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Hypergraph covering

I Let 2 ≤ l < k < n. Let M(n, k , l) be the minimum size of a
family K of k-element subsets of {1, ..., n} such that every
l-element subset is contained in at least one A ∈ K.

I Fact: M(n, k, l) ≥
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I Conjecture (Erdos-Hanani 1963)
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Rodl’s Solution : the Rodl Nibble

I Definition
Nibble: To bite in small bits.

I The method of solution: Think algorithmically!

I Build the covering family K over many iterations.
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A randomized algorithm

I Start K = ∅.
I In each iteration, randomly pick few k-element sets to add to

the covering family K.

I Argue that in each iteration K does not grow too fast whp (1).

I Argue that in each iteration no l-element set is covered more
than once whp (2).

I Deduce that with positive probability there is a choice of
k-element sets to pick satisfying conditions (1) and (2).

I Condition on this good occurrence and... Repeat!



Semi-random: Not Random

I The algorithm is not actually random.

I Each iteration is Deterministic: we use probability to show
that a good decision (nibble) exists.
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Other fundamental results proved using the semi-random
method

I G triangle-free graph, χ(G ) = O(∆/ log ∆). (Johansson
1995).

I Ramsey theory: R(3, t) ∼ t2/ log t. (Kim 1996)

I Designs: “Existence” Conjecture (Keevash 2014)
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Probabilistic machinery involved: High Level View

The success of the method hinges on two concepts

1: Almost all random variables have a Normal-like distribution.

2: Almost all random variables are only locally dependent on
each other.



Dominating sets

Definition
Graph G = (V ,E ): set S ⊂ V is a dominating set if every
v ∈ V − S is adjacent to a vertex in S .



An old theorem

Theorem (Lovasz(1975), Payan(1974), Arnautov(1974))

Graph G with minimum degree d. Then G has a dominating set of
size at most n(log(d+1)+1)

d+1 .

Proof.

I Put each vertex v ∈ V in a set X with probability p,
independently.

I Set YX := vertices not dominated by X . Then
E [|YX |] ≤ n(1− p)d+1

I X ∪ YX is a dominating set with
E [|X ∪ YX |] ≤ np + n(1− p)d+1.

I Therefore, ∃ a dominating set of size np + n(1− p)d+1.

Setting p = log(d+1)
d+1 gives the result.
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Independent dominating sets

Definition
S ⊂ V (G ) is called an independent dominating set if S is both an
independent set and a dominating set.

Remarks

I A maximal independent set in G is an independent
dominating set.
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The Main Result

Theorem (Horn, Verstraete, H. 2012)

Every d-regular graph of girth at least five has an independent
dominating set of size at most n(log d+c)

d , where c is an absolute
constant.

Remarks

I The previous method of proof will not work. Picking vertices
with probability p = log d/d will result in too many picked
vertices being adjacent.

I Idea: pick vertices with smaller probability (roughly 1/d),
remove dominated vertices from the graph, and repeat.
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A randomized algorithm

The proof uses the following randomized algorithm.

I Build an independent dominating set by iterations.

I During each iteration t, we randomly select each undominated
vertex with probability p = 1/dt , where dt will be roughly the
average degree of the graph at time t. If two adjacent vertices
were selected, un-select both of them.

I Mark all the neighbors of the selected vertices as dominated.
These vertices will not be selected at future iterations.

I Technical Trashcan: Put each vertex v not in the current
dominating set or their neighborhood in a set C with some
probability q(v). Purpose: to keep the undominated graph
regular.



Sets and Random Variables

We have the following sets:
Xt:= the set vertices in G that still need to be dominated at time t
St+1 := the set of vertices selected to be in the independent
dominating set at time t
Qt+1:= the set of vertices put in the trashcan at time t. These
vertices will not be used to build the independent dominating set.

Also define real numbers:

nt:= roughly the size of Xt we would expect at time t
dt:= average degree of a vertex in Xt that we would expect at
time t.
Set S0 = Q0 = ∅, X0 = V (G ), d0 = d , n0 = n.



Sets and Random Variables

I Define dt = d
∏t

i=1 qi and nt = n
∏t

i=1 qi , where qi ≈ e−1/e .

I At time t, select each vertex in Xt with probability 1/dt ,
independently. Let St+1 be the set of selected vertices in Xt

which have no selected neighbors.

I For each vertex v ∈ Xt\(St+1 ∪ ∂St+1), we put v in Qt+1

with probability qt+1(v). qt+1(v) is defined so that
P(v /∈ ∂St+1)(1− qt+1(v)) = qt+1.



Updating the sets

I Xt is the set from which we can take vertices to build the
independent dominating set at time t.

I Ct is the set of vertices which will not be used to build the
independent dominating set.

I How the sets are (roughly) updated:
Ct+1 = Ct ∪ Qt+1

Xt+1 = Xt\(Qt+1 ∪ St+1 ∪ ∂St+1).



Preserving the regularity of degrees

I During each iteration, we need to ensure that Xt-degrees of
vertices are all roughly the same.

I Lower bounding the minimum degree allows us to claim that
each randomly selected vertex dominates many vertices.
Upper bounding the maximum degree allows us to claim that
most randomly picked vertices are not adjacent.

I For a vertex v ∈ Xt ∪ Ct , define the random variable dt(v) to
be the number of neighbors of v in Xt .

I For a vertex v ∈ Xt ∪ Ct , define the random variable γt(v) to
be the number of neighbors of v in Ct .
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The algorithm is semi-random

We show that at each iteration all of the following set of events
hold simultaneously with positive probability:

|dt+1(v)− dt+1| ≤ εt+1 ∀v ∈ Xt+1 ∪ Ct+1 (1)

γt+1(v) ≤ 100εt+1 ∀v ∈ Xt+1 ∪ Ct+1 (2)

|Ct+1| ≤ 200
εt+1nt+1

dt+1
(3)

|St+1 −
n

ed
| ≤ 3max{εt+1nt+1

d2
t+1

,
nt+1√
dt+1d

} (4)

|Xt+1 − nt+1| ≤ 20
nt+1

dt+1
. (5)

provided they hold at time t.



How long is the algorithm be run?

I We run the algorithm until time T ≈ e log d

I Since |St | ≈ n
ed for all t, | ∪Tt=1 St |, the total size of the

selected vertices over the T iterations, is ≈ n log d/d .

I Since |Xt | ≈ nt ≈ ne−t/e , |XT | ≈ n/d

I Since |Ct | ≈ nt
dt

= n
d , then |CT ∪ XT | = O(n/d).

I Just pick a maximal independent set in CT ∪ XT .

I There is an independent dominating set in G of size at most
| ∪Tt=1 St ∪ XT ∪ CT | ≤ n log d

d + O(n/d).



Preserving the property

At each step we want to show that the following set of events hold
with positive probability:

|dt+1(v)− dt+1| ≤ εt+1 ∀v ∈ Xt+1 ∪ Ct+1 (6)

γt+1(v) ≤ 100εt+1 ∀v ∈ Xt+1 ∪ Ct+1 (7)
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dt+1
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Two main tools

There are two tools involved in showing this.

I 1. Show that each single event occurs with high probability.

I Use concentration inequalities.

I 2. Argue that the events are only locally dependent.

I Use the Lovasz Local Lemma to show that all events occur
with positive probability.
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Martingale/Concentration Inequalities

I Concentration Inequalites claim that often, under very weak
conditions, one can claim that a random variable is strongly
concentrated around its expected value.

I Suppose X = f (Z1,Z2, ...,Zk) is a random variable that is a
function of many independent random variables Zi with the
property that changing each single Zi will have little impact
on X . Then whp X does not deviate too much from its mean.
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Hoeffding-Azuma Inequality

Theorem (Hoeffding-Azuma Inequality)

Let X = f (Z1, ...,Zl) where the Zi are independent random
variables and suppose that changing the outcome of each single Zk

can change X by at most the amount ck . Then X satisfies

P[|X − E [X ]| > t] ≤ 2exp{−2t2/
l∑
1

c2
k}

for all t > 0.



Lovasz Local Lemma

Theorem
Let A1, ...,Am be a set of ”bad” events in some probability space,
and suppose that for some set Ji ⊂ [n], Ai is mutually independent
of {Aj : j /∈ Ji ∪ {i}}. If there exist real numbers γi ∈ [0, 1) such
that P(Ai ) ≤ γi

∏
j∈Ji (1− γj), then

P(∩ni=1Ac
i ) ≥

n∏
i=1

(1− γi ) > 0.



Applying the concentration inequality

Lemma Let v ∈ Xt+1 and dt > K , K a large constant. Then

P[|dt+1(v)− dt+1| > εt+1] ≤ d−100t .

Proof sketch

I First, we show that E [dt+1(v)] ≈ dt+1. This means we can
concentrate around dt+1 rather than E [dt+1(v)].

I For a vertex u, let Iu be the indicator r.v. that u is selected at
time t with probability 1/dt , and Ju the indicator r.v. that u
is put in Qt+1.

I dt+1(v) is a function of r.v’s Iu and Ju.

I Since girth ≥ 5, then whp no single r.v Iu and Ju can affect
dt+1(v) very much.



Applying the concentration inequality

Lemma Let v ∈ Xt+1 and dt > K , K a large constant. Then

P[|dt+1(v)− dt+1| > εt+1] ≤ d−100t .

Proof sketch

I First, we show that E [dt+1(v)] ≈ dt+1. This means we can
concentrate around dt+1 rather than E [dt+1(v)].

I For a vertex u, let Iu be the indicator r.v. that u is selected at
time t with probability 1/dt , and Ju the indicator r.v. that u
is put in Qt+1.

I dt+1(v) is a function of r.v’s Iu and Ju.

I Since girth ≥ 5, then whp no single r.v Iu and Ju can affect
dt+1(v) very much.



Applying the concentration inequality

Lemma Let v ∈ Xt+1 and dt > K , K a large constant. Then

P[|dt+1(v)− dt+1| > εt+1] ≤ d−100t .

Proof sketch

I First, we show that E [dt+1(v)] ≈ dt+1. This means we can
concentrate around dt+1 rather than E [dt+1(v)].

I For a vertex u, let Iu be the indicator r.v. that u is selected at
time t with probability 1/dt , and Ju the indicator r.v. that u
is put in Qt+1.

I dt+1(v) is a function of r.v’s Iu and Ju.

I Since girth ≥ 5, then whp no single r.v Iu and Ju can affect
dt+1(v) very much.



Applying the concentration inequality

Lemma Let v ∈ Xt+1 and dt > K , K a large constant. Then

P[|dt+1(v)− dt+1| > εt+1] ≤ d−100t .

Proof sketch

I First, we show that E [dt+1(v)] ≈ dt+1. This means we can
concentrate around dt+1 rather than E [dt+1(v)].

I For a vertex u, let Iu be the indicator r.v. that u is selected at
time t with probability 1/dt , and Ju the indicator r.v. that u
is put in Qt+1.

I dt+1(v) is a function of r.v’s Iu and Ju.

I Since girth ≥ 5, then whp no single r.v Iu and Ju can affect
dt+1(v) very much.



Applying the concentration inequality

Lemma Let v ∈ Xt+1 and dt > K , K a large constant. Then

P[|dt+1(v)− dt+1| > εt+1] ≤ d−100t .

Proof sketch

I First, we show that E [dt+1(v)] ≈ dt+1. This means we can
concentrate around dt+1 rather than E [dt+1(v)].

I For a vertex u, let Iu be the indicator r.v. that u is selected at
time t with probability 1/dt , and Ju the indicator r.v. that u
is put in Qt+1.

I dt+1(v) is a function of r.v’s Iu and Ju.

I Since girth ≥ 5, then whp no single r.v Iu and Ju can affect
dt+1(v) very much.



Concluding Remarks

I The upper bound in the theorem cannot be significantly
improved: all the independent dominating sets in the random
d-regular graph on n vertices have size at least n log d

d − cn/d
for some constant c .
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Relaxing the regularity condition in the theorem

I The regularity condition cannot be significantly improved:
Take the graph that consists of the random graph Gn/2,2d/n

and K̄n/2 where each vertex v ∈ K̄n/2 is connected to d
randomly chosen vertices in Gn/2,2d/n.

I If d is large, whp every vertex has degree at least d and at
most 3d . We can remove a few edges to ensure that there are
no triangles or 4-cycles.

I Every independent set in Gn/2,2d/n has size at most

≈ n log d
2d ⇒ many vertices in K̄n/2 will be uncovered.



Relaxing the girth condition

The girth 5 condition cannot be improved: take the graph
consisting of disjoint copies of Kd ,d .



An open question...

Is the following conjecture true?

Conjecture

There exists an absolute constant c such that any n-vertex
d-regular graph with no cycles of length 4 has an independent
dominating set of size at most n(log d+c)

d .



Thank You
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