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Abstract

In this paper, we study the question of finding a set of k vertex-disjoint cycles (resp.
directed cycles) of distinct lengths in a given graph (resp. digraph). In the context of
undirected graphs, we prove that, for every k ≥ 1, every graph with minimum degree at
least k2+5k−2

2 has k vertex-disjoint cycles of different lengths, where the degree bound is
best possible. We also consider other cases such as when the graph is triangle-free, or the k
cycles are required to have different lengths modulo some value r. In the context of directed
graphs, we consider a conjecture of Lichiardopol concerning the least minimum out-degree
required for a digraph to have k vertex-disjoint directed cycles of different lengths. We
verify this conjecture for tournaments, and, by using the probabilistic method, for regular
digraphs and digraphs of small order.
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1. Introduction

In this paper, we study degree conditions guaranteeing the existence in a graph (resp.
digraph) of a certain number of vertex-disjoint cycles (resp. directed cycles) whose lengths
satisfy particular properties. More precisely, not only we want cycles (resp. directed cycles)
being vertex-disjoint, but we also require their lengths to be different somehow. Namely,
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we first ask for the lengths to be different only, but then also request additional properties
on the lengths such as having the same remainder to some modulo.

After giving some preliminary results in Section 2, we start in Section 3 by studying
how the number of vertex-disjoint cycles of different lengths in an undirected graph behaves
in relation to the minimum degree of that graph. More precisely, we consider, given some
k ≥ 1, the minimum degree required for a graph to have at least k vertex-disjoint cycles of
different lengths (and sometimes additional length properties). We show that this value is
precisely k2+5k−2

2 for every k (Theorem 3.1). Several more constrained situations are then
considered, e.g. when the graph is triangle-free or the vertex-disjoint cycles are required to
be more than just of different lengths; in these situations as well, we exhibit bounds (most
of which are tight) on the least minimum degree required to guarantee the existence of the
k desired vertex-disjoint cycles. We also conjecture that for every D ≥ 3, every graph G
of large enough order verifying k + 1 ≤ δ(G) ≤ ∆(G) ≤ D has k vertex-disjoint cycles of
different lengths (see Conjecture 3.9). To support this conjecture, we prove it for k = 2
(Theorem 3.12). This in particular yields that every cubic graph of order more than 14
has two vertex-disjoint cycles of different lengths, which is tight (see Theorem 3.13).

We then consider, in Section 4, the same question for digraphs: What minimum out-
degree is required for a digraph to have at least k vertex-disjoint directed cycles of different
lengths? The existence of such a minimum out-degree was conjectured by Lichiardopol
in [8], who verified it for k = 2. We here give further support to Lichiardopol’s Conjecture
by showing it to hold for tournaments (see Corollary 4.6), and, using the probabilistic
method, for regular digraphs (Theorem 4.10) and digraphs of small order (Theorem 4.11).

2. Preliminaries

Let G be a graph and X a subset of V (G). We use G[X] to denote the subgraph of
G induced by X, and G −X to denote the subgraph of G induced by V (G)\X. For two
disjoint subsets X,Y of V (G), we denote by (X,Y )G the bipartite subgraph of G with all
edges between X and Y . For a subgraph H of G, we set G−H = G− V (H).

We now recall results, some of which are folklore, that guarantee the existence of cycles
under particular circumstances. These results will be used to obtain our main results.
First, by considering a longest path of a graph, the following result is easily observed.

Proposition 2.1. For every k ≥ 1, every graph of minimum degree at least k+ 1 contains
k cycles of different lengths.

Now, by considering a maximum cut of a graph, the following is also clear.

Proposition 2.2. Let G be a graph of minimum degree at least 2k−1, where k ≥ 1. Then
V (G) can be partitioned into sets S and T such that the bipartite subgraph (S, T )G has
minimum degree at least k.

An immediate consequence is:

Theorem 2.3. For every k ≥ 1, every graph of minimum degree at least 2k + 1 contains
k even cycles of different lengths.

Proof. By Proposition 2.2, we can partition V (G) into sets S and T such that the bipartite
subgraph G′ = (S, T )G has minimum degree at least k + 1. By Proposition 2.1, graph
G′ contains k cycles of different lengths. Since G′ is bipartite, all these cycles have even
length.
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Proposition 2.2 shows the existence, in any graph, of a cut such that every vertex has
‘many’ neighbors in the different partite set. In a different flavour, the following three
theorems concern cuts of graphs such that every vertex has ‘many’ neighbors in the same
partite set.

Theorem 2.4 (Stiebitz [11]). If s and t are non-negative integers, and G is a graph with
minimum degree at least s+ t+ 1, then the vertex set of G can be partitioned into two sets
which induce subgraphs of minimum degree at least s and t, respectively.

Theorem 2.5 (Kaneko [7]). Let s and t be integers with s ≥ 1 and t ≥ 1. Then for every
triangle-free graph G of minimum degree at least s + t, there exists a partition (S, T ) of
V (G) such that the induced subgraph G[S] is of minimum degree at least s, and the induced
subgraph G[T ] is of minimum degree at least t.

Theorem 2.6 (Diwan [4]). Let s and t be integers with s ≥ 2 and t ≥ 2. Then for every
graph G of girth at least 5 and of minimum degree at least s+ t− 1, there exists a partition
(S, T ) of V (G) such that the induced subgraph G[S] is of minimum degree at least s, and
the induced subgraph G[T ] is of minimum degree at least t.

Diwan proved in [5] the following result:

Theorem 2.7 (Diwan [5]). For every r ≥ 2, and for any natural number m, every graph
of minimum degree at least 2r − 1 contains a cycle of length 2m modulo r.

It is easy to see that when r is odd, for any natural number m, every graph of minimum
degree at least 2r − 1 contains a cycle of length m modulo r.

Corollary 2.8. For every k ≥ 1 and r ≥ 2, every graph G with

δ(G) ≥
{

2(k + 1)r − 1, if k is even and r is odd;
2kr − 1, otherwise,

has k cycles of different lengths all divisible by r.

Proof. If r is even, then δ(G) ≥ 2kr−1. By Theorem 2.7, there exist k cycles C0, C1, . . . , Ck−1
such that for each i, cycle Ci has length ir (mod kr). Clearly the k cycles have different
lengths all divisible by r.

If both k and r are odd, then δ(G) ≥ 2kr − 1. By Theorem 2.7, there exist k cycles
C0, C1, . . . , Ck−1 such that for each i, cycle Ci has length 2ir (mod kr). Since kr is odd,
the k cycles have different lengths all divisible by r.

If k is even and r is odd, then δ(G) ≥ 2(k + 1)r − 1. Note that k + 1 is odd. By the
analysis above, graph G contains k + 1 cycles of different lengths all divisible by r.

3. Disjoint cycles of different lengths in undirected graphs

Throughout this section, we exhibit conditions, notably in terms of minimum degree,
implying the existence of a certain number of vertex-disjoint cycles of different lengths in
a graph.
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3.1. Distinct lengths and relation to girth
The central question of this work is the following: What is the smallest minimum degree

f(k) required so that a graph with minimum degree f(k) has at least k vertex-disjoint cycles
of different lengths? We answer this question in the following result.

Theorem 3.1. a) For every k ≥ 1, there exists a minimum integer f(k) such that every
graph of minimum degree at least f(k) contains k vertex-disjoint cycles of different lengths.

b) We have f(k) =
k2 + 5k − 2

2
.

Proof. a) We proceed by induction on k. Clearly f(1) exists (and we have f(1) = 2).
Suppose that the assertion is true for k − 1 (where k ≥ 2), and let us study it for k. Let
G be an arbitrary graph of minimum degree at least f(k − 1) + k + 2. By Theorem 2.4,
there exists a partition (V1, V2) of V (G) such that G[V1] is of minimum degree at least
f(k− 1) and G[V2] is of minimum degree at least k+ 1. Then G[V1] contains k− 1 disjoint
cycles C1, . . . , Ck−1 of different lengths. By Proposition 2.1, subgraph G[V2] contains k
cycles of different lengths. Then one of these cycles has length distinct from those of
the cycles C1, . . . , Ck−1. We get then a collection of k vertex-disjoint cycles of different
lengths. So the assertion is true for k, and the result is proved. Furthermore, we have
f(k) ≤ f(k − 1) + k + 2.

b) We have f(i) ≤ f(i − 1) + i + 2 for 2 ≤ i ≤ k. By addition and simplification we

get f(k) ≤ f(1) + 4 + · · ·+ k + 2, hence f(k) ≤ 2 +
(k + 2)(k + 3)

2
− 6, which yields

f(k) ≤ k2 + 5k − 2

2
. (1)

On the other hand since the complete graph on f(k) + 1 vertices is of minimum degree
f(k), it contains k vertex-disjoint cycles of different lengths. It follows that f(k) + 1 ≥

3 + · · ·+ (k + 2), hence f(k) + 1 ≥ (k + 2)(k + 3)

2
− 3, which yields

f(k) ≥ k2 + 5k − 2

2
. (2)

From Inequalities (1) and (2), we get f(k) =
k2 + 5k − 2

2
.

One may naturally wonder how the girth parameter acts on the task of finding vertex-
disjoint cycles of distinct lengths. Towards this question, we show that, for triangle-free
graphs, the function f(k) from Theorem 3.1 can be improved to the function g(k) below,
which is again best possible.

Theorem 3.2. a) For every k ≥ 1, there exists a minimum integer g(k) such that every
triangle-free graph of minimum degree at least g(k) contains k vertex-disjoint cycles of
different lengths.

b) We have g(k) =
k2 + 3k

2
.

Proof. Using Theorem 2.5 in place of Theorem 2.4, mimicking the proof of Theorem 3.1
results in a straightforward proof of the first part of the statement. To see that the degree
bound is indeed best possible, consider the complete bipartite graph Kg(k),g(k), which is
triangle-free and has minimum degree g(k), and has k vertex-disjoint cycles of distinct
lengths.
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Quite similarly as in the proofs of Theorems 3.1 and 3.3, using Theorem 2.6 we can
refine the function f(k) for graphs with girth at least 5:

Theorem 3.3. a) For every k ≥ 1 and g ≥ 5, there exists a minimum integer gg(k) such
that every graph of girth g and minimum degree at least gg(k) contains k vertex-disjoint
cycles of different lengths.

b) We have gg(k) ≤ k2 + k + 2

2
.

We have no clue, however, whether the degree bound is tight here.

3.2. Distinct lengths modulo r
We now investigate the impact on the function f(k) in Theorem 3.1 if we additionally

require the vertex-disjoint cycles to be of specific lengths modulo some integer r. We start
by determining the best degree bound h(k) for even cycles (i.e. r = 2).

Theorem 3.4. a) For every k ≥ 1, there exists a minimum integer h(k) such that every
graph of minimum degree at least h(k) contains k vertex-disjoint even cycles of different
lengths.
b) We have h(k) = k2 + 3k − 1.

Proof. a) We proceed by induction on k. Clearly h(1) exists (and, by Theorem 2.3, we
have h(1) = 3). Suppose that the assertion is true for k − 1, for some k ≥ 2, and let us
study it for k. Let G be an arbitrary graph of minimum degree at least h(k−1)+2k+2. By
Theorem 2.4, there exists a partition (V1, V2) of V (G) such that G[V1] is of minimum degree
at least h(k − 1) and G[V2] is of minimum degree at least 2k + 1. Then G[V1] contains
k − 1 vertex-disjoint even cycles C1, . . . , Ck−1 being of different lengths. According to
Theorem 2.3, subgraph G[V2] contains k even cycles of different lengths. Then one of these
cycles has length distinct from those of the cycles C1, . . . , Ck−1. We get then a collection
of k vertex-disjoint even cycles of different lengths. So, the assertion is true for k, and the
result is proved. We also deduce h(k) ≤ h(k − 1) + 2k + 2.

b) We have h(i) ≤ h(i− 1) + 2i+ 2 for 2 ≤ i ≤ k. By addition and simplification, we

get h(k) ≤ h(1)+2(3+ · · ·+k+1), hence h(k) ≤ 3+2

(
(k + 1)(k + 2)

2
− 3

)
, which yields

h(k) ≤ k2 + 3k − 1. (3)

On the other hand since the complete graph on h(k) + 1 vertices is of minimum degree
h(k), it contains k vertex-disjoint even cycles of different lengths. It follows that h(k)+1 ≥

2 · 2 + · · ·+ 2(k + 1), hence h(k) + 1 ≥ 2

(
(k + 1)(k + 2)

2
− 1

)
, which yields

h(k) ≥ k2 + 3k − 1. (4)

We thus deduce h(k) = k2 + 3k − 1 from Inequalities (5) and (6).

We extend Theorems 3.1 and 3.4 to cycles having lengths multiple to a same value r.
Recall that the exact value of f2(k) is given in Theorem 3.4.

Theorem 3.5. a) Let r ≥ 3 be an integer. For every k ≥ 1, there exists a minimum
integer fr(k) such that every graph of minimum degree at least fr(k) contains k vertex-
disjoint cycles of different lengths all divisible by r.
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b) We have fr(k) ≤


k(k + 1)r − 1, if r is even;
(k2 + 2k − 1)r − 1, if both k and r are odd;
k(k + 2)r − 1, if k is even and r is odd,

and fr(k) ≥


k(k + 1)r

2
− 1, if r is even;

k(k + 1)r

2
, if r is odd.

Proof. a) We proceed by induction on k. Clearly fr(1) exists (and, by Theorem 2.7, we
have fr(1) ≤ 2r− 1). Suppose that the assertion is true for k − 1, where k ≥ 2, and let us
study it for k. Let G be an arbitrary graph of minimum degree at least

fr(k − 1) +

{
2(k + 1)r, if k is even and r is odd;
2kr otherwise.

According to Theorem 2.4, there exists a partition (V1, V2) of V (G) such that G[V1] is of
minimum degree at least fr(k−1) and G[V2] is of minimum degree at least 2(k+1)r−1 for
k even and r odd, and of minimum degree at least 2kr− 1 otherwise. Then G[V1] contains
k − 1 disjoint cycles C1, . . . , Ck−1 of different lengths all divisible by r. By Corollary 2.8,
subgraph G[V2] contains k cycles of different lengths all divisible by r. Then one of these
cycles has length distinct from those of the cycles C1, . . . , Ck−1. We get then a collection
of k disjoint cycles of different lengths all divisible by r. So the assertion is true for k, and
the existence is proved.

b) If r is even, then we have

fr(k) ≤ fr(k − 1) + 2kr

≤ fr(k − 2) + 2(k − 1)r + 2kr

≤ fr(1) +

k∑
i=2

2ir

= k(k + 1)r − 1.

If both k and r are odd, then we have

fr(k) ≤ fr(k − 1) + 2kr

≤ fr(k − 2) + 2kr + 2kr

≤ fr(k − 3) + 2(k − 2)r + 2kr + 2kr

≤ fr(1) +

(k−1)/2∑
i=1

2 · (4ir)

= (k2 + 2k − 1)r − 1.

If k is even and r is odd, then

fr(k) ≤ fr(k − 1) + 2(k + 1)r

≤ ((k − 1)2 + 2(k − 1)− 1)r − 1 + 2(k + 1)r

= k(k + 2)r − 1.

So the first assertion of b) is proved.
We now focus on the second assertion of b). For even r ≥ 4 and k ≥ 1, the complete

graph Kfr(k)+1 contains k vertex-disjoint cycles of different lengths, all divisible by r. It
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follows that fr(k)+1 ≥ r+2r+ · · ·+kr, which yields fr(k) ≥ k(k + 1)r

2
−1. For odd r ≥ 3

and k ≥ 1, the complete bipartite graph Kfr(k),fr(k) (of order 2fr(k)) contains k disjoint
cycles of different lengths, all divisible by r. It follows that 2fr(k) ≥ 2r + 4r + · · · + 2kr,

which yields fr(k) ≥ k(k + 1)r

2
. This concludes the proof.

We conclude this section by considering the opposite direction, namely cycles having
distinct lengths modulo some value r.

Theorem 3.6. a) Let r ≥ 3 be an odd integer. There exists a minimum integer φ(r)
such that every graph of minimum degree at least φ(r) contains r vertex-disjoint cycles
C0, . . . , Cr−1 with v(Ci) ≡ i (mod r) for 0 ≤ i ≤ r − 1.

b) We have
r2 + 5r − 2

2
≤ φ(r) ≤ 2r2 − 1.

Proof. a) Let G be a graph with minimum degree at least 2r2−1. By repeated applications
of Theorem 2.4, we get a partition (V0, V1, . . . , Vr−1) of V (G) such that for every i, subgraph
G[Vi] has minimum degree at least 2r − 1. By Theorem 2.7, subgraph G[Vi] has a cycle
Ci of length i (mod r). Thus the collection of r cycles C0, C1, . . . , Cr−1 is as required. So
φ(r) exists, and φ(r) ≤ 2r2 − 1.

b) The complete graph Kφ(r)+1 contains r disjoint cycles with the required conditions.

It follows that φ(r)+1 ≥ 3+ · · ·+r+2, hence φ(r)+1 ≥ (r + 2)(r + 3)

2
−3, which implies

r2 + 5r − 2

2
≤ φ(r), as claimed.

3.3. Large graphs
Recall that Theorem 3.1 implies that every graph of minimum degree at least f(k) =

k2 + 5k − 2

2
has k vertex-disjoint cycles of different lengths. Furthermore, the complete

graph Kf(k)+1 shows that the bound on the minimum degree is best possible. However, if
we allow finite exceptions, then this bound can be improved. That is, the degree bound
can be reduced further for graphs with sufficiently large order.

In the proof of the main result of this section, Theorem 3.8, we will make use of the
following notion. Consider an integer k ≥ 2 and a graph G of minimum degree δ(G) ≥ k+1.
By a k-path-vertex schema of G we mean a pair S = (P, x) consisting of a path P and a
vertex x not in P having exactly k + 1 neighbors in P . Using a longest path argument,
it is easy to see that every graph contains a path-vertex schema. Observe also that the
subgraph induced by V (P ) ∪ {x} contains k cycles of different length (all containing x).
For convenience, we sometimes consider S as a subgraph of G. So V (S) = V (P ) ∪ {x},
and G − S = G − (V (P ) ∪ {x}). The cardinality of S is |V (S)|. It is obvious that this
cardinality is at least k + 2. An optimal k-path-vertex schema is a schema of minimum
cardinality. Observe that in this case the extremities of P are neighbors of x.

We will make use of the following result concerning optimal path-vertex schemas.

Lemma 3.7. Let G be a graph with δ(G) ≥ k + 1, and S = (P, x) be an optimal k-path-
vertex schema of G. Then every vertex y of G − S has at most k + 2 neighbors in V (S).
Moreover, if there exists a vertex y in G− S having exactly k + 2 neighbors in V (S), then
x is a neighbor of y, all the vertices of P are neighbors of x, and |V (S)| = k + 2.
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Proof. Suppose P = (u1, u2, . . . , up). If y has at least k + 2 neighbors in V (P ), then there
exists i (with 2 ≤ i ≤ p) such that y has exactly k+ 1 neighbors in P ′ = (ui, . . . , up). Thus
P ′ and y form a k-path-vertex schema of cardinality less than S, a contradiction. This
implies that y has at most k + 2 neighbors in V (S).

Suppose that y has exactly k + 2 neighbors in V (S). By the analysis above, we can
see that y has exactly k + 1 neighbors on P and xy ∈ E(G). Thus (P, y) is an optimal
k-path-vertex schema, and then u1 and up are neighbors of y. Suppose for the sake of
a contradiction that there exists a vertex of P which is not a neighbor of x. Clearly u1
and up are neighbors of x. Let i be the maximum index such that xui /∈ E(G). Thus
2 ≤ i ≤ p − 1. If i ≤ p − 2, then let P ′ = (ui+2, . . . , up, y, u1, . . . , ui−1); otherwise, if
i = p − 1, let P ′ = (y, u1, . . . , up−2). Then P ′ and x form a k-path-vertex schema of
cardinality less than S, a contradiction. So, all vertices of P are neighbors of x, and clearly
we have |V (S)| = k + 2.

We are now ready to prove a refinement of Theorem 3.1 for sufficiently large graphs.

Theorem 3.8. a) For every k ≥ 2, every graph G of order n ≥ 7 ·
⌊
k2

4

⌋
and δ(G) ≥

k2 + 3k

2
has k vertex-disjoint cycles of different lengths.

b) The bound on δ(G) is best possible.

Proof. a) We prove the claim by induction on k, starting from the row k = 2. In other
words, we prove that if G is a graph of order n ≥ 7 and δ(G) ≥ 5, then G contains two
vertex-disjoint cycles of different lengths.

If G is triangle-free, then we are done by Theorem 3.3. Suppose now that G contains a
triangle C = (x1, x2, x3, x1). We claim that there exists a vertex x4 of G−C having three
neighbors in C. Indeed, if it was not the case, then G − C would be of minimum degree
at least 3 and then it would contain two cycles of different lengths. One of these cycles
and C would then form a pair of vertex-disjoint cycles of different lengths, and we would
be done. Clearly the subgraph H induced by x1, x2, x3 and x4 is complete. Suppose that
there exists at most one vertex of G − H having four neighbors in H. Then the graph
G − H has at most one vertex of degree at most 1. Then G − H contains a cycle (since
any longest path in G−H has one of its end-vertices having at least two neighbors on the
path) and since H contains a triangle and a 4-cycle, we get two vertex-disjoint cycles of
different lengths and we are done. Suppose thus that there exist two vertices x5 and x6
both having x1, x2, x3 and x4 as neighbors.

Let H ′ be the subgraph induced by x1, . . . , x6. If every vertex in G − H ′ has at
most three neighbors in H ′, then δ(G − H ′) ≥ 2 and G − H ′ contains a cycle. Since
H ⊂ H ′ contains a triangle and a 4-cycle, we get two vertex-disjoint cycles of different
lengths and we are done. So assume now that there exists a vertex x7 having at least
four neighbors in {x1, . . . , x6}. Then x7 has at least two neighbors in {x1, . . . , x4}, say
x7x1, x7x2 ∈ E(G). Then (x1, x2, x7, x1) and (x3, x5, x4, x6, x3) are two vertex-disjoint
cycles of different lengths. This achieves the proof of the case k = 2.

Suppose now that the assertion is true up to row k − 1, where k ≥ 3, and let us study

it for k. So G is a graph of order n ≥ 7 ·
⌊
k2

4

⌋
and of minimum degree δ(G) ≥ k(k + 3)

2
=

(k + 1)(k + 2)

2
−1. By applying Theorem 2.4 repeatedly, we get a partition (V1, V2, . . . , Vt)

of V (G) where t =

⌊
k + 1

2

⌋
, such that each Vi induces a graph of minimum degree at
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least k + 1. Hence each G[Vi] has a k-path-vertex schema. This implies that G has a
k-path-vertex schema of order at most

n

b(k + 1)/2c
.

Suppose first that there exists an optimal k-path-vertex schema S = (P, x) such that
every vertex y of G−S has at most k+1 neighbors in S. Recall that |V (S)| ≤ n

b(k + 1)/2c
.

Let G′ = G− S. Then the order of G′ is

n′ = n− |V (S)| ≥ b(k − 1)/2c
b(k + 1)/2c

n ≥
{

7k(k − 2)/4, k is even;
7(k − 1)2/4, k is odd,

i.e. n′ ≥ 7 ·
⌊

(k − 1)2

4

⌋
. Note that every vertex y of G′ has at least

k2 + 3k

2
− k − 1 =

(k − 1)2 + 3(k − 1)

2

neighbors in G′, so δ(G′) ≥ (k − 1)2 + 3(k − 1)

2
. By the induction hypothesis G′ contains

k − 1 vertex-disjoint cycles C1, . . . , Ck−1 of different lengths. Plus, the induced subgraph
G[V (S)] contains k cycles of different lengths. Then one of these cycles and the cycles
C1, . . . , Ck−1 form a collection of k vertex-disjoint cycles of different lengths. So in this
case the assertion is proved for k.

Suppose now that there does not exist an optimal k-path-vertex schema S such that
every vertex y of G − S has at most k + 1 neighbors in V (S). We take an arbitrary
optimal k-path-vertex schema S = (P, x), and let y ∈ V (G− S) be a vertex having k + 2
neighbors in S. By Lemma 3.7, vertices x and y are adjacent, all the vertices of P are
neighbors of x (and also of y), and |V (S)| = k + 2. We put P = (u1, u2, . . . , uk+1) and
Ω = {u1, u2 . . . , uk−1, x, y}. Clearly G[Ω] contains k−1 cycles of different lengths (ranging
from 3 to k + 1).

LetG′ = G−Ω. It is easy to see thatG′ has minimum degree at least
(k − 1)2 + 3(k − 1)

2

and has order at least 7 ·
⌊

(k − 1)2

4

⌋
. By the induction hypothesis G′ contains k−1 disjoint

cycles C1, C2, . . . , Ck−1 of different lengths (where we label the Ci’s so that their lengths
are non-decreasing). Since G[Ω] contains k − 1 cycles of all lengths from 3 to k + 1, it is
easy to see that |V (Ci)| = i + 2 for 1 ≤ i ≤ k − 1. In particular, cycle Ck−1 is of order
k + 1 and Ck−2 is of order k.

Let G′′ = G −
(
Ω ∪

k−1⋃
i=1

V (Ci)

)
, and let z be a vertex of G′′. We claim that z has

at most one neighbor in Ω. Indeed, otherwise it is easy to see that z and the vertices of
Ω would form a cycle of order k + 2; so, together with C1, ..., Ck−2 we would then get k

disjoint cycles of different lengths. We also claim that z has at most
k + 1

2
neighbors in

Ck−1. Indeed, otherwise the vertices of Ck−1 and z would form a cycle C ′k−1 of order at
least k + 2; so C1, . . . , Ck−2, C

′
k−1 and an appropriate cycle of G[Ω] of order k + 1 would

form a collection of k disjoint cycles of different lengths. It follows that z has at most

1 + 3 + · · · + k +
k + 1

2
=

k2 + 2k − 3

2
neighbors in Ω ∪

k−1⋃
i=1

V (Ci), and z has at least

k + 3

2
≥ 3 neighbors in G′′. Let P ′ = (v1, v2, . . . , vs) be a longest path in G′′. Since

δ(G′′) ≥ 3, we have s ≥ 4.
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Note that all the neighbors of v1 in G′′ are in P ′. It follows that v1 has at most k
neighbors in G′′ (for otherwise we would have a cycle of length at least k+ 2 and, together
with the cycles C1, . . . Ck−1, we would have the desired cycles). We have seen that v1 has

at most one neighbor in Ω, and that v1 has at most
k + 1

2
neighbors in Ck−1. We claim

that v1 has more than
k

2
neighbors in Ck−2. Indeed, suppose the opposite. Then v1 has

at most 1 + 3 + · · · + k − 1 +
k

2
+
k + 1

2
=
k2 + k − 3

2
neighbors in Ω ∪

k−1⋃
i=1

V (Ci). This

means that v1 has at most
k2 + k − 4

2
neighbors in Ω ∪

k−1⋃
i=1

V (Ci) and that v1 has at least

k2 + 3k

2
− k

2 + k − 4

2
= k+2 neighbors in G′′, a contradiction. So as we claimed, vertex v1

has more than
k

2
neighbors in Ck−2, and similarly vs has more than

k

2
neighbors in Ck−2.

But now it is easy to see that the vertices of Ck−2 and the vertices of P ′ form a cycle of
length at least k+ 2, and, together with the cycles Ci (where 1 ≤ i ≤ k− 1 and i 6= k− 2)
and an appropriate cycle of length k of G[Ω], we get k disjoint cycles of different lengths.
This concludes this part of the proof.

b) Let G be a complete bipartite graph with two partite sets of size
k(k + 3)

2
− 1 and

n− k(k + 3)

2
+ 1, respectively, where n is large enough. Then δ(G) =

k(k + 3)

2
− 1. Note

that G does not have k vertex-disjoint cycles of different lengths. So the bound on δ(G) in
our statement is sharp.

While the bound on δ in Theorem 3.8 is best possible, we have no clue about how far
from optimal the bound on n is. We believe it would be interesting to investigate this
aspect further.

3.4. Large graphs with bounded maximum degree
We conclude this section by pointing out that if we restrict ourselves to large graphs

with bounded maximum degree, then we may further refine Theorem 3.8. In particular,
we believe the following conjecture should be true.

Conjecture 3.9. For every two integers k and D, there is an integer n0 such that every
graph G of order at least n0 with k+ 1 ≤ δ(G) ≤ ∆(G) ≤ D has k vertex-disjoint cycles of
different lengths.

We here make a first step towards Conjecture 3.9 by proving it for k = 2, see Theorem 3.12.

Before presenting the proof, we need to introduce a few preliminary results concerning
graphs having only one type of cycles. In the upcoming results, we use n(G) to denote the
order of some graph G. For integer i, we denote by Ni(G) the set of vertices of G with
degree i, and set ni(G) = |Ni(G)|.

Lemma 3.10. Let G be a graph with δ(G) ≥ 2. If all cycles of G have length 3, then

n2(G) ≥ n(G)

3
+ 2.

Proof. We first claim that every block (maximal 2-connected subgraph) of G is either a
K2 or a triangle. Let B be an arbitrary block of G. If B 6= K2, then B is 2-connected.
If B has at least four vertices, then, by Dirac’s Theorem, which states that a block with
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minimum degree k has a cycle of length at least 2k, block B contains a cycle of order at
least 4, which is not in our assumption. So we conclude that B has exactly three vertices.
Thus B is a triangle.

Now we prove the lemma by induction on the number of blocks of G. If G has only one
block, then G is a triangle and the assertion is trivial. If G is disconnected, then we can
complete the proof by applying the induction hypothesis to each component of G. Now we
assume that G is connected and separable.

Let B be an end-block of G, and x0 be the cut-vertex of G contained in B. Recall that
B is a triangle. If dG−B(x0) ≥ 2, then let G′ = G− (B−x0). By the induction hypothesis,

we have n2(G′) ≥
n(G′)

3
+ 2. Note that n(G) = n(G′) + 2 and n2(G) ≥ n2(G

′) + 1. We
then have

n2(G) ≥ n2(G′) + 1 ≥ n(G′)

3
+ 2 + 1 =

n(G)− 2

3
+ 3 ≥ n(G)

3
+ 2.

Now we assume that dG−B(x0) = 1. Let P = (x0, x1, · · · , xt) be a path of G such that
d(xi) = 2 for 1 ≤ i ≤ t − 1 and d(xt) ≥ 3. Let G′ = G − B − (P − xt). By the

induction hypothesis, we have n2(G′) ≥
n(G′)

3
+ 2. Note that n(G) = n(G′) + t + 2 and

n2(G) ≥ n2(G′) + t. Since t ≥ 1, we now have

n2(G) ≥ n2(G′) + t ≥ n(G′)

3
+ 2 + t =

n(G)− t− 2

3
+ t+ 2 ≥ n(G)

3
+ 2,

which concludes the proof.

Lemma 3.11. Let G be a graph with δ(G) ≥ 2. If all cycles of G have length 4, then

n2(G) ≥ n(G)

5
+ 2.

Proof. We first claim that every block of G is either a K2 or a complete bipartite graph
K2,s with s ≥ 2. Let B be an arbitrary block of G. If B 6= K2, then B is 2-connected.
Thus B contains a cycle, which is a C4 by our assumption. If B is not bipartite, then
B has an odd cycle, which is not a C4, a contradiction. This implies that B is bipartite.
Let X,Y be the two partite sets of B and let C = (x1, y1, x2, y2, x1) be a C4 of G, where
x1, x2 ∈ X and y1, y2 ∈ Y . Suppose that X has a third vertex x3. Since B is 2-connected,
there is a path P with two end-vertices in C such that x3 ∈ V (P ) and all internal vertices
of P are not in C. If P has length more than 2, then B contains a cycle longer than C,
which is not a C4, a contradiction. Thus P has length 2 and x3y1, x3y2 ∈ E(B). If Y has
a third vertex y3, then by a similar analysis as above, we can see that x1y3, x2y3 ∈ E(G).
But in this case C ′ = (x1, y3, x2, y2, x3, y1, x1) is a cycle being not a C4, a contradiction.
This implies that either |X| = 2 or |Y | = 2. We suppose without loss of generality that
|X| = 2. Since B is 2-connected, vertices x1, x2 are adjacent to every vertex in Y . Thus B
is a complete bipartite graph K2,s with s ≥ 2.

Now we prove the lemma by induction on the block number of G. If G has only one
block, then G = K2,s with s ≥ 2 and the assertion is trivial. If G is disconnected, then
we can complete the proof by applying the induction hypothesis to each component of G.
Now we assume that G is connected and separable.

Let B be an end-block of G, and x0 be the cut-vertex of G contained in B. Note that
B = K2,s with s ≥ 2. If dG−B(x) ≥ 2, then let G′ = G − (B − x). By the induction

hypothesis, n2(G′) ≥
n(G′)

5
+ 2. Note that n(G) = n(G′) + s+ 1 and

n2(G) ≥
{
n2(G

′) + 2, if s = 2;
n2(G

′) + s− 2, if s ≥ 3.

11



One can compute that n2(G) ≥ n(G)

5
+ 2. Now we assume that dG−B(x) = 1. Let

P = (x0, x1, · · · , xt) be a path of G − (B − x0) such that d(xi) = 2 for 1 ≤ i ≤ t − 1
and d(xt) ≥ 3. Let G′ = G − B − (P − xt). By the induction hypothesis, we have

n2(G
′) ≥ n(G′)

5
+ 2. Note that n(G) = n(G′) + s+ t+ 1 and

n2(G) ≥
{
n2(G

′) + t+ 1, if s = 2;
n2(G

′) + s+ t− 3, if s ≥ 3,

where t ≥ 1. This yields n2(G) ≥ n(G)

5
+ 2.

We are now ready to prove Conjecture 3.9 for k = 2.

Theorem 3.12. For every D ≥ 3, every graph G of order more than 20D − 46 with
3 ≤ δ(G) ≤ ∆(G) ≤ D has two vertex-disjoint cycles of different lengths.

Proof. Suppose that G does not contain two vertex-disjoint cycles of different lengths. We
will show that n(G) is bounded above by 20D − 46. Let g denote the girth of G. We
distinguish two cases.

Case 1. g = 3 or g = 4.
Let C be a shortest cycle of G. Then C is either a C3 or a C4. Let H be an induced

subgraph of G defined by a sequence of vertex sets U0, U1, · · · , Us such that:

1. U0 = V (C) and Us = V (H);

2. for every i, where 0 ≤ i ≤ s− 1, there is a vertex xi ∈ V (G)\Ui such that dUi(xi) >
d(xi)

2
and Ui+1 = Ui ∪ {xi};

3. for every vertex x ∈ V (G)\Us, we have dUs(x) ≤ d(x)

2
.

Note that n(H) = n(C) + s. We first show that s is bounded above by a constant
(depending on D). Note that e(U0, V (G)\U0) =

∑
v∈U0

(d(v) − 2) is bounded above by
4D− 8. It is easy to see that e(Ui+1, V (G)\Ui+1) ≤ e(Ui, V (G)\Ui)− 1. This implies that
e(Us, V (G)\Us) ≤ 4D − 8− s and s ≤ 4D − 8.

Let F = G−H. Recall that for every vertex x ∈ V (F ), we have dF (x) ≥
⌈
d(x)

2

⌉
≥ 2.

Thus δ(F ) ≥ 2. If F contains a cycle of length different from that of C, then we are
done. So we assume that either every cycle of F is a triangle, or every cycle of F is
a C4. Note that every vertex in N2(F ) has a neighbor in H. Furthermore, we have
n2(F ) ≤ e(V (H), V (F )) ≤ 4D − 8− s. Now, applying Lemmas 3.10 and 3.11, we get

n(F ) ≤ 5(n2(F )− 2) ≤ 5(4D − 10− s),

and, thus,
n(G) = n(H) + n(F ) ≤ 4 + s+ 5(4D − 10− s) ≤ 20D − 46.

Case 2. g ≥ 5.
Let C = (x1, . . . , xg, x1) be a cycle of G of order g. It is easy to see that any vertex of

V (G) \V (C) has at most one neighbor in C (for otherwise we would have a cycle of length
less than g). So, the graph G′ = G−C is of minimum degree at least 2 and since G′ cannot
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be of degree at least 3 (for otherwise G′ would contain two cycles of different lengths, and
then one of these cycles and C would be disjoint and of different length), subgraph G′ is
of minimum degree 2. Let P = (y1, . . . , yt) be a longest path in G′. By maximality of t,
all neighbors of y1 in G′ are in P . If y1 has three neighbors in G′, clearly we are done.
It follows that y1 has exactly two neighbors in P and then, necessarily, the neighbor of
y1 in P distinct from y2 is yg. So C ′ = (y1, . . . , yg, y1) is a cycle of G′ of length g. We
claim that dG′(y2) = 2. Indeed suppose that y2 has a neighbor in P distinct from y1 and
y3. Necessarily this neighbor is yg+1. But then (y1, yg, yg+1, y2, y1) is a 4-cycle, which is
impossible. Suppose now that y2 has a neighbor y in V (G′) \ V (P ). Then (y, y2, . . . , yt) is
a longest path in G′. It follows that yg is a neighbor of y. But then (y1, y2, y, yg, y1) is a
4-cycle, which is again impossible. Each of the vertices y1 and y2 has one neighbor in C.
It is then easy to see that when g ≥ 7, vertices y1, y2 and some vertices of C form a cycle
of length less than g, which is impossible. So we are done when g ≥ 7.

Assume first g = 5. Since each of the vertices y1, y2 has one neighbor in C, vertices
y1, y2 and some vertices of C form a cycle C1 of length 6 (since g = 5). Let us consider
the graph G1 = G − (V (C) ∪ {y1, y2}. Clearly every vertex of G1 distinct from y3 and
y5 is of degree at least 2 in G1. If one of the vertices y3 and y5 is of degree at least 2
in G1, then, by considering a longest path in G1, it is easy to see that G1 contains a
cycle, and then this cycle and one of the cycles C and C1 would form two vertex-disjoint
cycles of different lengths. Suppose now that y3 and y5 are both of degree 1 in G1. Since
(y4, y3, y2, y1, y5, . . . , yt) is a path of length t, by the previous arguments y4 is of degree 2
in G′. It is easy to see that the graph G2 = G − V (C) ∪ V (C ′) is of minimum degree at
least 2. It follows that G2 contains a cycle, and then, as previously, we are done. This
concludes the case g = 5.

Suppose now that g = 6. Let P ′ = (y5, . . . , y1, y6, . . . , yt) be a longest path of G′. By
the previous reasoning, vertices y5 and y4 are of degree 2 in G′. It follows that each of the
vertices y1, y2 and y4 has one neighbor in C. Then it is easy to see that the subgraph G1 of
G induced by V (C)∪{y1, y2, y3, y4} contains two cycles of different lengths. It is clear that
C ′′ = (yt, yt−1, . . . , yt−5, yt) is a 6-cycle of G. If t ≥ 10, clearly V (C ′′) is vertex-disjoint
with V (G1); and then it is easy to see that we are done. It cannot be the case that t = 9
or t = 7 as x4 and x2 are of degree 2 in G′. Suppose now that t = 6. It is then easy to see
that the graph G− V (C) ∪ V (P ) does not contain cycles (for otherwise we are done). So
z has a neighbor yi (where i = 3 or i = 6). But then the vertices of C and z would form a
path of order 7, a contradiction.

Suppose now that t = 8. Clearly, vertices y7 and y8 are of degree 2 in G′. Since n ≥ 15,
subset V (G)\ (V (C)∪V (P )) is non-empty, and the graph G−V (C)∪V (P ) is of minimum
degree at most 1. Then there exists a vertex z of G− V (C) ∪ V (P ) having a neighbor in
V (P ). Since y1, y2, y4, y5, y7 and y8 are of degree 2 in G′, this neighbor is either y3 or y6.
Without loss of generality, we may suppose that this neighbor is y3. Suppose that z has
another neighbor in P . Necessarily this other neighbor is y6 – but then (z, y3, y4, y5, y6, z)
would be a 5-cycle, which is impossible. So the only neighbor of z in P is y3. Then z has
a neighbor u in G− V (C) ∪ V (P ). Suppose that u has a neighbor v in G− V (C) ∪ V (P ).
Then (v, u, z, y3, . . . , y8) would be a path of G′ of length 9, which by maximality of t = 8
is impossible. It follows that u has a neighbor in P , and necessarily this neighbor is y6
(because G′ does not contain triangles). It is easy to see that z and u are of degree 2 in G′.
So the eight vertices of Ω = {y1, y2, y4, y5, y7, y8, z, u} are of degree 2 in G′ and then each
vertex of Ω has exactly one neighbor in C (which has order 6). It follows that there exists
a vertex w of C having two neighbors a and b in Ω. It is easy to see that dG′(a, b) ≤ 3 and
then we get a cycle of length at most 5, which is not possible. So the case g = 6 is settled
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Figure 1: The Heawood graph.

and the result is proved for g ≥ 5. This concludes the whole proof.

Taking D = 3 in Theorem 3.12, we get that every cubic graph of order more than
20D − 46 = 14 has two vertex-disjoint cycles of different lengths.

Theorem 3.13. Every cubic graph of order at least 15 contains two vertex-disjoint cycles
of different lengths.

We remark that the Heawood graph ((3, 6)-cage, see Figure 1) of order 14 does not contain
two vertex-disjoint cycles of different lengths. Thus the bound on the order in Theorem 3.13
is sharp.

4. Disjoint cycles of different lengths in digraphs

The results from this section are motivated by the following conjecture raised by
Bermond and Thomassen in 1981 [3].

Conjecture 4.1 (Bermond and Thomassen [3]). For every k ≥ 2, every digraph of mini-
mum out-degree at least 2k − 1 contains at least k vertex-disjoint directed cycles.

If true, Conjecture 4.1 would be best possible because of the bidirected complete graph
on 2k vertices. Towards Conjecture 4.1, one could more generally wonder whether for
every k there is a smallest finite function f(k) such that every digraph of minimum out-
degree at least f(k) contains at least k vertex-disjoint directed cycles (so f(k) should be
equal to 2k − 1 according to Conjecture 4.1). Thomassen first proved in [12] that f(k)
exists for every k ≥ 1. Later, Alon improved the value of f(k) to 64k [1]. For k = 2,
Thomassen proved in [12] that f(k) = 3, which confirms Conjecture 4.1 for k = 2. Later
on, Lichiardopol, Pór and Sereni proved that for k = 3 the best value for f(k) is 5, again
confirming Conjecture 4.1 for k = 3 [9]. This apart, Conjecture 4.1 is still open, though
some more partial results may be found in literature (see e.g. [2]).

Motivated by Conjecture 4.1 and in the same flavour as in Section 3, one can won-
der about the existence of a (smallest) finite function g(k) such that every digraph with
minimum out-degree at least g(k) contains k (vertex-) disjoint (directed) cycles of distinct
lengths. In this context, the following was conjectured by Lichiardopol [8]:

Conjecture 4.2 (Lichiardopol [8]). For every k ≥ 2, there exists an integer g(k) such that
every digraph of minimum out-degree at least g(k) contains k vertex-disjoint directed cycles
of distinct lengths.
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It is worth pointing out that a similar function h(k) for the existence of k disjoint cycles of
the same length does not exist, as Alon proved that there exist digraphs of arbitrarily large
minimum out-degree having no two (not necessarily disjoint) cycles of the same length [1].
Lichiardopol proved Conjecture 4.2 for k = 2 in [8], solving a question of Henning and
Yeo [6]. We note that g(k) should in general be a quadratic function of k; for an illustration
of this statement, consider a complete bidirected digraph D on g(k) + 1 vertices. Since
δ+(D) = g(k), there exist k disjoint cycles of different lengths in D. It follows that

g(k) + 1 ≥ 2 + · · ·+ k + 1,

hence g(k) + 1 ≥ (k+1)(k+2)
2 − 1, which yields g(k) ≥ k2+3k−2

2 in general.

In this section, we verify Conjecture 4.2 in several contexts. We first verify it for tour-
naments in Section 4.1. Using the probabilistic method, we then verify it, in Sections 4.2
and 4.3, when D is regular or when its order is a polynomial function of its minimum
out-degree, respectively. Some concluding remarks are gathered in Section 4.4.

4.1. Tournaments
We here verify Conjecture 4.2 for tournaments. More precisely, for every k ≥ 1, we

study the smallest finite function gt(k) such that every tournament of minimum out-degree
at least gt(k) has k vertex-disjoint directed cycles of different lengths. We exhibit both an
upper bound and a lower bound on gt(k) for every k.

In order to prove our upper bound, we need to introduce the following result first.

Lemma 4.3. Every tournament of minimum out-degree δ ≥ 1 contains a directed cycle of
order at least 2δ + 1.

Proof. We proceed by induction on the order n ≥ 2δ + 1 of a tournament T of minimum
out-degree δ. We claim that the assertion is true for n = 2δ + 1. Indeed, in this case T is
a regular tournament of degree δ. So T is strong, and then, by Camion’s Theorem, we get
that T is Hamiltonian. So the vertices of T form a directed cycle of order 2δ + 1, and we
are done. Suppose now that the assertion is true up to the row n − 1, where n ≥ 2δ + 2,
and let us study it for n. So T is a tournament of minimum out-degree δ and of order
n ≥ 2δ+2. If T is strong, then T is Hamiltonian and again we are done. Suppose thus that
T is not strong. Then there exists a partition (A,B) of V (T ) such that A dominates B
(that is every ordered pair (x, y) with x ∈ A and y ∈ B is an arc of T ). Clearly the induced
tournament T [B] is of minimum out-degree at least δ. So, by the induction hypothesis, we
deduce that T [B] (and therefore T ) contains a directed cycle of order at least 2δ + 1. So
the assertion is true for n, which concludes the proof.

We are now ready to exhibit an upper bound on gt(k), and hence to confirm Conjec-
ture 4.1 for tournaments.

Theorem 4.4. For every k ≥ 1, we have gt(k) ≤ k2+4k−3
2 .

Proof. We proceed by induction on k. The assertion is clearly true for k = 1. So suppose
that the assertion is true up to row k − 1 (where k ≥ 2), and let us study it for k. Let T
be a tournament of minimum out-degree at least k2+4k−3

2 . By the induction hypothesis T
contains k − 1 disjoint cycles C1, . . . , Ck−1 of different lengths. It is easy to see that for
every 1 ≤ i ≤ k − 1, cycle Ci contains a cycle C ′i of length i+ 2. We get then a collection
C ′1, ..., C

′
k−1 of disjoint cycles with |V (C ′i)| = i+ 2, and therefore of different lengths.
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We have

|V (C ′1) ∪ · · · ∪ V (C ′k−1)| = 3 + · · ·+ k + 1 =
k2 + 3k − 4

2
<
k2 + 4k − 3

2
.

It thus follows that the tournament T ′ = T − V (C ′1) ∪ · · · ∪ V (C ′k−1) is of positive order
and of minimum out-degree at least k2+4k−3

2 − k2+3k−4
2 = k+1

2 . According to Lemma 4.3,
we know that T ′ contains a cycle C ′k of length at least k+2 and, together with the directed
cycles C ′1, ..., C ′k−1, we get then k disjoint cycles of different lengths. Consequently, the
assertion is true for k, and the result is proved.

We now deduce a lower bound on gt(k).

Observation 4.5. For every k ≥ 1, we have gt(k) ≥ k2+5k−2
4 .

Proof. Let T be a regular tournament of degree gt(k). Then T contains k disjoint cycles
of different lengths. Since the order of T is 2gt(k) + 1, it follows that

2gt(k) + 1 ≥ 3 + · · ·+ k + 2,

hence 2gt(k) + 1 ≥ (k+2)(k+3)
2 − 3, which yields gt(k) ≥ k2+5k−2

4 .

So, in the context of tournaments, according to Theorem 4.4 and Observation 4.5 we
get the following.

Corollary 4.6. For every k ≥ 1, we have

k2 + 5k − 2

4
≤ gt(k) ≤ k2 + 4k − 3

2
.

4.2. Regular digraphs
We now use the probabilistic method to prove, in the current section and upcoming

Section 4.3, Conjecture 4.2 in two new contexts. To this aim, we first need to introduce a
few tools and lemmas. The first two are classic tools of the probabilistic method, namely
Chernoff’s Inequality and the Lovász Local Lemma (see e.g. [10]).

Proposition 4.7 (Chernoff’s Inequality). Let X be a binomial random variable BIN(n, p).
Then, for any 0 ≤ t ≤ np, we have Pr[|X − np| > t] ≤ 2e−t

2/3np.

Proposition 4.8 (Lovász Local Lemma – Symmetric version). Let A1, ..., An be a finite
set of events in some probability space Ω such that each Ai occurs with probability at most
p, where each Ai is mutually independent of all but at most d other events. If 4pd ≤ 1,
then Pr[∩ni=1Ai] > 0.

We will also be needing the following fact on the existence of k (not necessarily disjoint)
cycles with distinct lengths in a digraph with minimum out-degree at least k.

Proposition 4.9. For every k ≥ 1, every digraph D with minimum out-degree at least k
contains k directed cycles of distinct lengths.

Proof. Consider the out-neighbours of the last vertex of a longest directed path in D.

We are now ready to prove the main result of this section. By a r-regular digraph, we
refer to a digraph whose all vertices have in- and out-degree r.
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Theorem 4.10. Let k ≥ 1 and r ≥ k2

2 (1+7( ln kk )
1
3 ). Then every r-regular digraph contains

at least k vertex-disjoint directed cycles of distinct lengths.

Proof. Let D be a simple r-regular digraph, and assume r = k2

2 (1 + 7( ln kk )
1
3 ). The proof

reads as follows. The main idea is to prove, using several probabilistic tools, that we can
partition the vertex set of D into k parts V1, ..., Vk such that each Vi induces a digraph
of minimum out-degree at least i. With such a partition in hand, one can then get the k
desired disjoint cycles by just considering each of the Vi’s successively, and picking, in
each of the digraphs they induce, one cycle whose length is different from the lengths
of the previously picked cycles. This is possible according to Proposition 4.9 due to the
out-degree property of the partition V1, ..., Vk.

We first introduce some notation and assumptions we use throughout (and further) to
deal with our computations. Every parameter has to be thought of as a function of k. By
writing o(1), we refer to a term tending to 0 as k tends to infinity. Given two terms a and
b, we write a ∼ b if a/b tends to 1, and a� b if a/b tends to 0 as k tends to infinity. Let
k′ := k + bk2/3(ln k)1/3c and s be the sum of the first k′ integers, that is s := k′(k′+1)

2 . It
is assumed throughout that r ∼ s ∼ k2

2 ; so r and s will sometimes freely be replaced by k2

2
to simplify some computation (assuming this has no impact on the computation).

We now show that, under our assumptions, the desired partition V1, ..., Vk of V (D)
exists with non-zero probability. For this purpose, let us just randomly k-color the vertices
of D, where assigning color j to some vertex means that we put it into Vj . All colors are
not assigned uniformly, but in such a way that, for every color j ∈ {1, ..., k}, the probability
pj that some vertex is colored j is:

pj :=
j + bk2/3(ln k)1/3c

s
.

Note that
∑k

j=1 pj < 1, therefore a vertex gets no color with probability 1−
∑k

j=1 pj .
Let Xj

v denote the number of out-neighbors of v colored j by the random process.
Clearly Xj

v ∼ BIN(r, pj). So that we can later apply the Lovász Local Lemma, let us
define our set of bad events. Let Av be the event

Av :=

k⋃
j=1

(v is colored j and Xj
v < j).

Second, let B be the event that at least one of the k colors does not appear among a fixed
subset {u1, u2, ..., ur} of r vertices of D. It should be clear that any two events Av and Au
are dependent if (u∪N+(u))∩ (v∪N+(v)) 6= ∅. So, since D is r-regular, each Av depends
on at most r2 other bad events Au. Since the event B only depends on the colors of r fixed
vertices, similarly B depends on at most r2 other bad events. To apply the Lovász Local
Lemma, every bad event A ∈ (∪vAv) ∪B must hence fulfill 4r2 Pr(A) ≤ 1.

Concerning B, we have:

Pr(B) ≤
k∑
j=1

(1− pj)r ≤ k

(
1− bk

2/3(ln k)1/3c+ 1

s

)r

≤ ke−
k2/3(ln k)1/3r

s

≤ ke−k2/3(ln k)1/3 .

Therefore, we have that:
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4r2 Pr(B) ≤ 4

(
k2

2
+

7

2
k

5
3 (ln k)

1
3

)2

ke−k
2/3(ln k)1/3 ≤ 1.

Now consider the Av’s. Since

s =
(k′)2

2

(
1 +

1

k′

)
≤ k2

2

(
1 +

(
ln k

k

) 1
3

)2(
1 +

2

k

)
,

then (
1− 4

(
ln k

k

) 1
3

)
rpj ≥

(
1− 4

(
ln k

k

) 1
3

)
rj

s
≥ j.

Applying Chernoff’s Inequality, we get:

Pr(Xj
v < j) ≤ Pr

(
Xj
v <

(
1− 4

(
ln k

k

) 1
3

)
rpj

)

≤ e−16(
ln k
k )

2
3

rpj
3 .

Then:

Pr(Av) ≤
k∑
j=1

pje
−16( ln k

k )
2
3

rpj
3 .

We hence want every term to be smaller than 1
4r2k

, which is achieved as soon as it is

verified for pj = bk2/3(ln k)1/3c+1
s . Indeed:

bk2/3(ln k)1/3c+ 1

s
e−16(

ln k
k )

2
3 r

3
bk2/3(ln k)1/3c+1

s ≤ 1

4r2k
⇔ e

16
3

ln k ≥ 2k
11
3 (ln k)

1
3 .

Under all these conditions, the requirements for applying the Lovász Local Lemma are
met; we can hence deduce the desired partition V1, ..., Vk, thus the claimed k disjoint cycles
of distinct lengths.

4.3. Small digraphs
We now prove Conjecture 4.2 for digraphs whose order can be expressed as some par-

ticular function of the minimum out-degree.

Theorem 4.11. Let k ≥ 1. Then every simple digraph of order at most crd (where c
and d are two constants satisfying c > 1 and 0 < d < 1) and minimum out-degree r ≥
c0 max{k

1
1−d , k2} contains at least k vertex-disjoint directed cycles of distinct lengths, where

c0 = max{2, (24 ln c)
1

1−d }.

Proof. LetD be such a digraph with order n where we assume the out-degree of every vertex
is exactly r. We herein reuse the terminology introduced in the proof of Theorem 4.10.

The proof is similar to that of Theorem 4.10, except that the random k-coloring of the
vertices of D is this time performed uniformly (all k colors have the same probability to
be assigned). Given any vertex v of D, let Xv denote the number of out-neighbors of v
being assigned the same color by the random coloring. Clearly Xv ∼ BIN(r, 1/k). Our
two kinds of bad events are the following. First Av is, for every vertex v, the event that
Xv < k. Second, let B be the event that at least one of the k colors does not appear at all.

We first assume the following:
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r

2k
≥ k ⇔ r ≥ 2k2. (5)

Therefore, applying Chernoff’s Inequality, we have:

Pr(Av) = Pr(Xv < k) ≤ Pr
(
Xv <

r

2k

)
≤ e−

r
12k .

By the Union Bound, we deduce:

Pr

(⋃
v

Av
⋃
B

)
≤
∑
v

Pr(Av) + Pr(B) ≤ ne−
r

12k + k

(
1− 1

k

)n
≤ ne−

r
12k + k

(
1− 1

k

)r
≤ ne−

r
12k + ke−

r
k . (6)

Since we want this obtained sum to be smaller than 1, we would like each of its two terms
to be strictly smaller that 1/2. Then, concerning the first term:

ne−
r

12k <
1

2
⇔ r

12k
> ln(2n).

Since n ≤ crd , we have ln(2n) ≤ 2rd ln c. So we need a stronger inequality:

r

12k
≥ 2rd ln c⇔ r ≥ (24k ln c)

1
1−d . (7)

Concerning the second term of Inequality (6), we want:

ke−
r
k <

1

2
⇔ r > k ln(2k). (8)

Suppose now that Inequalities (7) and (8) hold. Then there exists a partition V1, ..., Vk
of V (D) such that the out-degree of each vertex in the part containing it is at least k. We
are now able to successfully pick a cycle from each of these parts in such a way that all
picked cycles have distinct lengths (by applying Proposition 4.9).

So that all conditions of Inequalities (5), (7) and (8) are met, we then just need r ≥
c0 max{k

1
1−d , k2}, where c0 = max{2, (24 ln c)

1
1−d }, as claimed.

4.4. Concluding remarks
In Sections 4.2 and 4.3, we have proved that Conjecture 4.2 holds for regular digraphs

(Theorem 4.10) and digraphs with bounded order (Theorem 4.11). About these two results,
let us mention the following:

1. In the proofs of Theorems 4.10 and 4.11, if we require the parts of the partition
V1, ..., Vk to include more vertices, then we can deduce k distinct cycles whose lengths
are ’more than just distinct’. Possible such additional properties are e.g. the cycles
to be of even or odd lengths only, or to be of lengths divisible by some fixed integer,
etc.

2. In the statement of Theorem 4.11, it is worth mentioning that we can lower the
requirement on the out-degree if we assume a smaller upper bound on n. For example,
if n is bounded above by a polynomial function of r (n < rd for some constant d > 0),
then we can require the digraph to have minimum out-degree at least k2(ln k)3 only
(which sticks closer to what is stated in Conjecture 4.2).
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3. In case Conjecture 4.2 is false and some counterexamples exist, Theorem 4.11 gives a
lower bound on the order of these counterexamples. These should be of large order.
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