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Abstract

A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a
matching. It is known that every planar graph with maximum degree ∆ has a strong edge-colouring
with at most 4∆ + 4 colours. We show that 3∆ + 1 colours suffice if the graph has girth 6, and
4∆ colours suffice if ∆ ≥ 7 or the girth is at least 5. In the last part of the paper, we raise some
questions related to a long-standing conjecture of Vizing on proper edge-colouring of planar graphs.
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1. Introduction

A proper edge-colouring of a graph G = (V,E) is an assignment of colours to the edges of the
graph such that two adjacent edges do not use the same colour. We use the standard notation,
χ′(G), to denote the chromatic index of G. A strong edge-colouring (called also distance 2 edge-
colouring) of a graph G is a proper edge-colouring of G, such that the every set of edges using the
same colour induces a matching. We denote by χ′s(G) the strong chromatic index of G which is the
smallest integer k such that G can be strongly edge-coloured with k colours. Strong edge-colouring
has been studied extensively in the literature by different authors (see [1–10]).

The girth of a graph G is the length of a shortest cycle in G. We denote by ∆ the maximum
degree of a graph.

Perhaphs the most challenging question for strong edge-colouring is the following conjecture:

Conjecture 1. For every graph G, χ′s(G) ≤ 5
4∆2 for ∆ even and 1

4 (5∆2 − 2∆ + 1) for ∆ odd.

Andersen [1] and Horák et al. [8] showed this conjecture for the case when ∆ = 3. When ∆ is
large enough, Molloy and Reed showed that χ′s(G) ≤ 1.998∆2 [10].

In this paper, we study the strong chromatic index of planar graphs. The work in this area
started with the paper of Faudree et al. [6], who proved the following theorem.

Theorem 1 (Faudree et al. [6]). If G is a planar graph then χ′s(G) ≤ 4∆ + 4, for ∆ ≥ 3.

The proof of Theorem 1 uses the Four Colour Theorem. The authors also provided a construction
of planar graphs of girth 4 which satisfy χ′s(G) = 4∆− 4 colours. Hence, the bound of Theorem 1
is optimal up to an additive factor.

The same authors also conjectured that for ∆ = 3 the bound can be improved.

Conjecture 2 (Faudree et al. [6]). If G is a planar subcubic graph then χ′s(G) ≤ 9.

Hocquard et al. obtained the following weakening of Conjecture 2.

Theorem 2 (Hocquard et al. [7]). If G is a planar graph with ∆ ≤ 3 containing neither induced
4-cycles, nor induced 5-cycles, then χ′s(G) ≤ 9.

An interesting question is to see how the strong chromatic index behaves for sparse planar
graphs. For instance, when the girth is large enough the strong chromatic index decreases to the
near optimal lower bound, as showed in the following theorems:
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Theorem 3 (Borodin and Ivanova [2]). If G is a planar graph with maximum degree ∆ ≥ 3
and girth g ≥ 40b∆

2 c, then χ
′
s(G) ≤ 2∆− 1.

Recently this result was improved for ∆ ≥ 6:

Theorem 4 (Chang et al. [3]). If G is a planar graph with maximum degree ∆ ≥ 4 and girth
g ≥ 10∆ + 46, then χ′s(G) ≤ 2∆− 1.

For smaller values of the girth, Hudák et al. [9] improved the bound in Theorem 1.

Theorem 5 (Hudák et al. [9]). If G is a planar graph with with girth g ≥ 6 then χ′s(G) ≤
3∆ + 6.

Our main result in this paper improves the upper bound in Theorem 5. In particular, we show
the following.

Theorem 6. If G is a planar graph with with girth g ≥ 6 then χ′s(G) ≤ 3∆ + 1.

Moreover, in Section 3, by a more careful analysis of the proof of Theorem 1 given in [6] and
by using some results on proper edge-colouring, we obtain the following strengthening.

Theorem 7. Let G be a planar graph with maximum degree ∆ and girth g. If G satisfies one of
the following conditions below, then χ′s(G) ≤ 4∆

• ∆ ≥ 7,

• ∆ ≥ 5 and g ≥ 4,

• g ≥ 5.

Before proving our results we introduce some notation.

Notation. Let G be a graph. Let d(v) denote the degree of a vertex v in G. A vertex of degree k is
called a k-vertex. A k+-vertex (respectively, k−-vertex) is a vertex of degree at least k (respectively,
at most k). A kl-vertex is a k-vertex adjacent to exactly l 2-vertices. A bad 2-vertex is a 2-vertex
adjacent to another 2-vertex. Two edges are at distance 1 if they share one of their ends and they
are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them. We
define N2[uv] as the set of edges at distance at most 2 from the edge uv and N2(uv) = N2[uv]−uv.
Given an edge-colouring of G, we denote by SC(N2(uv)) (SC(N2[uv]) respectively) the set of
colours used by edges in N2(uv) (N2[uv] respectively). We denote by N(v) the neighbourhood of
the vertex v ,i.e., the set of its adjacent vertices. Finally, we use JnK to denote the set of integers
{1, 2, . . . , n}.

2. Proof of Theorem 6

2.1. Structural properties
We proceed by contradiction. Let H be a counterexample to the theorem that minimizes

|E(H)|+ |V (H)|. By minimality of H we can assume that it is connected and that by Theorem 2
it has ∆(H) ≥ 4.

Claim 1. H satisfies the following properties:

1. H does not contain a 1-vertex adjacent to a 4−-vertex.

2. H does not contain a 2-vertex adjacent to two 3−-vertices.

3. H does not contain a 2-vertex adjacent to a 42-vertex and to a 3−-vertex.

4. H does not contain a 2-vertex adjacent to a 43-vertex and to a 42-vertex.
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5. If k ≥ 4, then H does not contain a k-vertex adjacent to k − 2 1-vertices; if the k-vertex is
adjacent to k − 3 1-vertices, then it has no other 2−-neighbour.

6. If k ≥ 4, then H does not contain a k-vertex adjacent to k 2−-vertices.

7. If k ≥ 5, then H does not contain a k-vertex u with N(u) = {u1, u2, . . . , uk−1, x}, such that
each ui with i ∈ Jk − 1K is a 2−-vertex and u1 is either a 1-vertex or a 2-vertex adjacent to
either a 3−-vertex or a 43-vertex.

8. If k ≥ 5, then H does not contain a k-vertex adjacent to k−2 vertices of degree 2, u1, . . . , uk−2,
such that for i ∈ Jk − 3K, each ui is adjacent to either a 3−-vertex or a 43-vertex.

9. If k ≥ 5 and 1 ≤ α ≤ k− 4, then H does not contain a k-vertex adjacent to α 1-vertices and
to k − 2 − α vertices of degree 2, u1, . . . , uk−2−α, such that for i ∈ Jk − 3 − αK each ui is
adjacent to either a 3−-vertex or a 43-vertex.

Proof
Let L be the set of colours J3∆ + 1K. For each of the parts of the claim, we will suppose by
contradiction that the described configuration exists inH. Then we will build a graphH ′ fromH by
removing a certain number of vertices and edges. By minimality of H we will have χ′s(H ′) ≤ 3∆+1.
Finally, for each of these cases, we will show a contradiction by showing how to extend a strong
(3∆ + 1)-edge-colouring φ of H ′ to a strong edge-colouring of H without using an extra colour.

1. Suppose H contains a 1-vertex u adjacent to a 4−-vertex v. Then let H ′ = H − {uv}. We
can extend φ to H by colouring uv because |L \ SCφ(N2(uv))| ≥ 1.

2. Suppose H contains a 2-vertex u adjacent to two 3−-vertices v and w. Then let H ′ =
H − {uv, uw}. Since |L \ SCφ(N2(uv))| ≥ ∆ − 1 ≥ 3 and |L \ SCφ(N2(uw))| ≥ ∆ − 1 ≥ 3,
we can extend φ to H by coulouring uv and uw.

3. Suppose H contains a 2-vertex u adjacent to a 42-vertex v and to a 3−-vertex w. Then
let H ′ = H − {uv, uw}. One can observe that |L \ SCφ(N2(uv))| ≥ ∆ − 3 ≥ 1 and |L \
SCφ(N2(uw))| ≥ ∆− 2 ≥ 2. We can extend φ to H by colouring uv and uw in this order.

4. Suppose H contains a 2-vertex u adjacent to a 43-vertex v and to a 42-vertex w. We assume
thatN(w) = {u,w1, x, y}, N(v) = {u, v1, v2, z}, where w1, v1 and v2 are 2-vertices. Then take
H ′ = H−{uv, uw}. In order to extend φ to H we proceed as follows. We uncolour the edges
vv1 and vv2. One can observe that |L\SCφ(N2(uv))| ≥ 2∆−4 ≥ 4 and |L\SCφ(N2(uw))| ≥
∆− 2 ≥ 2. Hence, we colour uv and uw. Observe now that |L \ SCφ(N2(vv1))| ≥ ∆− 2 ≥ 2
and |L \ SCφ(N2(vv2))| ≥ ∆− 2 ≥ 2. We can extend φ to H by colouring vv1 and vv2.

5. Suppose H contains a k-vertex u adjacent to k−3 1-vertices u1, u2, . . . , uk−3 with 4 ≤ k ≤ ∆.
Let H ′ = H − {uu1}. We can extend φ to H by colouring uu1 which is possible because
|L \ SCφ(N2(uu1))| ≥ ∆− k + 3 ≥ 3.

6. Suppose H contains a k-vertex u adjacent to k 2−-vertices u1, u2, . . . , uk with 4 ≤ k ≤ ∆.
Then let H ′ = H−{uu1, uu2, ..., uuk}. We extend φ to H by colouring the edges uu1, ..., uuk
in this order. Observe that for all i ∈ JkK, |L \SCφ(N2(uui))| ≥ 2∆− 2k+ 3 ≥ 3. Therefore,
φ can be extended.

7. Let 5 ≤ k ≤ ∆. Suppose H contains a k-vertex u with neighbours u1, u2, . . . , uk−1, x such
that each ui with i ∈ Jk− 1K is a 2−-vertex and u1 is either a 1-vertex or a 2-vertex adjacent
to either a 3−-vertex or a 43-vertex. Let H ′ = H −{u1}. If u1 is a 1-vertex then φ obviously
can be extended to H. Therefore, u1 is a 2-vertex. Let v1 be the neighbour of u1 other than
u. By contradiction we assumed that v1 is either a 3−-vertex or a 43-vertex. In order to show
how to extend φ to H, we consider two cases:

• If v1 is a 3−-vertex, then |L\SCφ(N2(uu1))| ≥ 2∆−2k+3 ≥ 3 and |L\SCφ(N2(u1v1))| ≥
∆− k + 2 ≥ 2.
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• If v1 is a 43-vertex, then |L\SCφ(N2(uu1))| ≥ 2∆−2k+2 ≥ 2 and |L\SCφ(N2(u1v1))| ≥
2∆− k − 2 ≥ 2.

Therefore, in both cases φ can be extended.

8. Let u be a k-vertex in H with 5 ≤ k ≤ ∆ such that there exists k − 2 paths in H, uujvj
with j ∈ Jk− 2K and such that dH(uj) = 2 and dH(vj) ≥ 2 (by Claim 1.1). By contradiction
we assume that each vi, for i ∈ Jk − 3K, is either a 3−-vertex or a 43-vertex. Then let
H ′ = H − {uu1, uu2, ..., uuk−3, u1v1, u2v2, ..., uk−3vk−3}. In order to extend φ to H, we
distinguish the following two cases:

• Assume that there exists a vertex vi with i ∈ Jk−3K such that vi is a 3−-vertex. Without
loss of generality assume this vertex is vk−3. Then we colour each edge uui for i ∈ Jk−4K
(this is possible since |L \ SCφ(N2(uui))| ≥ ∆ − 4 ≥ k − 4). We continue by colouring
uuk−3 and uk−3vk−3 in this order, so that at each step there is at least one colour left.
Now, for each edge uivi with i ∈ Jk − 4K we have |L \ SCφ(N2(uivi))| ≥ 1 and we can
colour them independently.

• Each vertex vi, with i ∈ Jk − 3K, is a 43-vertex. Let v be a 2-vertex adjacent to
vk−3 and distinct from uk−3. We uncolour the edge vvk−3. Now, similarly to the
previous case, we colour each edge uui for i ∈ Jk− 4K and this is possible since for all i,
|L\SCφ(N2(uui))| ≥ ∆−4 ≥ k−4. Now, we colour uuk−3, vvk−3 and uk−3vk−3 in this
order (at each step we have at least one colour left for the current edge). It remains to
colour the edges uivi, with i ∈ Jk− 4K, and since |L \SCφ(N2(uivi))| ≥ 1 we can colour
them independently.

9. Let u be a k-vertex in H with 5 ≤ k ≤ ∆ and suppose by contradiction that u is adjacent to
α 1-vertices and to k− 2−α 2-vertices u1, . . . , uk−2−α, such that for each i ∈ Jk− 3−αK, ui
is adjacent to either a 3−-vertex or a 43-vertex vi.

LetH ′ = H−{uu1, uu2, ..., uuk−3−α, u1v1, u2v2, ..., uk−3−αvk−3−α}. Then we proceed exactly
as in the proof of the previous claim.

�

2.2. Discharging procedure
Euler’s formula |V (H)| − |E(H)| + |F (H)| = 2 can be rewritten as (4|E(H)| − 6|V (H)|) +

(2|E(H)| − 6|F (H)|) = −12. Using the relation
∑

v∈V (H)

d(v) =
∑

f∈F (H)

r(f) = 2|E(H)| we get that:

∑
v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(r(f)− 6) = −12 (1)

We define the weight function ω : V (H) ∪ F (H) −→ R by ω(x) = 2d(x) − 6 if x ∈ V (H)
and ω(x) = r(x) − 6 if x ∈ F (H). It follows from Equation (1) that the total sum of weights is
equal to -12. In what follows, we will define discharging rules (R1) to (R6) and redistribute weights
accordingly. Once the discharging is finished, a new weight function ω∗ is produced. However, the
total sum of weights is kept fixed when the discharging is finished. Nevertheless, we will show that
ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). This will lead us to the following contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) =
∑

x∈V (H)∪F (H)

ω(x) = −12 < 0

and hence will demonstrate that such a counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every face gives 2 to each incident 1-vertex.

(R2) Every k-vertex, for k ≥ 5, gives 2 to each adjacent 1-vertex.
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(R3) Every 43-vertex gives 2
3 to each adjacent 2-vertex.

(R4) Every 42-vertex gives 1 to each adjacent 2-vertex.

(R5) Every 41-vertex gives 2 to the adjacent 2-vertex.

(R6) Every k-vertex, for k ≥ 5, gives:

(R6.1) 2 to each adjacent 2-vertex if this 2-vertex is adjacent to a 3−-vertex.

(R6.2) 4
3 to each adjacent 2-vertex if this 2-vertex is adjacent to a 43-vertex.

(R6.3) 1 to each adjacent 2-vertex if this 2-vertex is adjacent to a 4+-vertex distinct from a
43-vertex.

Let v ∈ V (H) be a k-vertex. Consider the following cases:

Case k = 1. Observe that ω(v) = −4. By Claim 1.1, v is adjacent to a 5+-vertex. By (R1)
v receives 2 from its incident face and by (R2) v receives 2 from its adjacent vertex. Hence,
ω∗(v) = −4 + 2 + 2 = 0.

Case k = 2. Observe that ω(v) = −2. By Claim 1.1, v has two neighbours u and w both of
degree at least 2. Consider the following cases:

(a) Suppose one of the neighbours of v, say u, is a 3−-vertex. Then by Claim 1.2, w is
a 4+-vertex. If d(w) = 4 then by Claim 1.3, w is a 41-vertex and by (R5) we have
ω∗(v) = −2 + 2 = 0. If d(w) ≥ 5 then by (R6.1) we have ω∗(v) = −2 + 2 = 0.

(b) Assume now that d(u) = d(w) = 4. Suppose first that w is a 41-vertex. Then by
(R3), (R4) and (R5), ω∗(v) = −2 + 1 × 2 + 1 × min{2, 1, 2

3} > 0. Assume now that
w is a 42-vertex. Then by Claim 1.4, u is not a 43-vertex. Hence, by (R4) and (R5),
ω∗(v) = −2+min{1×1+1×2, 2×1} ≥ 0. Finally, suppose that w is a 43-vertex. Then
by Claim 1.4, u is a 41-vertex. Hence, by (R3) and (R5), ω∗(v) = −2+1× 2

3 +1×2 > 0.

(c) Suppose d(u) ≥ 5 and d(w) = 4 (the case when d(u) = 4 and d(w) ≥ 5 is symmetric). If
w is a 41-vertex then by (R5) and (R6.3), ω∗(v) = −2 + 1× 2 + 1× 1 > 0. Assume now,
w is a 42-vertex hence, by (R4) and (R6.3), ω∗(v) = −2 + 1 × 1 + 1 × 1 = 0. Suppose
now, w is a 43-vertex then by (R3) and (R6.2), ω∗(v) = −2 + 1× 2

3 + 1× 4
3 = 0.

(d) Assume d(u) ≥ 5 and d(w) ≥ 5. Hence, by (R6.3), ω∗(v) = −2 + 2× 1 = 0.

Case k = 3. The initial charge of v is ω(v) = 0 and it remains unchanged during the
discharging process. Hence ω(v) = ω∗(v) = 0.

Case k = 4. Observe that ω(v) = 2. By Claim 1.1 v is not adjacent to a 1-vertex. By
Claim 1.6, v is adjacent to at most three 2-vertices. If v is a 41-vertex, then by (R5),
ω∗(v) = 2− 1× 2 = 0. If v is a 42-vertex, then by (R4), ω∗(v) = 2− 2× 1 = 0. Suppose now
v is a 43-vertex. Hence, by (R3), ω∗(v) = 2− 3× 2

3 = 0.

Case k ≥ 5. Observe that ω(v) = 2k − 6. Consider the following cases:

(a) Assume v is not adjacent to a 1-vertex. By Claim 1.6, v is adjacent to at most k − 1
2-vertices. If v is adjacent to at most k − 3 2-vertices then by (R6), ω∗(v) ≥ 2k − 6 −
(k − 3)× 2 = 0. If the number of 2-neighbours of v is k − 2, then by Claim 1.8 at most
k − 4 of them have a 3−-neighbour or a 43-neighbour. Hence, by (R6.1) and (R6.3),
ω∗(v) ≥ 2k−6−(k−4)×2−2×1 = 0. Suppose now that the number of 2-neighbours of v
is exactly k−1. Then by Claim 1.7, none of these 2-neighbours is adjacent to a 3−-vertex
or to a 43-vertex. Therefore, by (R6.3), we have ω∗(v) = 2k−6−(k−1)×1 = k−5 ≥ 0.

(b) Suppose v is adjacent to α 1-vertices with α ≥ 1. By Claim 1.5 we have α ≤ k − 3.
Moreover, if α = k − 3 then, by the same claim, v cannot be adjacent to a 2-vertex
and thus, by (R2), ω∗(v) = 2k − 6 − (k − 3) × 2 = 0. So we may suppose that
α ≤ k − 4. If the number of 2-neighbours of v is at most k − 3 − α, then by (R6)
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ω∗(v) ≥ 2k− 6− α× 2− (k− 3− α)× 2 = 0. Suppose the number of 2-neighbours of v
is at least k − 2 − α. This number cannot be k − α according to Claim 1.6, and, since
α ≥ 1, by Claim 1.7 this number cannot be k−1−α neither. So v has exactly k−2−α
neighbours of degree 2. Then by Claim 1.9, at most k − 4 − α of the 2-neighbours
of v are adjacent to either a 3−-vertex or a 43-vertex. Therefore, by (R2) and (R6),
ω∗(v) ≥ 2k − 6− α× 2− (k − 4− α)× 2− 2× 1 = 0.

Let f ∈ F (H) be a k-face. By hypothesis on the girth condition we know that k ≥ 6. Note that
if f has α incident 1-vertices, then k ≥ 6+2α. Since ω(f) = k−6, by (R1), ω∗(f) ≥ k−6−2α ≥ 0.

After performing the discharging procedure the new weights of all faces and vertices are positive
and therefore, H cannot exist.

3. Proof of Theorem 7

In this section we show how the proof of Theorem 1, given by Faudree et al. in [6], can be
analysed in order to get a better bound for χ′s for several subclasses of planar graphs. Below we
provide this proof as we will need it for the observations which follow.

Proof of Theorem 1. Decompose first the edges of the planar graph into ∆ + 1 distinct match-
ings (this is possible by Vizing’s Theorem). For each matching M build the following graph GM :

Each vertex of GM corresponds to an edge of M . Two vertices of GM are adjacent if the
corresponding edges are adjacent in G (do not form an induced matching in G). The graph GM is
planar and hence its vertices can be coloured properly with 4 colours using Four Colour Theorem.
This colouring corresponds to a strong edge-colouring of the matching M in G.

Since there are at most ∆ + 1 matchings and for each we use 4 colours, we obtain a strong
4(∆ + 1)-edge-colouring of G. �

The two main tools used in the previous proof are Vizing’s Theorem and Four Colour Theorem.
Therefore, if one could show that under some restrictions a planar graph is properly ∆-edge-
colourable, then the bound given by the proof of Faudree et al. would be improved. To this end,
we would like to mention the following conjecture:

Conjecture 3 (Vizing’s Planar Graph Conjecture [12]). Every planar graph G with ∆ ≥ 6
satisfies χ′(G) = ∆.

The cases of ∆ ≥ 7 of this conjecture have been already shown:

Theorem 8 (Vizing [12]). If G is a planar graph with ∆ ≥ 8 then χ′(G) = ∆.

Theorem 9 (Sanders & Zhao [11]). If G is a planar graph with ∆ = 7 then χ′(G) = ∆.

These two theorems applied in the proof of Theorem 1 give an immediate corollary:

Corollary 1. Every planar graph with ∆ ≥ 7 is strongly 4∆-edge-colourable.

It would be interesting if the above result would hold for all ∆. As the result is known for
∆ = 3, the remaining cases are ∆ ∈ {4, 5, 6}. In the following we will say that a graph G is
edge-∆-critical if χ′(G) = ∆ + 1 and removing any edge of G creates a graph G′ with χ′(G′) = ∆.

Theorem 10 (Yap [16]). Let G be an edge-∆-critical graph with n vertices and m edges and
∆ = 6. Then m ≥ 9

4n.

The following corollary is an immediate consequence of Euler’s formula and Theorem 10 in the
case of planar graphs:

Corollary 2 (Yap [16]). Let G be a triangle-free planar graph with ∆ = 6. Then χ′(G) = ∆ = 6.

Therefore we can apply this result to improve the upper bound for the strong chromatic index
for the above mentioned planar graphs:
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Corollary 3. Let G be a triangle-free planar graph with ∆ ≥ 6. Then χ′s(G) ≤ 4∆.

Conjecture 4 (Vizing [13, 14]). Let G be an edge-∆-critical graph with n vertices and m edges.
Then m ≥ 1

2 [(∆− 1)n+ 3].

Conjecture 4 is known to be true if ∆ ≤ 6, the lower bound for the number of edges given by
the conjecture being improved for small values of ∆ (see the list of known results on this topic
in [15]). We refer here to the last known result:

Theorem 11 (Woodall [15]). Let G be an edge-∆-critical graph with n vertices and m edges.
Then the following holds:

• if ∆ = 4 then m ≥ 12
7 n

• if ∆ = 5 then m ≥ 15
7 n

Corollary 4. Let G be a planar graph of girth at least g and degree ∆. Then the following holds:

• if g ≥ 5 and ∆ = 4, then χ′(G) = ∆

• if g ≥ 4 and ∆ = 5, then χ′(G) = ∆

Proof
In the following we will denote by F (G) the set of faces of a planar graph G. By contradiction
assume that there exists an edge-∆-critical planar graph G with n vertices and m edges having
girth at least g and degree ∆ as stated in the hypothesis. We prove each case separately:

• Assume g ≥ 5 and ∆ = 4. Hence we have 5|F (G)| ≤
∑

f∈F (G)

r(f) = 2m. Thus, from Euler’s

formula we get thatm ≤ 5
3 (n−2). On the other hand, by Theorem 11 we know thatm ≥ 12

7 n,
a contradiction.

• Assume g ≥ 4 and ∆ = 5. Hence we have 4|F (G)| ≤
∑

f∈F (G)

r(f) = 2m. Thus, from Euler’s

formula we get that m ≤ 2n− 4. On the other hand, by Theorem 11 we know that m ≥ 15
7 n,

which gives us a contradiction.

�

Finally, using Faudree et al.’s proof of Theorem 1 and Corollaries 1, 3, 4 we get the following:

Corollary 5. Let G be a planar graph with degree ∆ and girth g. Then the following holds:

• if g ≥ 5 then χ′s(G) ≤ 4∆

• if ∆ ≥ 5 and g ≥ 4, then χ′s(G) ≤ 4∆

Now, Corollaries 1, 3 and 5 imply Theorem 7.
We summarize all the observations of this section in the following table, where the upper bounds

marked in bold are the ones given by Theorem 1 and that have not been improved since then:

∆ ≥ 7 ∆ ∈ {5, 6} ∆ = 4 ∆ = 3
no girth restriction 4∆ 4∆ + 4 4∆ + 4 3∆ + 1

g ≥ 4 4∆ 4∆ 4∆ + 4 3∆ + 1
g ≥ 5 4∆ 4∆ 4∆ 3∆ + 1
g ≥ 6 3∆ + 1 3∆ + 1 3∆ + 1 3∆
g ≥ 7 3∆ 3∆ 3∆ 3∆

Table 1: Known upper bounds on the strong chromatic index of discussed subclasses of planar graphs

The last line of the table is an immediate consequence of Grötzsch’s Theorem and Theorem 1
as observed in [3] and [9].

7



4. Concluding remarks and open problems

As mentioned in the introduction, for each ∆ ≥ 4 there exist a planar graph G of girth 4 such
that χ′s(G) = 4∆−4 [6]. Thus, the values in the first three rows of the table might not be optimal.

For planar graphs of girth 6 there exists graphs satisfying χ′s(G) ≥

⌈
12(∆−1)

5

⌉
as shown by Hudák

et al. [9].
Regarding Conjecture 3, the condition of ∆ ≥ 6 cannot be improved as Vizing himself showed

in [12] that there exist planar graphs with ∆ ∈ {2, 3, 4, 5} and which are not properly ∆-edge-
colourable. The graphs proposed in his paper for ∆ ∈ {3, 4, 5} are the graphs of geometric solids
having one edge subdivided. For the cases of ∆ ∈ {4, 5} these graphs contain many triangles.
Moreover, Corollary 4 shows that planar graphs with ∆ ≥ 5 having girth at least 4 are properly ∆-
edge-colourable and thus this result is tight (the size of the girth cannot be decreased). Therefore,
the remaining natural question to which we could not find an answer is the following:

Question 1. Let G be a planar graph with ∆ = 4 and girth at least 4. Is it true that χ′(G) = ∆?
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