 4.3.1 implies that D

consists of a single block of type (a), (b) or (c). This means that either D is a directed cycle

(and hence ∆̃ = 1), or D contains a digon, a contradiction. This completes the proof.

We can now prove the main result of this section, which improves Brooks’ bound for all

digraphs without digons.

Theorem 4.3.3. Let D be a connected digraph without digons, and let ∆̃ = ∆̃(D). If

∆̃ > 1, then χ(D) ≤ α(∆̃ + 1) for some absolute constant α < 1.

Proof. We define α = max
{

∆1
∆1+1 , 1− e

−13
}

, where ∆1 is the constant in the statement

of Theorem 4.2.1. Now, if ∆̃ < ∆1 then by Lemma 4.3.2, it follows that χ(D) ≤ d∆̃e ≤
α(∆̃+1). If ∆̃ ≥ ∆1, then by Theorem 4.2.1 we obtain that χ(D) ≤

(
1− e−13

)
∆̃ ≤ α(∆̃+1),

as required.

An interesting question to consider is the tightness of the bound of Lemma 4.3.2. It is

easy to see that the bound is tight for d∆̃e = 2 by considering, for example, a directed cycle

with an additional chord or a digraph consisting of two directed triangles sharing a common

vertex. The graph in Figure 4.2 shows that the bound is also tight for d∆̃e = 3. It is easy

to verify that, up to symmetry, the coloring outlined in the figure is the unique 2-coloring.

Now, adding an additional vertex, whose three out-neighbors are the vertices of the middle
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triangle and the three in-neighbors are the remaining vertices, we obtain a 3-regular digraph

where three colors are required to complete the coloring.

Another example of a digon-free 3-regular digraph on 7 vertices requiring three colors

is the following. Take the Fano Plane and label its points by 1,2,...,7. For every line of

the Fano plane containing points a, b, c, take a directed cycle through a, b, c (with either

orientation). There is a unique directed 3-cycle through any two vertices because every two

points line in exactly one line. This shows that the Fano plane digraphs are not isomorphic

to the digraph from the previous paragraph. Finally, it is easy to verify that the resulting

digraph needs three colors for coloring.

1

12

2

1

2

Figure 4.1: Constructing a 3-regular digraph D with χ(D) = 3.

1

1

2

1
2

2
1

Figure 4.2: Constructing a 3-chromatic 3-regular digraph from the Fano plane.

Note that the digraphs in the above examples are 3-regular tournaments on 7 vertices. It

is not hard to check that every tournament on 9 vertices has d∆̃e = 4, and yet is 3-colorable

(simply choose three vertices that do not induce a directed triangle and color them with same

color; the remaining 6 vertices can 2-colored). In general, we pose the following problem.
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Question 4.3.4. What is the smallest integer ∆0 such that every digraph D without digons

with d∆̃(D)e = ∆0 satisfies χ(D) ≤ ∆0 − 1?

Note that this is a weak version of Conjecture 4.1.5. By Theorem 4.2.1, ∆0 exists.

However, we believe that ∆0 is small, possibly equal to 4. The following proposition shows

that the above holds for every d∆̃e ≥ ∆0.

Proposition 4.3.5. Let ∆0 be defined as in Question 4.3.4. Then every digon-free digraph

D with d∆̃(D)e ≥ ∆0 satisfies χ(D) ≤ d∆̃(D)e − 1.

Proof. The proof is by induction on d∆̃e. If d∆̃e = ∆0 this holds by the definition of ∆0.

Otherwise, let U be a maximal acyclic subset of D. Then d∆̃(D − U)e ≤ d∆̃(D)e − 1 for

otherwise U is not maximal. Since we can color U by a single color, we can apply the

induction hypothesis to complete the proof.

As a corollary we get:

Corollary 4.3.6. There exists a positive constant α < 1 such that for every digon-free

digraph D with d∆̃(D)e ≥ ∆0, χ(D) ≤ αd∆̃e.

Proof. Let α = max
{
d∆1e
d∆1e+1 , 1− e

−13
}

, where ∆1 is the constant in the statement of The-

orem 4.2.1. Now, applying Theorem 4.2.1 or Proposition 4.3.5 gives the result.



Chapter 5

Non-locality of the digraph

chromatic number

5.1 Introduction

In this chapter we prove, using standard probabilistic approach, that two further analogues

of graph coloring results carry over to digraphs. The first result provides evidence that the

digraph chromatic number, like the graph chromatic number, is a global parameter that

cannot be deduced from local considerations. The second result, see Theorem 5.3.1, shows

that there are digraphs with large chromatic number k in which every set of at most c|V (D)|
vertices is 2-colorable, where c > 0 is a constant that only depends on k. The analogous

result for graphs was proved by Erdős [23] with the assumption being that all sets of at

most cn vertices are 3-colorable. Both the 3-colorability in Erdős’ result and 2-colorability

in Theorem 5.3.1 are best possible.

Concerning the first result, it is well-known that there exist graphs with large girth

and large chromatic number. Bollobás [9] and, independently, Kostochka and Mazurova

[40] proved that there exist graphs of maximum degree at most ∆ and of arbitrarily large

girth whose chromatic number is Ω(∆/ log ∆). We present a theorem (Theorem 5.2.1) that

provides an extension to digraphs.

The bound of Ω(∆/ log ∆) from [9, 40] is essentially best possible: a result of Johansson

[38] shows that if G is triangle-free, then the chromatic number is O(∆/ log ∆). Similarly,

Theorem 5.3.1 is also essentially best possible: we showed that every tournament on n

42
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vertices has chromatic number at most n
logn(1 + o(1)). In general, it may be true that

the following analog of Johansson’s result holds for digon-free digraphs, as conjectured by

McDiarmid and Mohar [44].

Conjecture 5.1.1. Every digraph D without digons and with maximum total degree ∆ has

χ(D) = O( ∆
log ∆).

Theorem 5.2.1 shows that Conjecture 5.1.1, if true, is essentially best possible.

5.2 Chromatic number and girth

First, we need some basic definitions. The total degree of a vertex v is the number of arcs

incident to v. The maximum total degree of D, denoted by ∆(D), is the maximum of all

total degrees of vertices in D.

It is proved in [8] that there are digraphs of arbitrarily large digirth and chromatic

number. Our result is an analogue of the aforementioned result of Bollobás [9] and Kostochka

and Mazurova [40]. Note that the result involves the girth and not the digirth.

Theorem 5.2.1. Let g and ∆ be positive integers. There exists a digraph D of girth at

least g, with ∆(D) ≤ ∆, and χ(D) ≥ a∆/ log ∆ for some absolute constant a > 0. For ∆

sufficiently large we may take a = 1
5e .

Proof. Our proof is in the spirit of Bollobás [9]. We may assume that ∆ is sufficiently large.

Let D = D(n, p) be a random digraph of order n defined as follows. For every u, v ∈
V (D), we connect uv with probability 2p, independently. Now we randomly (with probabil-

ity 1/2) assign an orientation to every edge that is present. Observe that D has no digons.

We will use the value p = ∆
4en , where e is the base of the natural logarithm.

Claim 5.2.2. D has no more than ∆g cycles of length less than g with probability at least

1− 1
∆ .

Proof. Let Nl be the number of cycles of length l in D. Then, by linearity of expectation

E[Nl] ≤
(
n

l

)
l!(2p)l ≤ nl(2p)l ≤ (∆

4 )l.

Therefore, the expected number of cycles of length less than g is at most ∆g−1. So the

probability that D has more than ∆g cycles of length less than g is at most 1/∆ by Markov’s

inequality (see Appendix A, Theorem A.1.2).
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Claim 5.2.3. There is a set A of at most n/1000 vertices of D such that ∆(D − A) ≤ ∆

with probability at least 1
2 .

Proof. As in [9], define the excess degree of D to be ex(D) =
∑

di>∆(di −∆), where di is

the total degree of the ith vertex. Clearly, there is a set of at most ex(D) arcs (or vertices)

whose removal reduces the maximum total degree of D to ∆. Let Xd be the number of

vertices of total degree d, d = 0, 1, ..., n− 1. Then ex(D) =
∑n−1

d=∆+1(d−∆)Xd.

Now, we estimate the expectation of Xd. By linearity of expectation, and using the

bound
(
n
k

)
≤ ( enk )k, we have:

E[Xd] ≤ n

(
n− 1

d

)
(2p)d

≤ n

(
e(n− 1)

d

)d( ∆

2en

)d
≤ n

(
∆

2d

)d
.

Therefore, by linearity of expectation we have that, for ∆ sufficiently large,

E[ex(D)] ≤
n−1∑

d=∆+1

nd

(
∆

2d

)d

≤ n∆

2

n−1∑
d=∆+1

(
∆

2d

)d−1

≤ n∆

2

n−1∑
d=∆+1

(
1

2

)d−1

≤ n∆

2
·

(1
2)∆

1− 1
2

= n · ∆

2∆

≤ n

2000
.

Now, by Markov’s inequality, P[ex(D) > n/1000] < 1/2.
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Let α(D) be the size of a maximum acyclic set of vertices in D. The following result

will be used in the proof of our next claim and also in Section 5.3.

Theorem 5.2.4 ([60]). Let D ∈ D(n, p) and w = np. There is an absolute constant W

such that: If p satisfies w ≥W , then, asymptotically almost surely (on n),

α(D) ≤
(

2

log q

)
(logw + 3e),

where q = (1− p)−1.

Claim 5.2.5. Let α(D) be the size of a maximum acyclic set of vertices in D. Then

α(D) ≤ 4en log ∆
∆ with high probability, where the asymptotic is in terms of n .

Proof. Since ∆ is sufficiently large, Theorem 5.2.4 applies and using the fact 1 − p ≤ e−p,

the result follows.

Now, pick a digraph D that satisfies the three claims. After removing at most n/1000 +

∆g ≤ n/100 vertices, the resulting digraph D∗ has maximum degree at most ∆ and girth

at least g. Clearly, α(D∗) ≤ α(D). Therefore, χ(D∗) ≥ n(1−1/100)
4en log ∆

∆

≥ ∆
5e log ∆ .

5.3 Local 2-colorings and the chromatic number

A result of Erdős [23] states that there exist graphs of large chromatic number where the

induced subgraph on any constant fraction number of the vertices is 3-colorable. In par-

ticular, it is proved that for every k there exists ε > 0 such that for all n sufficiently large

there exists a graph G of order n with χ(G) > k and yet χ(G[S]) ≤ 3 for every S ⊂ V (G)

with |S| ≤ εn.

The 3-colorability in the aforementioned theorem cannot be improved. A result of Kier-

stead, Szemeredi and Trotter [39] (with later improvements by Nelli [54] and Jiang [37])

shows that every 4-chromatic graph of order n contains an odd cycle of length at most 8
√
n.

We prove the following analog for digraphs. Our proof follows the proof of the result of

Erdős found in [4].

Theorem 5.3.1. For every k, there exists ε > 0 such that for every sufficiently large integer

n there exists a digraph D of order n with χ(D) > k and yet χ(D[S]) ≤ 2 for every S ⊂ V (D)

with |S| ≤ εn.
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Proof. Clearly, we may assume that log k ≥ 3 and k ≥
√
W , where W is the constant in

Theorem 5.2.4. Let us consider the random digraph D = D(n, p) with p = k2

n and let

0 < ε < k−5.

We first show that χ(D) > k with high probability. Since k is sufficiently large, Theo-

rem 5.2.4 implies that α(D) ≤ 6n log k/k2 with high probability. Therefore, almost surely

χ(D) ≥ 1
6k

2/ log k > k.

Now, we show that with high probability every set of at most εn vertices can be colored

with at most two colors . Suppose there exists a set S with |S| ≤ εn such that χ(D[S]) ≥ 3.

Let T ⊂ S be a 3-critical subset, i.e. for every v ∈ T , χ(D[T ] − v) ≤ 2. Let t = |T |. For

every v ∈ T , min{d+
D[T ](v), d−D[T ](v)} ≥ 2 for otherwise a 2-coloring of D[T ] − v could be

extended to D[T ]. Therefore, every vertex in T has total degree of at least 4 in D[T ] which

implies that D[T ] has at least 2t arcs. The probability of this is at most

∑
3≤t≤εn

(
n

t

)(
2
(
t
2

)
2t

)(
k2

n

)2t

≤
∑

3≤t≤εn

(en
t

)t(et(t− 1)

2t

)2t(k2

n

)2t

≤
∑

3≤t≤εn

(
e3tk4

4n

)t

≤ εn max
3≤t≤εn

(
7tk4

n

)t
(5.1)

If 3 ≤ t ≤ log2 n, then
(

7tk4

n

)t
≤
(

7 log2 nk4

n

)t
≤
(

7 log2 nk4

n

)3
= o( 1

n).

Similarly, if log2 n ≤ t ≤ εn, then
(

7tk4

n

)t
≤ (7εk4)t ≤ ( 7

k )t ≤ ( 7
k )log2 n = o( 1

n).

These estimates and (5.1) imply that the probability that χ(D[S]) ≤ 2 is o(1). This

completes the proof.

We show that 2-colorability in the previous theorem cannot be decreased to 1 due to the

following theorem.

Theorem 5.3.2. If D is a digraph with χ(D) ≥ 3 and of order n, then it contains a directed

cycle of length o(n).

Proof. In the proof we shall use the following digraph analogue of Erdős-Posa Theorem.

Reed et al. [57] proved that for every integer t, there exists an integer f(t) so that every

digraph either has t vertex-disjoint directed cycles or a set of at most f(t) vertices whose

removal makes the digraph acyclic.
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Define h(n) = max{t : tf(t) ≤ n}. It is clear that h(n) → ∞. Let c be the length of a

shortest directed cycle in D.

If D has h(n) vertex-disjoint directed cycles, then ch(n) ≤ n which implies that c ≤
n

h(n) = o(n). Otherwise, suppose that h(n) = t. There exists a set S of vertices with

|S| = f(t) such that V (D)\S is acyclic. Since χ(D) ≥ 3, we have that χ(D[S]) ≥ 2, which

implies that S contains a directed cycle of length at most |S| = f(t) ≤ n
t = n

h(n) = o(n).



Chapter 6

Acyclic Homomorphisms

6.1 Introduction

In this chapter, we study a generalization of the digraph chromatic number. All the new

results discussed here can be found in [32]. The main result of this chapter is Theorem

6.2.3, which can be found, along with an alternate proof, in [32]. For undirected graphs, a

natural generalization of coloring is the homomorphism of graphs. Given graphs G and H, a

homomorphism from G to H is a function φ : V (G)→ V (H) such that for every uv ∈ E(G),

φ(u)φ(v) ∈ E(H). It is well-known (and easy to see) that a graph G is r-colorable if and

only if there exists a homomorphism from G to the complete graph Kr. In general, we say

that G is H-colorable if there is a homomorphism from G to H. Graph homomorphisms

have been studied extensively in the literature and we refer the reader to [35].

One can generalize the notion of the digraph chromatic number. In a similar fashion,

our digraphs are simple, i.e. loopless and without multiple arcs. However, we allow two

vertices u, v to be joined by two oppositely directed arcs, uv and vu.

An acyclic homomorphism of a digraph D into a digraph C is a function φ : V (D) →
V (C) such that:

(i) for every vertex v ∈ V (C), the subdigraph of D induced by φ−1(v) is acyclic;

(ii) for every arc uv ∈ E(D), either φ(u) = φ(v), or φ(u)φ(v) is an arc of C.

If digraphs C and D are obtained from undirected graphs G and H, respectively, by

replacing every edge by two oppositely directed arcs, then acyclic homomorphisms between

48
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C and D correspond to usual graph homomorphisms between G and H. In this sense,

acyclic homomorphisms can be viewed as a generalization of the notion of homomorphisms

of undirected graphs.

In the same way as usual graph homomorphisms generalize the notion of graph colorings,

the acyclic homomorphisms generalize colorings of digraphs, where complete graphs are

replaced by complete bidirected graphs. Motivated by this, we say that a digraph D is

C-colorable if there is an acyclic homomorphism from D to C.

Acyclic homomorphisms were introduced in [28]. The authors studied the complexity of

D-coloring. They proved the following theorems.

Theorem 6.1.1 ([28]). Let D be a digraph that contains a directed cycle. Then the acyclic

D-coloring problem is NP-complete.

Let C3 be the directed triangle. Then the above theorem can be strengthened.

Theorem 6.1.2 ([28]). The acyclic C3-coloring problem is NP-complete even when re-

stricted to planar digraphs.

Let C2 be the directed two cycle, i.e., the digon. It is easy to see that for a digraph

D, χ(D) ≤ 2 if and only if D is C2-colorable. We mentioned previously that deciding 2-

colorability for general digraphs is NP-complete. The next result strengthens this theorem.

Theorem 6.1.3 ([28]). The acyclic C2-coloring problem is NP-complete even when re-

stricted to planar digraphs.

6.2 D-colorable digraphs of large girth

A classical result of Erdős [22] asserts that for all integers k and g there exist graphs with

chromatic number k and with girth at least g. Bollobás and Sauer [10] strengthened this

result by showing that there are such graphs which are, moreover, uniquely k-colorable. Zhu

[66] extended Bollobás and Sauer’s result to homomorphisms into general graphs. Rather

recently, the results of [66] have been extended by Nešetřil and Zhu [48] to give a simulta-

neous generalization of Zhu’s two primary results. The results of this chapter extend these

theorems to digraphs with acyclic homomorphisms.

Zhu [66] generalized Erdős’ result as follows.
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Theorem 6.2.1 ([66]). If G and H are graphs such that G is not H-colorable, then for

every positive integer g, there exists a graph G∗ of girth at least g that is G-colorable but

not H-colorable.

To recover Erdős’ result, we simply take G = Kk and H = Kk−1.

For digraphs, the following analog of Erdős’ theorem was proved by Bokal et. al. [8].

Theorem 6.2.2 ( [8]). For every g ≥ 3 and k ≥ 1, there exists a digraph D with digirth at

least g and χ(D) ≥ k.

The proof of the above theorem is in the same vein as that of Erdős. In fact, the

method of proof yields a stronger result: the digirth in the statement of Theorem 6.2.2 can

be replaced with girth. The purpose of this chapter is to extend Theorem 6.2.2 to acyclic

homomorphisms. We will prove the following.

Theorem 6.2.3. If D and C are digraphs such that D is not C-colorable, then for any

positive integer g, there exists a digraph D∗ of girth at least g that is D-colorable but not

C-colorable.

6.3 Proof of Theorem 6.2.3

This section is devoted to the proof of Theorem 6.2.3. Suppose that V (D) = {1, 2, . . . , k}
and that q = |E(D)|. Let n be a (large) positive integer, and let Dn be the digraph

obtained from D as follows: replace every vertex i with a stable set Vi of n ordered vertices

v1, v2, ..., vn, and replace each arc ij of D by the set of all possible n2 arcs from Vi to Vj .

Clearly, |V (Dn)| = kn and |E(Dn)| = qn2.

Now fix a positive ε < 1/(4g). Our random digraph model D = D(Dn, p) consists

of those spanning subdigraphs of Dn in which the arcs of Dn are chosen randomly and

independently with probability p = nε−1.

As usual in nonconstructive probabilistic proofs of results of this nature, the idea is to

show that most digraphs in D have only a few short cycles, and for most digraphs H ∈ D,

the subdigraph of H obtained by removing an arbitrary small set of arcs is not C-colorable.

Choosing an H ∈ D with both these properties, we can force the girth to be large by deleting

an arc from each short cycle. Since the set A0 of deleted arcs is small, the resulting digraph

H −A0 satisfies the desired conclusion of Theorem 6.2.3.
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To make this description more precise, let D1 denote the set of digraphs in D containing

at most dngεe cycles of length less than g, and let D2 be the set of digraphs H ∈ D that

have the property that H −A0 is not C-colorable for any set A0 of at most dngεe arcs. We

will show that

|D1| >
(

1− n−ε/2
)
|D| (6.1)

and

|D2| >
(
1− e−n

)
|D| . (6.2)

Since (6.1) and (6.2) imply that D1 ∩ D2 6= ∅ (for sufficiently large n), there exists a

digraph H ∈ D1 ∩ D2. Now H ∈ D1 implies that there is a set A0 of at most dngεe arcs

whose removal leaves a digraph D∗ :=H −A0 of girth at least g, while H ∈ D2 means that

D∗ is not C-colorable. Thus, it remains to establish (6.1) and (6.2).

Proof of (6.1). The expected number N` of cycles of length ` in a digraph H ∈ D is at most(
kn

`

)
(`− 1)! p` (6.3)

since there are
(
kn
`

)
(` − 1)! ways of choosing a cyclic sequence of ` vertices as a candidate

for a cycle, and such an `-cycle occurs in D with probability either 0 or p`. It is easy to see

that the product of the first two factors in (6.3) is smaller than (kn)`/`. Therefore, if n is

large enough, then

g−1∑
`=2

N` ≤
g−1∑
`=2

1

`
(knε)` < kg−1n(g−1)ε < n−ε/2ngε.

Now (6.1) follows easily from Markov’s Inequality.

Proof of (6.2). We shall argue that |D r D2| < e−n|D|. If H ∈ D r D2, then there is a

set A0 of at most dngεe arcs of H so that H − A0 admits an acyclic homomorphism h to

C. Let k′ = |V (C)|. By the pigeonhole principle, for each i ∈ V (D), there exists a vertex

xi ∈ V (C) such that |Vi ∩ h−1(xi)| ≥ n/k′. Define φ : V (D) → V (C) by setting φ(i) = xi.

Since n/k′ � ngε, the set Vi ∩ h−1(xi) contains a subset Wi of cardinality w := dn/(2k′)e
such that no arc in A0 has an end vertex in Wi.

Since D is not C-colorable, the function φ is not an acyclic homomorphism. Therefore,

either there is an arc ij ∈ E(D) such that φ(i) 6= φ(j) and φ(i)φ(j) is not an arc of C, or

there is a v ∈ V (C) such that the subdigraph of D induced on φ−1(v) contains a cycle.
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We first consider the case when ij is an arc of D such that φ(i) 6= φ(j) and φ(i)φ(j) is

not an arc of C. Since h is an acyclic homomorphism, there are no arcs from Wi to Wj in

H −A0. By the definition of Wi and Wj , neither are there such arcs in H.

Let us now estimate the expected number M of pairs of sets A ⊆ Vi, B ⊆ Vj , with

|A| = |B| = w, such that ij ∈ E(D) and such that there is no arc from A to B in H ∈ D
(we call such a pair A,B a bad pair). By the linearity of expectation, we have

M = q

(
n

w

)2

(1− p)w2
< q
(nw
w!

)2
(1− p)w2

= q
(n2(1− p)w)w

(w!)2
. (6.4)

Since w grows linearly with n, for sufficiently large n we have

n2(1− p)w < e−2k′ and
q

(w!)2
<

1

2
.

Therefore Markov’s Inequality and (6.4) yield

Pr(∃ a bad pair) <
e−n

2
. (6.5)

Suppose now that there is a v ∈ V (C) such that D contains a cycle Q whose vertices are

all in φ−1(v). Suppose that Q = i1i2 · · · it. Observe that 2 ≤ t ≤ k. Since φ(Q) = {v}, we

conclude that h(Wi1) = h(Wi2) = · · · = h(Wit) = {v}. Since h is an acyclic homomorphism,

the subdigraph of H induced on Wi1 ∪Wi2 ∪ · · · ∪Wit is acyclic.

Let us consider all sequences of sets Uj1 , Uj2 , . . . , Uj` such that, for r = 1, 2, . . . , `, we

have Ujr ⊆ Vjr and |Ujr | = w, and the vertex sequence j1j2 · · · j` is a cycle in D. Let U(`)

the subdigraph of H induced on Uj1 ∪Uj2 ∪ · · · ∪Uj` . Let P` := Pr(U(`) is acyclic). We say

that this sequence is bad if U(`) is acyclic. Since the expected number N of bad sequences

is the sum of the corresponding expectations over all possible cycle lengths, we have

N ≤
k∑
`=2

(
k

`

)
(`− 1)!

(
n

w

)`
P`. (6.6)

In order to bound N , we first bound the probabilities P`.

Lemma 6.3.1. There exists a constant γ > 0 (not depending on n) such that P` ≤ e−γn
1+ε

for every integer ` ∈ {2, 3, . . . , k}.

The proof invokes the Janson Inequalities (see Appendix, Theorems A.2.1 and A.2.2).

Proof of Lemma 6.3.1. We use the Janson Inequalities. Here, Ω denotes the set of all

potential arcs (in Dn, as defined at the start of Section 6.3) between the sets Uji , i =
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1, ..., `, (introduced just prior to our statement of Lemma 6.3.1); each arc in Ω appears with

probability p.

Let s be a (large) multiple of `; the value of s will be independent of n and specified

below. Now, let us enumerate those cycles of Dn that are of length s, and that cyclically

traverse Uj1 , Uj2 , ..., Uj` s/` times. For j ≥ 1, denote by Sj the arc set of the jth such cycle

and by Bj the event that the arcs in Sj all appear in H (i.e. the cycle determined by Sj is

present in H). Let the random variable X count those Bj that occur. Since Pr(X = 0) (the

probability that there is no such cycle of length s) is an upper bound for P` (the chance

that U(`) is acyclic), we can bound P` by bounding Pr(X = 0), and estimating the latter

quantity is exactly the purpose of Janson’s Inequalities. In the Janson paradigm, the value

of ∆ is defined by

∆ =
∑
Si∼Sj

Pr(Bi ∩Bj), (6.7)

where Si ∼ Sj if the two cycles determined by Si and Sj have at least one arc in common.

First, we find an upper bound for ∆. Letting i remain fixed, we (rather crudely) obtain

∆ ≤ ns
∑

j:Si∼Sj
Pr(Bi ∩Bj), (6.8)

since each |Ur| ≤ n and each |Si| = s. The sum on the right side satisfies

∑
j:Si∼Sj

Pr(Bi ∩Bj) ≤
s−1∑
r=1

(
s

r

)
p2s−rws−(r+1). (6.9)

The binomial coefficient in (6.9) accounts for the number of ways to choose the arcs of

Si∩Sj , the power of p is Pr(Bj |Bi) Pr(Bi), the power of w reflects the facts that each U -set

has cardinality w and, with i fixed, there are at most s − (r + 1) vertices in the Sj-cycle

not already in the Si-cycle. Recalling that w = dn/(2k′)e (so that w < n), using the gross

bound
(
s
r

)
< 2s, and replacing p with nε−1, we find that

∑
j:Si∼Sj

Pr(Bi ∩Bj) < 2s
s−1∑
r=1

p2s−rns−(r+1) = 2s
s−1∑
r=1

n2εs−s−rε−1 < 2ssn2εs−s−ε−1.

With (6.8), the last estimate yields

∆ < 2ssn2εs−ε−1. (6.10)
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Next, we find a lower bound for µ := E[X]. Since there are ` U -sets, each containing

w vertices, and each ordered choice of s/` vertices from each (up to the choice of the first

vertex) contributes 1 to X with probability at least ps, we have

µ ≥ 1

s

(
w

s/`

)` [(s
`

)
!
]`
ps.

Therefore,

µ ≥ 1

s

(
w!

(w − s/`)!

)`
ps ≥ 1

s

(
w − s

`

)s
ps ≥ 1

s

( n

4k′

)s
nεs−s =

nεs

s(4k′)s
. (6.11)

We distinguish two cases.

Case 1: ∆ ≥ µ.

Here, we have the hypotheses of the Extended Janson Inequality, which, along with our

bounds (6.10), (6.11) gives

Pr(X = 0) ≤ e−µ
2/(2∆) < e−n

1+ε/(2s3(32k′2)s).

Case 2: ∆ < µ.

Now we have the hypotheses of the basic Janson Inequality, which together with (6.11) gives

Pr(X = 0) ≤ e−µ+∆/2 < e−µ/2 ≤ e−n
εs/(2s(4k′)s).

Let s > 1 + (1 + ε)/ε be a multiple of `. Then the last bound shows that

Pr(X = 0) ≤ e−n
1+ε(nε/(2s(4k′)s)) ≤ e−n

1+ε
.

Since s and k′ are constants (not depending on n), in either case we see that

P` ≤ Pr(X = 0) ≤ e−γn
1+ε

for some constant γ > 0. This gives us Lemma 6.3.1.

We return to our estimation of the expected numberN of bad sequences in (6.6), repeated

here for convenience:

N ≤
k∑
`=2

(
k

`

)
(`− 1)!

(
n

w

)`
P`.
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Using Lemma 6.3.1 to bound the factors P` in this sum shows that for n large enough,

N ≤
k∑
`=2

(
k

`

)
(`− 1)!

(
n

w

)`
e−γn

1+ε
<

k∑
`=2

e−n

2k
<

e−n

2
. (6.12)

From (6.12) and Markov’s Inequality, we conclude that

Pr(∃ a bad sequence) <
e−n

2
. (6.13)

Since φ fails to be an acyclic homomorphism exactly when there exists a bad pair or there

exists a bad sequence, (6.5) and (6.13) now show that

|D rD2| ≤ (Pr(∃ bad pair) + Pr(∃ bad sequence)) |D| < e−n |D| ,

which yields (6.2).

6.4 Uniquely D-colorable digraphs

The notion of colorability can be extended to unique colorability. A graph (digraph) G is

uniquely H-colorable if it is surjectively H-colorable and for any two coloring φ, ψ of G,

there is an automorphism π of H such that φ = πψ. A graph (digraph) G is a core if it is

uniquely G-colorable.

Theorem 6.2.3 has the following similar result. The proof can be found in [32].

Theorem 6.4.1 ([32]). For any core D and any positive integer g, there is a digraph D∗ of

girth at least g that is uniquely D-colorable.

Theorem 6.4.1 is a generalization of its graph analog proved by Zhu [66].

Theorem 6.4.2 ([66]). For any graph H that is a core and any positive integer g, there is

a graph H∗ of girth at least g that is uniquely H-colorable.

Theorem 6.4.1 immediately applies to digraph circular colorings as discussed in the next

section

6.5 Circular chromatic number of digraphs

Recall that there are digraphs with arbitrary large digirth and chromatic number. In [8],

the authors proved the following generalization to the circular chromatic number.



CHAPTER 6. ACYCLIC HOMOMORPHISMS 56

Theorem 6.5.1 ([8]). There exist digraphs with arbitrary large girth and arbitrary large

circular chromatic number.

Here we present a theorem that generalizes the above result.

Let d ≥ 1 and k ≥ d be integers. Let C(k, d) be the digraph with vertex set Zk =

{0, 1, . . . , k − 1} and arcs

E(C(k, d)) = {ij | j − i ∈ {d, d+ 1, . . . , k − 1}},

where the subtraction is considered in the cyclic group Zk of integers modulo k.

Acyclic homomorphisms into C(k, d) are an important concept because of their relation

to the circular chromatic number of digraphs; cf. [8]. It is shown in [8] that D is C(k, d)-

colorable if and only if k/d ≥ χc(D).

In [32], the authors show that Theorem 6.4.1 implies the following generalization of

Theorem 6.5.1.

Theorem 6.5.2 ([32]). If k and d are relatively prime integers and 1 ≤ d ≤ k, then for

every integer g, there exists a uniquely C(k, d)-colorable digraph of girth at least g and with

circular chromatic number equal to k/d.



Chapter 7

3-colorings of planar graphs

7.1 Introduction

In Chapter 2, we mentioned that every graph can be 3-colored so that each color class

induces a forest and that this bound is sharp (see Chartrand et al. [15]). In this chapter,

we show that there are in fact exponentially many 3-colorings of this kind for any planar

graph. The same result holds in the setting of 3-list-colorings.

Let us recall that a partition of vertices of a graph G into classes V1∪ · · ·∪Vk is an arboreal

partition if each Vi (1 ≤ i ≤ k) induces a forest in G. A function f : V (G) → {1, . . . , k} is

called an arboreal k-coloring if Vi = f−1(i), i = 1, . . . , k, form an arboreal partition. The

vertex-arboricity a(G) of the graph G is the minimum k such that G admits an arboreal

k-coloring.

It is an easy consequence of 5-degeneracy of planar graphs that every planar digraph D

without cycles of length at most 2 and its associated underlying planar graph G satisfy

χ(D) ≤ a(G) ≤ 3. (7.1)

The main result of this chapter is a relaxation of Conjecture 2.4.1 and a strengthening

of the above stated inequality (7.1). In particular, we prove the following.

Theorem 7.1.1. Every planar graph of order n has at least 2n/9 arboreal 3-colorings.

Corollary 7.1.2. Every planar digraph of order n without cycles of length at most 2 has

at least 2n/9 3-colorings.

57
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Let us observe that Theorem 7.1.1 cannot be extended to graphs embedded in the torus

since a(K7) = 4 and K7 admits an embedding in the torus. However, for every orientation

D of K7, we have χ(D) ≤ 3 (and in some cases χ(D) = 3), so it is possible that Corollary

7.1.2 extends.

The proof of Theorem 7.1.1 is deferred until Section 7.4. Actually, we shall prove an

extended version in the setting of list-colorings. Given a list-assignment L for the vertices

of graph G, we say that L is a k-list-assignment if |L(v)| = k for every v ∈ V (G).

Theorem 7.1.3. Let L be a 3-list-assignment for a planar graph G of order n. Then G has

at least 2n/9 L-colorings.

Corollary 7.1.2 then extends to the list coloring of digraphs.

7.2 Unavoidable configurations

We define a configuration as a plane graph C together with a function δ : V (C) → N such

that δ(v) ≥ degC(v) for every v ∈ V (C). A plane graph G contains the configuration (C, δ)

if there is an injective mapping h : V (C)→ V (G) such that the following statements hold:

(i) For every edge ab ∈ E(C), h(a)h(b) is an edge of G.

(ii) For every facial walk a1 . . . ak in C, except for the unbounded face, the image h(a1) . . . h(ak)

is a facial walk in G.

(iii) For every a ∈ V (C), the degree of h(a) in G is equal to δ(a).

If v is a vertex of degree k in G, then we call it a k-vertex , and a vertex of degree at least

k (at most k) will also be referred to as a k+-vertex (k−-vertex ). A neighbor of v whose

degree is k is a k-neighbor (similarly k+- and k−-neighbor).

We will prove the following theorem.

Theorem 7.2.1. Every planar triangulation contains one of the configurations listed in

Fig. 7.1.

Proof. The proof uses the discharging method. Assume, for a contradiction, that there is a

planar triangulation G that contains none of the configurations shown in Fig. 7.1. We shall

refer to these configurations as Q1, Q2, . . . , Q23.
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Let G be a counterexample of minimum order. To each vertex v of G, we assign a charge

of c(v) = deg(v)− 6. A well-known consequence of Euler’s formula is that the total charge

is always negative,
∑

v∈V (G) c(v) = −12. We are going to apply the following discharging

rules:

R1: A 7-vertex sends charge of 1/3 to each adjacent 5-vertex.

R2: A 7-vertex sends charge of 1/2 to each adjacent 4-vertex.

R3: An 8+-vertex sends charge of 1/2 to each adjacent 5-vertex.

R4: An 8+-vertex sends charge of 3/2 to each adjacent 4-vertex whose neighbors have

degrees 8+, 7, 6, 6.

R5: An 8+-vertex sends charge of 3/4 to each adjacent 4-vertex whose neighbors have

degrees 8+, 8+, 7+, 6.

R6: An 8+-vertex sends charge of 1/2 to each adjacent 4-vertex whose neighbors have

degrees 8+, 7+, 7+, 7+.

R7: An 8+-vertex sends charge of 1 to each adjacent 4-vertex whose neighbors have degrees

8+, 8+, 6, 6 or 8+, 7, 7, 6.

Let c∗(v) be the final charge obtained by applying rules R1–R7 to all vertices in G. We will

show that every vertex has non-negative final charge. This will yield a contradiction since

the initial total charge of −12 must be preserved.

We say that a 4-vertex is bad if its neighbors have degrees 8+, 7, 6, 6, i.e., the rule R4

applies to it and its 8+-neighbor. Let us observe that the clockwise order of the neighbors

of a bad vertex is 8+, 7, 6, 6 (or 8+, 6, 6, 7) since Q7 is excluded.

First, note that G has no 3−-vertices since the configuration Q1 is excluded and since a

triangulation cannot have 2−-vertices.

4-vertices: Let v be a 4-vertex. Note that v cannot have a 5−-neighbor since Q2 is

excluded. If all of v’s neighbors have degree at most 7, then they all have degree exactly

7 since Q6, Q7 and Q8 are excluded. Since the vertex v has initial charge of −2, and each

7-neighbor sends a charge of 1/2 to it, the final charge of v is 0.
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Now, assume that v is adjacent to an 8+-vertex. First, assume that the remaining three

neighbors v1, v2, v3 of v are all 7−-vertices. The vertices v1, v2, v3 cannot have all degree 6

since Q8 is excluded. If deg(v1) = 7 and deg(v2) = deg(v3) = 6, then the rules R2 and R4

imply that v receives a charge of 2, resulting in the final charge of 0. If deg(v1) = deg(v2) = 7

and deg(v3) = 6, then by rules R2 and R7, v again receives a charge of 2. The case where

deg(v1) = deg(v2) = deg(v3) = 7 is similar through rules R2 and R6.

Next, assume that v has exactly two 8+-neighbors v1, v2. If the remaining two vertices

v3, v4 are both 7-vertices, then rules R2 and R7 imply that v receives a total charge of at

least 3, giving it the final charge of 1. If the remaining two vertices are both 6-vertices, then

rule R7 implies that v receives a total charge of 2, resulting in 0 final charge. Therefore, we

may assume that deg(v3) = 7 and deg(v4) = 6. In this case, both v1 and v2 send a charge

of 3/4 to v by R5, and v3 sends a charge of 1/2, resulting in a final charge of 0 for v.

Finally, assume that v has at least three 8+-neighbors. By rule R5 (if v has a 6-neighbor),

or by rules R2 and R6 (if v has a 7-neighbor), or by rule R6 (otherwise), we see that v receives

a total charge of at least 2, so c∗(v) ≥ 0.

5-vertices: Let v be a 5-vertex. Note that v is not adjacent to a 4-vertex. If all

neighbors of v are 7−-vertices, then exclusion of Q8 and Q10 implies that v has at least

three 7-neighbors. By R1, each such neighbor sends a charge of 1/3 to v. Since v has initial

charge of −1, its final charge is at least 0. Next, suppose that v has an 8+-neighbor. If

v has at least two 8+-neighbors, then by rule R3, v receives a charge of 1/2 from each of

them, resulting in the final charge of at least 0 for v. Therefore, we may suppose that v has

exactly one 8+-neighbor. If v has at least two 7-neighbors, then by R1 and R3, v receives a

total charge of at least 1/2+1/3+1/3 > 1, resulting in a positive final charge for v. Finally,

if v has at most one 7-neighbor, then we get the configuration Q8 or Q10.

6-vertices: They have initial charge of 0, and by the discharging rules, they do not give

or receive any charge, which implies that they have a final charge of 0.

7-vertices: They have an initial charge of +1 and they send charge only to 4-vertices

and 5-vertices. Let v be a 7-vertex. If v has no 4-neighbors then it has at most three

5-neighbors since Q11 is excluded. Therefore, it sends a charge of 1/3 to each such vertex,

resulting in the final charge of 0 for v. Next, suppose that v has at least one 4-neighbor.

Since Q12 is excluded, v has at most one other 5−-neighbor. Therefore, v sends a charge of

at most 1/2 + 1/2 = 1, resulting in the final charge of at least 0 for v.
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8-vertices: An 8-vertex v has initial charge of +2. Since Q13 is excluded, v has at

most two 4-neighbors. Now, suppose that v has exactly two 4-neighbors, say v1 and v2.

We consider two subcases. First, assume that v has a 5-neighbor. Excluding Q2 and Q15,

no vertex in N(v1) ∩ N(v) and N(v2) ∩ N(v) has degree at most 6. If the two vertices in

N(v1)∩N(v) are both 7-vertices, then v1 has no 6−-neighbor (Q2 and Q16 being excluded).

This implies that v sends charge of 1/2 to v1. Otherwise, the two vertices in N(v1)∩N(v) are

an 8+ and a 7+-vertex, respectively. This implies that by rules R5 and R6, v sends charge

of 3/4 or 1/2 to v1. Therefore, in all cases, v sends no more than 3/4 charge to v1. An

identical argument shows that v sends a charge of at most 3/4 to v2. Since v sends a charge

of 1/2 to a 5-vertex, we have that v sends a total charge of at most 3/4 + 3/4 + 1/2 = 2.

Secondly, assume that v has no 5-neighbors. Consider v1. Excluding Q7 and Q17, v1 is not

a bad 4-vertex. Therefore, v sends charge of at most 1 to v1. An identical argument shows

that v sends charge of at most 1 to v2. Therefore, the final charge of v is non-negative.

Next, suppose that v has exactly one 4-neighbor, say v1. First, suppose that v1 is a bad

4-vertex. Excluding Q7 and Q16, v has at most one 5-neighbor. Since v sends a charge of

at most 3/2 to v1 and charge 1/2 to its 5-neighbor, its final charge is at least 0. Thus, we

may assume that v1 is not a bad 4-vertex. Then v sends at most charge of 1 to v1. Because

Q18 is excluded, v has at most two 5-neighbors, to each of which it sends a charge of 1/2.

Therefore, v sends a total charge of at most 1 + 1/2 + 1/2 = 2, which implies that it has a

non-negative final charge.

Finally, suppose that v has no 4-neighbors. Excluding Q19, v has at most four 5-

neighbors, to each of which it sends charge of 1/2. Therefore, the final charge of v is again

non-negative.

9-vertices: A 9-vertex v has a charge of +3. Since Q20 is excluded, v has at most three

4-neighbors. First, suppose that v has exactly three 4-neighbors. Since Q20 is excluded, v

has no 5-neighbor and since Q21 is excluded, none of its 4-neighbors are bad. Therefore, in

this case v sends charge of at most 1 to each 4-neighbor, resulting in a non-negative final

charge. Secondly, suppose that v has exactly two 4-neighbors. We consider two subcases.

For the first subcase, suppose that none of the 4-neighbors are bad. Now, v has at most

two 5-neighbors since Q22 is excluded. This implies that v sends total charge of at most

1 + 1 + 1/2 + 1/2 = 3 to its neighbors, resulting in a non-negative final charge for v. For

the second subcase, assume that v has at least one bad 4-neighbor. Now, the exclusion of

Q21 implies that v has no 5-neighbors. Thus, v sends total charge of at most 3/2 + 3/2 = 3,
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and therefore c∗(v) ≥ 0. Thirdly, suppose that v has exactly one 4-neighbor. The exclusion

of Q22 implies that v has at most three 5-neighbors, and hence it sends out a total charge

of at most 3/2 + 1/2 + 1/2 + 1/2 = 3, resulting in c∗(v) ≥ 0. Lastly, assume that v has no

4-neighbors. Excluding Q4 we see that v has at most six 5-neighbors. This implies that v

sends a total charge of at most 6× 1/2 = 3 to its neighbors, thus c∗(v) ≥ 0.

10-vertices: A 10-vertex v has a charge of +4. Let v1, . . . , v10 be the neighbors of v in

the cyclic order around v. If vi is a bad 4-neighbor of v and deg(vi−1) = 7, deg(vi+1) = 6,

then the absence of Q3 and Q9 implies that deg(vi+2) ≥ 6 and deg(vi−2) ≥ 5. The absence of

Q5 also implies that if vi+3 is another bad 4-neighbor, then deg(vi+2) = 7, thus deg(vi+4) = 6

and deg(vi+5) ≥ 6 (all indices modulo 10). By excluding Q23 and Q4, we conclude that if v

has two bad 4-neighbors, then it has no other 4-neighbor and has at most two 5-neighbors.

This implies that c∗(v) ≥ 0. Suppose now that v has one bad 4-neighbor, say v2. We

may assume deg(v1) = 7, deg(v3) = 6 and by the arguments given above, deg(v10) ≥ 5,

deg(v4) ≥ 6. Excluding Q4, v can have at most four 5-neighbors. Thus, the only possibility

that c∗(v) < 0 is that v has 3 more 4-neighbors (and the only way to have this is that the

4-neighbors are v5, v7, v9) or that v has two more 4-neighbors and two 5-neighbors (in which

case 4-neighbors are v5, v7 and 5-neighbors are v9, v10). In each of these cases, we see, by

excluding Q3 and Q5, that deg(v4) ≥ 7, deg(v6) ≥ 7 and deg(v8) ≥ 7. Thus, excluding Q9,

v sends charge of at most 3/4 to each of v5 and v7 and at most 1 together to both v9 and

v10. Thus, c∗(v) ≥ 4− 3/2− 2× 3/4− 1 = 0.

Suppose now that v has no bad 4-neighbors. If v has five 4-neighbors, then they are

(without loss of generality) v1, v3, v5, v7, v9 and excluding Q3 and Q4 we see that deg(vj) ≥ 7

for j = 2, 4, 6, 8, 10. This implies (by the argument as used above) that v sends charge of at

most 3/4 to each 4-neighbor, thus c∗(v) ≥ 4−5×3/4 > 0. Similarly, if v has one 5-neighbor

v1 and four 4-neighbors v3, v5, v7, v9, then we see as above that v sends charge of at most

3/4 to each 4-neighbor, and thus c∗(v) ≥ 4− 4× 3/4− 1/2 > 0. If v has three 4-neighbors,

then the exclusion of Q2 and Q4 implies that it has at most two 5-neighbors. Similarly, if

v has two 4-neighbors, then it has at most four 5-neighbors. If v has one 4-neighbor, then

it has at most five 5-neighbors. If v has no 4-neighbors, it has at most six 5-neighbors. In

each case, c∗(v) ≥ 0.

11+-vertices: Let v be a d-vertex, with d ≥ 11. Let v1, . . . , vd be the neighbors of v

in cyclic clockwise order, indices modulo d. Suppose that vi is a bad 4-vertex. Then we
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may assume that deg(vi−1) = 7 and deg(vi+1) = 6 (or vice versa), since Q7 is excluded.

By noting that the fourth neighbor of vi has degree 6, we see that deg(vi+2) ≥ 6 (since Q3

is excluded) and deg(vi−2) ≥ 5 (since Q9 is excluded). If vi is a good 4-vertex, then its

neighbors are 6+-vertices. Now, we redistribute the charge sent from v to its neighbors so

that from each bad 4-vertex vi we give 1/2 to vi−1 and 1/2 to vi+1, and from each good

4-vertex vi we give 1/4 to vi−1 and 1/4 to vi+1. We claim that after the redistribution, each

neighbor of v receives from v at most 1/2 charge in total. This is clear for 4-neighbors of v.

A 5-neighbor of v is not adjacent to a 4-vertex since Q2 is excluded, so it gets charge of at

most 1/2 as well. The claim is clear for each 6-neighbor of v since it is adjacent to at most

one 4-vertex (Q3 is excluded). If a 7-neighbor vj of v satisfies deg(vj+1) = deg(vj−1) = 4,

the exclusion of Q9 implies that both vj−1 and vj+1 are good 4-vertices. Thus, the claim

holds for 7-neighbors of v. An 8+-neighbor of v cannot be adjacent to a bad 4-neighbor of v,

and therefore it receives charge of at most 1/2 from v after the redistribution. This implies

that if d ≥ 12, then the final charge at v is c∗(v) ≥ c(v)− 1
2d ≥ 0.

Thus, it remains to consider the case when d = 11. In this case the same conclusion as

above can be made if we show that either the redistributed charge at one of the vertices vi

is 0, or that there are two vertices whose redistributed charge is at most 1/4. If there exists

a good 4-vertex, then there exists a good 4-vertex vi, one of whose neighbors, say vi−1, gets

1/4 total redistributed charge. This is easy to see since d = 11 is odd and Q9 is excluded.

Let t ≥ 0 be the largest integer such that vi, vi+2, . . . , vi+2t are all good 4-neighbors of v.

Then it is clear that vi+2t+1 has total redistributed charge 1/4 and that vi−1 6= vi+2t+1 (by

parity). This shows that the total charge sent from v is at most 5, thus the final charge

c∗(v) is non-negative. Thus, we may assume that v has no good 4-neighbors. If v has a bad

4-neighbor vi, then we may assume that deg(vi−1) = 7 and deg(vi+1) = 6. As mentioned

above, we conclude that deg(vi+2) ≥ 6. We are done if this vertex has 0 redistributed charge.

Otherwise, vi+2 is adjacent to another bad 4-neighbor vi+3 of v. Since vi, vi+1, vi+2, vi+3 do

not correspond to the excluded configuration Q5, we conclude that deg(vi+2) = 7. Now

we can repeat the argument with vi+3 to conclude that vi+6, vi+9 are also bad 4-vertices

and deg(vi+8) = 7. However, since deg(vi−1) = 7, we conclude that vi+9 cannot be a bad

4-vertex and hence there is a neighbor of v with redistributed charge 0.

Thus, v has no 4-neighbors. Now the only way to send charge 1/2 to each neighbor of

v is that all neighbors of v are 5-vertices. However, in this case we have the configuration

Q4.
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7.3 Reducibility

This section is devoted to the reducibility part of the proof of our main result, Theorem

7.1.3. Let G be a planar graph and L a 3-list-assignment. It is sufficient to prove the

theorem when G is a triangulation. Otherwise, we triangulate G and any L-coloring of the

triangulation is an L-coloring of G. Of course, we only consider arboreal L-colorings, and

we omit the adverb “arboreal” in the sequel.

A configuration C contained in G is called reducible if |C| ≤ 9 and any L-coloring of

G − C can be extended to an L-coloring of G in at least two ways. Showing that every

triangulation G contains a reducible configuration will imply that G has at least 2|V (G)|/9

arboreal L-colorings.

Here we prove our main theorem by showing that each configuration from Section 5.2 is

reducible. The following lemma will be used throughout this section to prove reducibility.

Lemma 7.3.1. Let G be a planar graph, L a 3-list-assignment for G, and v1, . . . , vk ∈ V (G).

Let Gi = G− {vi+1, . . . , vk} for i = 0, . . . , k and suppose that:

(1) for every i = 1, . . . , k, degGi(vi) ≤ 5, and

(2) there exists an i such that degGi(vi) ≤ 3.

Then every arboreal L-coloring of G0 can be extended to G in at least two ways. If only (1)

holds, then every arboreal L-coloring of G0 can be extended to G.

Proof. Let f be an L-coloring of G0. Since v1 has degree at most 5 in G1, there is a color

c ∈ L(v1) such that c appears at most once on NG1(v1). Therefore, coloring v1 with c gives

an L-coloring of G1. Repeating this argument, we see that the L-coloring of G0 can be

extended to an L-coloring of G by consecutively L-coloring v1, v2, . . . , vk. If (2) holds for i,

then there are actually two possible colors that can be used to color vi. Therefore, every

L-coloring of G0 can be extended to G in at least two ways.

Lemma 7.3.2. Configurations Q1, . . . , Q5, Q8, . . . , Q12, Q16, . . . , Q19, Q21, Q22 listed in

Fig. 7.1 are reducible. The configuration Q′23 that is obtained from Q23 by deleting the

pendant vertex with δ(v) = 4 is also reducible.

Proof. For these configurations Qi, Q
′
j we simply apply Lemma 7.3.1. The corresponding

enumeration v1, . . . , vk (k = |V (Qi)| or k = |V (Q′j)|) is shown in Figure 7.2 and the vertex

for which condition (2) of Lemma 7.3.1 applies is shown by a larger circle.
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Lemma 7.3.3. Configuration Q6 in Fig. 7.1 is reducible.

Proof. Let u be the 4-vertex and let u1, u2, u3, u4 be its neighbors in cyclic order and let C

be the cycle u1u2u3u4. Suppose that deg(u1) = deg(u2) = 7, deg(u3) ≤ 7 and deg(u4) = 6.

Let f be an L-coloring of G−{u, u1, u2, u3, u4}. Now, consider u2. If there are at least two

ways to extend the coloring f to u2, then we can obtain at least two different colorings for

G by sequentially coloring u3, u1, u4, u using Lemma 7.3.1. Therefore, we may assume that

L(u2) = {1, 2, 3} and that colors 1 and 2 each appear exactly twice on N(u2). Now, let us

color u2 with color 3. We now consider coloring u1 and u3. We claim that at least one of u1

and u2 must be forced to be colored 3. Otherwise, we color u1 and u2 without using color

3, then we color u4 arbitrarily (this is possible since u is yet uncolored). Now, if 3 ∈ L(u),

then we can color u with 3 since u2 has no neighbor of color 3. Moreover, there is at most

one color (other than color 3) that can appear on the neighborhood of u twice. Therefore, u

has another available color in its list. Therefore, there are two ways to color u. Similarly, we

get two different colorings of u when 3 /∈ L(u). This proves the claim, and we may assume

that L(u1) = {a, b, 3}, u1 is forced to be colored 3, and that the four colored neighbors of u1

not on C have colors a, a, b, b. Now, we color u3 arbitrarily with a color c. We may assume

that c 6= 3, for otherwise we color u4 arbitrarily and we will have two available colors for u.

To complete the proof it is sufficient to show that u4 can be colored with a color that is not

c, for then we could color u with at least two different colors. If u4 is forced to be colored

c, then for every color x ∈ L(u4), x 6= c, the color x must appear at least twice on N(u4).

This implies that the three colored neighbors of u4 not on the cycle have colors 3, y, y, for

some color y and that 3, y ∈ L(u4). But recall that u1 and u2 have no neighbors outside C

having color 3. Therefore, coloring u4 with color 3 gives a proper coloring of G − u. Now,

u can be colored with at least two colors to obtain a coloring of G.

Lemma 7.3.4. Let u be a 4-vertex, and suppose u1, u2, u3, u4 are the neighbors of u in

cyclic order. Suppose that deg(u1) ≤ 6, deg(u2) ≤ 7 and deg(u3) ≤ 6. This configuration is

reducible. In particular, the configuration Q7 in Fig. 7.1 is reducible.

Proof. Let f be an L-coloring of G − {u, u1, u2, u3}. Suppose that f(u4) = 3. Let C be

the cycle u1u2u3u4u1. Now, consider u1. Since only four of u1’s neighbors are colored and

f(u4) = 3, we can color u1 with a color other than 3, say 2. Now, consider coloring u2. We

have two cases. First suppose that it is possible to color u2 with a color that is not 2. In

this case, we color u2 with a color x 6= 2, and then arbitrarily color u3 with a color y (this
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is possible since u is not yet colored). Now, if u does not have two colors on N(u), each

appearing twice, we have two different available colors in L(u). Therefore, we may assume

that x = 3 and y = 2, and that 2, 3 ∈ L(u). Now, let z ∈ L(u)\{2, 3}. Clearly, coloring u

with color z gives a proper coloring of G. But by planarity of G, for one of the colors 2 and

3, coloring u with this color will not create a monochromatic cycle since a 2-colored path

joining u1 and u3 and a 3-colored path from u2 to u4 would cross. Therefore, there are two

colors available for u.

Next suppose that u2 is forced to be colored with color 2. Let L(u2) = {a, b, 2}. Since u2

is forced to be colored 2, we have that the four neighbors of u2 not on C have colors a, a, b, b.

Now, consider u3. We may assume that u3 is forced to be colored with color 3 for otherwise

we could color u with two different colors afterwards. This implies that 2, 3 ∈ L(u3) and

that the three neighbors of u3 not on C have colors 2, d, d, where d ∈ L(u3)\{2, 3}. Note

that this way we get one coloring extension of f . We need to get another one. Now, since

u3 cannot be colored 2, and u2 has no neighbor outside C of color 2, it follows that u1

must have a neighbor of color 2 not on C. Now we color u3 with color 3. Since u1 has five

colored neighbors and color 2 appears on N(u) at least twice, we may change the color 2 of

u1 to another color in its list. Now, an extension of this coloring to u gives us the second

L-coloring.

Lemma 7.3.5. A configuration consisting of an 8-vertex that is adjacent to at least three

4-vertices (configuration Q13) is reducible.

Proof. Let v1 be an 8-vertex and suppose v2, v3, v4 are 4-vertices adjacent to v1. Let C

be the cycle on the neighbors of v1. Let L(v1) = {1, 2, 3}. Consider a 3-coloring f of

G1 = G − {v2, v3, v4}. We may assume that v1 is colored 3. Since every L-coloring of

G1 extends to G, we may assume that v1 cannot be recolored. Thus, (at least) two of its

neighbors are colored 1 and two are colored 2. If no neighbor of v1 is colored 3, then we can

extend the coloring to v2 in two ways since the vertex v1 cannot be part of a monochromatic

cycle. Thus, color 3 appears exactly once on N(v1) and colors 1 and 2 appear precisely

twice. It is also clear that 3 ∈ L(v2) ∩ L(v3) ∩ L(v4). Let v5 be the neighbor of v1 with

f(v5) = 3. Without loss of generality, v5 is not the neighbor of v2 on the cycle C. If v2 has

no neighbor colored 3 except v1, then we may extend the coloring f to G − {v3, v4} in at

least two ways. We can then extend these colorings to G. Therefore, we may assume that

v2’s neighbor distinct from its neighbors on the cycle C is colored 3. Now, v2’s neighbors
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on the cycle both have the same color for otherwise we can extend f to G2 = G− {v3, v4}
in at least two ways. Therefore, we may assume that the neighbors of v2 on the cycle are

colored 1 and that 1 ∈ L(v2). But now, by planarity, coloring v2 by either 1 or 3 gives a

proper L-coloring of G2. Coloring v2 with the other remaining color in its list gives a second

coloring of G2. Both of these colorings can be then extended to G. Therefore, there are at

least two ways to extend a coloring of G1 to G.

Lemma 7.3.6. Let u be an 8-vertex and assume its neighbors (in the clockwise cyclic order)

are u1, . . . , u8 and let C be the 8-cycle u1u2 . . . u8u1. Suppose that u is adjacent to two 4-

vertices, one 5-vertex, and a 6-vertex that is adjacent to either the 5-vertex or one of the

two 4-vertices on C. Then this configuration (Q14 or Q15) is reducible.

Proof. Suppose that deg(ui) = deg(uj) = 4, deg(uk) = 5 and deg(ul) = 6, where i, j, k, l ∈
{1, . . . , 8} and i 6= j. First assume that uk and ul are adjacent on C. We may assume

l = k+1. Let L(u) = {1, 2, 3} and consider an L-coloring f of G−{u, ui, uj , uk, ul}. Without

loss of generality, we may assume that colors 1 and 2 each appear exactly twice on N(u) in

the coloring f . Otherwise, there are two ways to extend the coloring f ofG−{u, ui, uj , uk, ul}
to a coloring of G− {ui, uj , uk, ul}, and applying Lemma 7.3.1 we can extend each of these

to a coloring of G. Therefore, color 3 does not appear in the neighborhood of u in the

coloring f . We color u with color 3 to obtain a coloring g of G − {ui, uj , uk, ul}. Now,

consider the 6-vertex uk+1. Since uk+1 has only five colored neighbors so far, we have at

least one available color for it from its list L(uk+1). If 3 /∈ L(uk+1) we color uk+1 arbitrarily

with an available color. If 3 ∈ L(uk+1), we color uk+1 with 3 if color 3 does not appear on

N(uk+1)\{u}. If color 3 appears on N(uk+1)\{u}, we color uk+1 with any other color in its

list except 3 (this is possible since the remaining three colored neighbors of uk+1 can forbid

only one additional color from L(uk+1)). Now, consider one of the 4-vertices, say ui. We

may assume that ui 6= uk+2, otherwise we consider uj . First, assume that 3 /∈ L(ui). Since

ui has only three colored neighbors and u is colored 3, there are at least two available colors

in L(ui) that can be used to color ui. Each coloring then can be extended to a coloring of G

by Lemma 7.3.1. Therefore, we may assume that 3 ∈ L(ui). Recall that no neighbor of u,

except possibly uk+1, is colored 3. Therefore, ui can be colored with color 3 without creating

a monochromatic cycle of color 3, since any such cycle must use the vertex uk+1, and by

assumption if uk+1 is colored 3, it has no neighbor except u that is colored 3. Therefore,

the four colored neighbors of ui can forbid at most one color from L(ui), which implies that



CHAPTER 7. 3-COLORINGS OF PLANAR GRAPHS 68

we can color ui with two different colors. Now, applying Lemma 7.3.1 to G − {uk, uj}, we

see that each of these two colorings can be extended to a coloring of G.

Next, assume that ul and uj are adjacent on C. We may assume that ul = uj+1. If

ui 6= uj+2, then the above proof works also in this case. Thus, we have ui = uj+2. However,

in this case we can use Lemma 7.3.1 (with v1 = ui, v2 = u, v3 = uj+1, v4 = uj , v5 = uk),

where property (2) applies for v1.

Lemma 7.3.7. A configuration consisting of a 9-vertex adjacent to at least three 4-vertices

and at least one other 5−-vertex is reducible. In particular, Q20 is reducible.

Proof. Let v1 be a 9-vertex and suppose v2, v3, v4 are 4-vertices and v5 is a 5-vertex adjacent

to v1. Let L(v1) = {1, 2, 3}. Consider an L-coloring f of G1 = G−{v1, . . . , v5}. This coloring

can be extended to v1 and henceforth to v2, . . . , v5 by Lemma 7.3.1. We may assume that

v1 is forced to be colored 3; otherwise we are done. This implies that each of colors 1 and

2 appear on N(v1) at least twice. If color 3 does not occur on N(v1), then we can extend f

to v2 in at least two ways since color 3 does not give any restriction on the extension to v2,

and the remaining three neighbors of v2 prevent at most one color to be used. Therefore,

we may assume that colors 1 and 2 appear exactly twice and color 3 appears exactly once

on N(v1) in the coloring f . Let v6 be the neighbor of v1 with f(v6) = 3. Without loss of

generality, v2 is not contained in the triangular faces containing the edge v1v6. Let v7, v8

be the common neighbors of v1 and v2. If v2 has no neighbor of color 3 except v1, or if

3 /∈ L(v2), then we can extend the coloring f to v2 in at least two ways. We can then

extend these colorings to G. Therefore, we may assume that the neighbor of v2 distinct

from v1, v7, v8 is colored 3. Now, v7 and v8 both have the same color, for otherwise we can

extend f to v2 in at least two ways. This implies that we may assume that v7 and v8 are

colored 1 and that 1 ∈ L(v2). But now, by planarity, coloring v2 by 1 or 3 gives rise to a

proper coloring since a path joining v7 and v8 colored 1 and a path colored 3 joining v1 and

the fourth neighbor of v2 would cross. Coloring v2 with the other remaining color in its list

gives another extension of f . Both of these colorings can be then extended to G by Lemma

7.3.1. This shows that the considered configuration is reducible.
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7.4 Proof of the main theorem

It is easy to see that every plane graph is a spanning subgraph of a triangulation; we can

always add edges joining distinct nonadjacent vertices until we obtain a triangulation.

Proof of Theorem 7.1.3. The proof is by induction on the number of vertices, n = |G|.
We may assume that G is a triangulation. By Theorem 7.2.1 and Lemmas 7.3.2–7.3.7, G

contains a reducible configuration C on at most k ≤ 9 vertices. By the induction hypothesis,

G − V (C) has at least 2(n−k)/9 arboreal L-colorings. Since C is reducible, each of these

colorings extends to G in at least two ways, giving at least 2 × 2(n−k)/9 ≥ 2n/9 arboreal

L-colorings in total.
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Figure 7.1: Unavoidable configurations. The listed numbers refer to the degree function
δ, and the notation d− at a vertex v means all such configurations where the value δ(v) is
either d or d− 1.
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Figure 7.2: Lemma 7.3.1 applies to several configurations.



Chapter 8

Conclusion and Future Work

In this chapter, we outline possible directions for future research.

8.1 Upper bounds on χ(D) in terms of ∆(D)

In the thesis, we proved that every digon-free digraph D has χ(D) ≤ (1−e−13)∆̃. A natural

question is if the proof of the theorem can be extended to list colorings, i.e. is it true that

χl(D) ≤ (1 − e−13)∆̃? The main difficulty seems to be in showing that the concentration

inequalities would still hold. We also mentioned that the constant 1− e−13 is probably not

best possible and conjecture the following.

Conjecture 8.1.1. Let D be a digon-free digraph. Then

χ(D) ≤

⌈
∆̃

2

⌉
+ 1.

We may also generalize the above mentioned conjecture to list colorings. In general, we

believe that the asymptotic order of the chromatic number of a digon-free digraph should

be ∆̃/ log ∆̃, as conjectured by Mohar and McDiarmid [44].

Conjecture 8.1.2. Every digraph D without digons has χ(D) = O( ∆̃
log ∆̃

).

Again, we believe this should generalize to list colorings as well. As mentioned in Chapter

2, the conjecture is best possible due to results known about tournaments (see Theorem

2.3.6).

72



CHAPTER 8. CONCLUSION AND FUTURE WORK 73

8.2 The planar digraph conjecture

The main conjecture concerning colorings of planar digraphs is that every digon-free planar

digraph is 2-colorable, see Conjecture 2.4.1. Since this is likely to be difficult, we pose the

following relaxations of this conjecture.

Conjecture 8.2.1. Let D be a digon-free planar digraph such that all cycles of length 3

(directed or otherwise) are vertex-disjoint. Then χ(D) ≤ 2.

The above conjecture is a weakening of a conjecture for vertex-arboricity of graphs posed

by Raspaud and Wang [55] in 2008. The authors conjectured that every planar graph where

all triangles are vertex-disjoint have vertex-arboricity at most 2. Clearly, this conjecture

would imply Conjecture 8.2.1 since a 2-coloring of a graph G gives a 2-coloring of digraph

D, where D is obtained by arbitrarily orienting the edges of G. We can also try weakening

Conjecture 2.4.1 by forbidding directed cycles of certain lengths.

Conjecture 8.2.2. Let D be a planar digraph with digirth at least 4. Then χ(D) ≤ 2.

If we also forbid non-directed triangles of length three then the above conjecture follows

trivially. This follows from the fact that every triangle-free planar graph has a vertex of

degree at most three. This implies that the digraph has a vertex v with min{d+(v), d−(v)} ≤
1. Now, applying induction on D − v we get that D is 2-colorable.

One can also state the following weakening of Conjecture 8.2.2.

Conjecture 8.2.3. There exists a k such that every planar digraph with digirth at least k

is 2-colorable.

8.3 The relationship between χ(G) and χ(D)

Recall that every graph G has an orientation D of edges so that χ(D) = 1. Neumann-Lara

asked the question whether there is an orientation D of the edges of G so that χ(D) is large.

Clearly, χ(D) is always bounded above by χ(G) for any orientation D. Neumann-Lara

conjectured the following.

Conjecture 8.3.1. For every k ≥ 1 there exists an r = r(k) so that every graph G with

χ(G) ≥ r has an orientation of edges D such that χ(D) ≥ k.
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The conjecture clearly holds for k = 1. For k = 2, it is easy to observe that we may

take r(k) = 3 . However, we do not even know if the conjecture holds for k = 3. Conjecture

8.3.1 also holds for complete graphs where r = θ(k log k) as can be seen from the discussion

of the chromatic number of tournaments in Chapter 2.

8.4 Chromatic polynomial for digraphs

An interesting notion is the chromatic polynomial of a digraph. For a (undirected) graph G

and positive integer x, P (G;x) is defined to be the number of colorings of G with x colors.

Note that we distinguish between colorings with the same color class partitions where the

colors of the classes are different. It can be shown that P (G;x) is a polynomial in x for

every graph G. Hence, P (G;x) is called the chromatic polynomial of the graph G. One of

the main motivations for studying P (G;x) is that χ(G) = min{k : P (G; k) > 0}. For every

graph G, the chromatic polynomial is known to admit the following nice recurrence.

Theorem 8.4.1. Let G be a graph and uv ∈ E(G). Then

P (G;x) = P (G− uv;x)− P (G/uv;x), (8.1)

where G/uv is the graph obtained from G by deleting the edge uv and identifying vertices u

and v.

One can similarly define a chromatic polynomial for a digraph. Given a digraph D

and a positive integer x, we can define P (D;x) to be the number of colorings of D with

x colors. One can derive that P (D;x) is a polynomial in x from results on hypergraph

polynomials. Note that a hypergraph H = (X, E) is a set X of elements called vertices and a

set E of subsets of X called hyperedges or simply edges. Note that graphs are precisely those

hypergraphs where each hyperedge contains two elements. The chromatic polynomials have

been studied in the setting of hypergraphs. The following theorem is from [19].

Theorem 8.4.2. Given a hypergraph H = (X, E), where X = {v1, ..., vn} and E= {e1, ..., em},
let fx1,...,xm(H, λ) denote the number of different λ-colorings of H satisfying the condition

that in each edge ei there appear at least xi different colors. Then f is a polynomial in λ.

The case where all xi = 2 has been proved earlier in [18], along with an inclusion-

exclusion recurrence. Note that digraph coloring can be formulated as a hypergraph coloring,
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where the vertices of the hypergraph are the vertices of the digraph and the hyperedges are

all the sets of vertices which contain a directed cycle in the digraph. Then Theorem 8.4.2

with xi = 2 for all i immediately implies the following.

Proposition 8.4.3. P (D;x) is a polynomial in x for every digraph D.

It is easy to compute the chromatic polynomial of the following digraphs.

Proposition 8.4.4. Let D be an acyclic digraph of order n. Then P (D;x) = xn.

Proof. Every assignment of colors to vertices of D is a proper coloring and there are xn

color assignments.

Proposition 8.4.5. Let D = ~Cn, the directed cycle of length n. Then P (D;x) = xn − x.

Proof. Every assignment of colors to vertices of D is a proper coloring except those where

all vertices are assigned the same color in {1, 2, ..., x}. There are x such assignments. Since

the total number of color assignments is xn the result follows.

We can also express the chromatic polynomial of a digraph in terms of the strongly

connected components.

Proposition 8.4.6. Let D be a digraph and let D1, D2, ..., Dk be the strongly connected

components of D. Then

P (D;x) =
k∏
i=1

P (Di;x).

Proof. Note that two strongly connected components Di and Dj , i 6= j, do not share a

vertex in common for otherwise Di and Dj would form a single component. Therefore,

P (D;x) ≤
∏k
i=1 P (Di;x). Now, for i = 1, ..., k, let πi be an x-coloring of Di. We claim that

π = ∪ki=1πi is an x-coloring of D. If not, then there is a monochromatic directed cycle that

uses vertices of at least two components Di and Dj . But this implies that the block digraph

of strongly connected components of D is not acyclic, a contradiction.

In general, it seems difficult to get a recursive formula for P (D;x) similar to 8.1. How-

ever, we can show the following.
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Proposition 8.4.7. Let C be a directed cycle in a digraph D such that no edges of C appear

in any other cycle of D. Then

P (D;x) = P (D − E(C);x)− P (D/C;x),

where D/C is the digraph obtained from D by deleting E(C) and identifying all vertices of

C.

Proof. Note that, by assumption, C cannot have any chords. Since no arc of C appears in

any other cycle, it follows that every x-coloring of D − E(C) is an x-coloring of D except

for those colorings which have vertices of C colored with the same color. Thus, it is easy

to see that the number of x-colorings of D−E(C) where the set V (C) is monochromatic is

P (D/C;x).

We can also reduce vertices of low degree.

Proposition 8.4.8. Let v be a vertex with min{d+(v), d−(v)} = 0 in a digraph D. Then

P (D;x) = xP (D − v;x).

Proof. Note that D1 = v is a strongly connected component of D. The result now follows

by Proposition 8.4.6.

Proposition 8.4.9. Let D be a digraph and v a vertex with d+(v) = d−(v) = 1. Let w be

the in-neighbor of v and u be the out-neighbor of v, where w 6= u. Let D′ be the digraph

with V (D′) = V (D)\{v} and E(D′) = E(D − v) ∪ {wu}. Then

P (D;x) = P (D′;x) + (x− 1)P (D − v;x).

Proof. We first claim that the number of k-colorings of D − v with no monochromatic uw-

path (i.e. a path starting at u and ending at w) is P (D′;x). Note that every coloring of

D− v with no monochromatic uw-path is a coloring of D′ and no proper coloring of D′ can

have a monochromatic uw-path. This establishes the claim. Next, note that the number of

colorings of D−v with a monochromatic uw-path is P (D−v;x)−P (D′;x). Now, a coloring

of D − v where there is no monochromatic path from u to w can be extended to a coloring

of D in x ways by coloring v arbitrarily. On the the other hand, a coloring of D − v with

a monochromatic uw-path can be extended to D by coloring v with one of the x− 1 colors
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that do not appear on u and w. Thus, we have

P (D;x) = xP (D′;x) + (x− 1)[P (D − v;x)− P (D′;x)]

= P (D′;x) + (x− 1)P (D − v;x).

8.4.1 The chromatic polynomial and planar digraphs

We mentioned that for a digraph D, P (D;x) is closely related to χ(D). Note that Conjecture

2.4.1 is equivalent to stating that for every digon-free planar digraphD, we have P (D; 2) > 0.

Since this conjecture seems difficult, we may try to find a lower bound on P (D; 3). Since

every digon-free planar digraph is 3-colorable (see Chapter 2), we know that P (D; 3) > 0.

In Chapter 7, we proved that P (D; 3) ≥ 2n/9, where n is the order of D. On the other hand,

we believe that P (D; 2) should be finite for any digon-free digraph D.

Conjecture 8.4.10. There exists a constant C such that P (D; 2) < C for any digon-free

digraph D.

Conjecture 8.4.10 seems to be difficult. In fact, it does not seem to be easy even if we

replace C by a polynomial in |V (D)|.

8.5 Hedetniemi’s Conjecture for digraphs

In this section, we propose an analog of Hedetniemi’s Conjecture for digraphs. First, we

need a definition. Given graph G and H, the direct product G×H of G and H is the graph

with vertex set V (G×H) = V (G)×V (H) where two vertices (u, u′) and (v, v′) are adjacent

if and only if u is adjacent with v and u′ is adjacent with v′. Hedetniemi’s conjecture states:

Conjecture 8.5.1 (Hedetniemi’s Conjecture). Let G and H be simple graphs. Then

χ(G×H) = min{χ(G), χ(H)}.

It is easy to verify that χ(G×H) ≤ min{χ(G), χ(H)} by simply considering the natural

homomorphism projections G×H → G and G×H → H. Aside from small values of χ(G)

and χ(H), Hedetniemi’s conjecture is largely open. Zhu [65] generalized the conjecture to

circular colorings.
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Conjecture 8.5.2 (Zhu’s Conjecture). Let G and H be simple graphs. Then

χc(G×H) = min{χc(G), χc(H)}.

One can also ask if Hedetniemi’s conjecture generalizes to digraphs. Given digraphs D

and D′, the direct product D×D′ of D and D′ is the digraph with vertex set V (D×D′) =

V (D)× V (D′) where there is an arc from vertex (u, u′) to vertex (v, v′) if and only if uv is

an arc in D and u′v′ is an arc in D′.

We conjecture that the following analog of Hedetniemi’s conjecture holds.

Conjecture 8.5.3. Let D and D′ be simple digraphs. Then

χ(D ×D′) = min{χ(D), χ(D′)}.

It is easy to see that χ(D ×D′) ≤ min{χ(D), χ(D′)}.

Proposition 8.5.4. Conjecture 8.5.3 holds if min{χ(D), χ(D′)} ≤ 2.

Proof. Suppose that min{χ(D), χ(D′)} = 1. We may assume that χ(D) = 1 and it follows

that D is acyclic. Note that D ×D′ cannot contain a cycle for otherwise the projection of

the cycle onto D would be a cycle in D. Therefore, χ(D ×D′) = 1.

Next, suppose that min{χ(D), χ(D′)} = 2. Let C = v1v2...vkv1 be a directed cycle in

D and C ′ = u1u2...ul be a directed cycle in D′. Then clearly the walk (v1, u1)(v2, u2)...

will eventually (after lcm(k, l) steps) reach (v1, u1). Therefore, D×D′ contains a cycle and

hence χ(D ×D′) = 2.



Appendix A

Probabilistic Preliminaries

Here we present all the probabilistic tools used in the thesis. The results presented here can

be found in [4] and [47]. The most fundamental property used in probabilistic analysis is

the linearity of expectation.

Theorem A.0.5 (Linearity of Expectation). Let X1, X2, ..., Xl be random variables. Then

E[
l∑

i=1

Xi] =
l∑

i=1

E[Xi].

A.1 The First Moment Method

The first moment method can essentially be summarized as follows.

Theorem A.1.1 (The First Moment Principle). Let X be a random variable. If E[X] ≤ t

then P[X ≤ t] > 0.

The following inequality is frequently used in probabilistic analysis.

Theorem A.1.2 (Markov’s Inequality). For any positive random variable X,

P[X ≥ t] ≤ E[X]

t
.

If X is positive and integer-valued, Markov’s inequality implies the following:

Theorem A.1.3. P[X > 0] ≤ E[X].
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The first moment method allows us to bound from above the probability that a random

variable is large by computing its expected value. The power of the method relies in the fact

that expected values are usually straightforward to compute due to linearity of expectation.

In the next section we discuss bounding from above the probability that a random variable

is small.

A.2 The Poisson Paradigm

When we have a random variable X that depends on many rare occurring and mostly

independent indicator random variables we would like to say that X has distribution that

is close to Poisson. In particular, we would like to say that P[X = 0] ≈ e−µ where µ is the

expectation of X. In this section, we present inequalities that achieve this.

A.2.1 The Janson Inequalities

Given a set of bad events Bi, i ∈ I, each of which has a small probability of occurring, we

would like to say that P[∩i∈IB̄i] is small. If the events Bi are mutually independent of each

other then this indeed is the case since P[∩i∈IB̄i] =
∏
i∈I P[B̄i]. Janson Inequalities (see

Chapter 8, [4]) to make a similar claim if the Bi are “almost” independent.

Let Ω be a finite universal set and let R be a random subset of Ω constructed as follows.

For each r ∈ Ω, we put r ∈ R with some probability pr, independently. Let Ai, i ∈ I be

subsets of Ω, where I is a finite index set. Let Bi be the event that Ai ⊆ R. That is, Bi

is the event that all the elements of Ai “won” their random coin flips and were put in R.

Let Xi be the indicator random variable for Bi, i.e. Xi = 1 if the event Bi occurred and 0

otherwise. Set X =
∑

i∈I Bi. Note that X counts the number of events Bi that occur, and

therefore, P[X = 0] = P[∩i∈IB̄i]. For i, j ∈ I, we write i ∼ j if i 6= j and Ai ∩ Aj 6= ∅. We

define

∆ =
∑
i∼j

P[Bi ∩Bj ].

The sum above is over all ordered pairs. Note that if i 6= j and not i ∼ j, then the events Bi

and Bj are independent. This means that ∆ is a kind of total measure of mutual dependence

of the Bi. Finally, we set

µ = E[X] =
∑
i∈I

P[Bi].
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Theorem A.2.1 (The Janson Inequality). Let Bi, i ∈ I, ∆ and µ be as above. Then

P[X = 0] = P[∩i∈IB̄i] ≤ e−µ+ ∆
2 .

Note that when ∆ ≥ 2µ, the bound in Theorem A.2.1 is useless. Fortunately, the

following extension can often be applied.

Theorem A.2.2 (The Extended Janson Inequality). Under the assumptions of Theorem

A.2.1 and the further assumption that ∆ ≥ µ,

P[X = 0] = P[∩i∈IB̄i] ≤ e−
µ2

2∆ .

A.3 The Lovász Local Lemma

If we have n mutually independent events each of which holds with a positive probability

p, we know that all events hold simultaneously with probability pn > 0. The local lemma

generalizes this statement to events which are only locally dependent.

Theorem A.3.1 (The Local Lemma). Let A1, ..., An be events in an arbitrary probability

space. A directed graph D = (V,E) on the set of vertices V = {1, 2, ..., n} is called a

dependency digraph for the events A1, ..., An, if for each i, 1 ≤ i ≤ n, the event Ai is

mutually independent of all the events {Aj : (i, j) /∈ E}. Suppose that D = (V,E) is a

dependency digraph for the above events and suppose there are real numbers x1, ..., xn such

that 0 ≤ xi < 1 and P[Ai] ≤ xi
∏

(i,j)∈E(1− xj) for all 1 ≤ i ≤ n. Then

P[∩ni=1Āi] ≥
n∏
i=1

(1− xi).

In particular, with positive probability no event Ai holds.

In practice, the following version is usually the most useful.

Theorem A.3.2 (The Local Lemma; Symmetric Version). Let A1, ..., An be events in an

arbitrary probability space. Suppose that each event Ai is mutually independent of a set of

all the other events Aj but at most d, and that P[Ai] ≤ p for all 1 ≤ i ≤ n. If 4pd ≤ 1, then

P[∩ni=1Āi] > 0.
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A.4 Concentration Inequalities

The first moment method states that a random variable X is at most E[X] with positive

probability. Often we would like to show that X is very close to E[X] with very high

probability. If this is the case, we say that X is concentrated . Concentration inequalities

are widely used in probabilistic combinatorics. The most common example of a concentrated

random variable is the binomial which is defined as follows. Suppose X =
∑n

i=1Xi, where

each Xi is a random variable that takes value 1 with probability p and 0 otherwise. If the

Xi are all mutually independent, we say that X is a binomial random variable and write

it as X = BIN(n, p). The following theorem, due to Chernoff, shows that the binomial

random variable BIN(n, p) is strongly concentrated around its mean np.

Theorem A.4.1 (Chernoff Bound). For any 0 ≤ t ≤ np,

P[|BIN(n, p)− np| > t] < 2e−t
2/3np.

Chernoff type bounds generalize to other random variables which are functions of inde-

pendent trials. The following theorem (see [47]) is an example of one such generalization.

Theorem A.4.2 (Simple Concentration Bound). Let X be a random variable determined

by n independent trials T1, ..., Tn, and satisfying the property that changing the outcome of

any single trial can affect X by at most c. Then

P[|X − E[X]| > t] ≤ 2e−
t2

2c2n .

Typically, c in Theorem A.4.2 is a constant not depending on n and t is a constant

fraction of E[X]. Therefore, the above bound is generally good when E[X] = Ω(n). Fortu-

nately, under some additional conditions we can still get strong concentration of X even if

E[X] = o(n). This can be achieved by Talagrand’s Inequality. The original inequality yields

a concentration around the median Med(X) of a random variable X.

Theorem A.4.3 (Talagrand’s Inequality (Median)). Let X be a nonnegative random vari-

able, not equal to 0, which is determined by n independent trials, T1, . . . , Tn and satisfies

the following conditions for some c, r > 0:

1. Changing the outcome of any single trial can affect X by at most c.

2. For any s, if X ≥ s, there are at most rs trials whose outcomes certify that X ≥ s.
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Then for any 0 ≤ t ≤Med(X),

P [|X −Med(X)| > t ] ≤ 4e
− t2

8c2rMed(X) .

To be clear, condition 2 states that for any s, there is a set of trials Ti1 , ..., Tif(s)
for

some f(s) ≤ rs so that changing the outcomes of all the other trials cannot cause X to be

less than s. In other words, showing the outcome of the trials Ti1 , ..., Tif(s)
is sufficient to

demonstrate that X ≥ s.

A problem with Theorem A.4.3 is that medians are often difficult to compute and there-

fore the inequality may not be easy to apply. Fortunately, there exists the following version

of the inequality that replaces Med(X) with E[X].

Theorem A.4.4 (Talagrand’s Inequality (Mean)). Let X be a nonnegative random variable,

not equal to 0, which is determined by n independent trials, T1, . . . , Tn and satisfies the

following conditions for some c, r > 0:

1. Changing the outcome of any single trial can affect X by at most c.

2. For any s, if X ≥ s, there are at most rs trials whose outcomes certify that X ≥ s.

Then for any 0 ≤ t ≤ E[X],

P
[
|X − E[X]| > t+ 60c

√
rE[X]

]
≤ 4e

− t2

8c2rE[X] .
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[27] P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2

(1935), 436–470.

[28] T. Feder, P. Hell, B. Mohar, Acyclic homomorphisms and circular colorings of digraphs,

SIAM J. Discrete Math. 17 (2003), 161–169.

[29] M. R. Fellows, J. Kratochvil, M. Middendorf, F. Pfeiffer, The complexity of induced

minors and related problems, Algorithmica 13 (1995), 266–282.

[30] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963), 373–395.

[31] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, 2001.

[32] A. Harutyunyan, M. Kayll, B. Mohar, L. Rafferty, Uniquely D-colorable digraphs of

large girth, submitted to The Canadian Journal of Mathematics.

[33] A. Harutyunyan, B. Mohar, Gallai’s Theorem for List Coloring of Digraphs, SIAM

Journal on Discrete Mathematics 25(1) (2011), 170–180.

[34] A. Harutyunyan, B. Mohar, Strengthened Brooks Theorem for digraphs of girth three,

submitted to The Electronic Journal of Combinatorics.

[35] P. Hell, J. Nesetril, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics

and its Applications, 2004.

[36] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

1985.

[37] T. Jiang, Small odd cycles in 4-chromatic graphs, J. Graph Theory 37 (2001), 115–117.

[38] A. Johansson, Asymptotic choice number for triangle free graphs, DIMACS Technical

Report (1996) 91–95.



BIBLIOGRAPHY 87

[39] H. Kierstead, E. Szemeredi, W.T. Trotter, On coloring graphs with locally small chro-

matic number, Combinatorica 4 (1984), 183–185.

[40] A. V. Kostochka, N. P. Mazurova, An inequality in the theory of graph coloring, Met

Diskret Analiz 30 (1977), 23-29 (in Russian).

[41] A. V. Kostochka, M. Stiebitz, B. Wirth, The colour theorems of Brooks and Gallai

extended, Discrete Mathematics 162 (1996) 299–303.

[42] H. V. Kronk, J. Mitchem, Critical point arboritic graphs, J. London Math. Soc. 9

(1974/75), 459–466.

[43] H. Lin, J. Shu, Spectral radius of digraphs with given dichromatic number, Linear

Algebra and its Applications 434 (2011), 2462–2467.

[44] C. McDiarmid, B. Mohar, private communication, 2002.

[45] B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory 43 (2003) 107–

116.

[46] B. Mohar, Eigenvalues and colorings of digraphs, Linear Algebra and its Applications

432 (2010) 2273–2277.

[47] M. Molloy, B. Reed, Graph Colouring and the Probabilistic Method, Springer, 2002.
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