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Abstract

A classical theorem of Gallai states that in every graph that is
critical for k-colorings, the vertices of degree k − 1 induce a tree-like
graph whose blocks are either complete graphs or cycles of odd length.
We provide a generalization to colorings and list colorings of digraphs,
where some new phenomena arise. In particular, the problem of list col-
oring digraphs with the lists at each vertex v having min{d+(v), d−(v)}
colors turns out to be NP-hard.
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1 Introduction

A theorem of Gallai [8] describes the structure of low degree vertices in
graphs that are critical for the chromatic number. It states that the induced
subgraph on the vertices of degree k − 1 in a k-critical graph is composed
of blocks that are either complete graphs or odd cycles. In this paper, we
consider the chromatic number of digraphs and show that Gallai theorem can

∗Research supported by FQRNT (Le Fonds québécois de la recherche sur la nature et
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be extended to this setting. It is interesting to note that another structure
appears in addition to cliques and odd cycles. These are directed cycles of
any length. For a parallel, we observe that this kind of graphs also occur in
the version of Brooks’ Theorem for digraphs, see Theorem 1.3 below.

The Gallai theorem has a natural setting in terms of list colorings. For
undirected graphs, it can be viewed as a list coloring problem where the
list at each vertex has the same number of available colors as the degree of
that vertex. The coloring problem for this type of lists is easily solvable for
undirected graphs. However, as we show in Section 3, the colorability of this
type of list coloring problems on digraphs is NP-hard.

List colorings and Gallai trees

A graph G is k-color-critical or k-critical if χ(G) = k and χ(H) < χ(G), for
every proper subgraph H ⊂ G. The minimum degree of a k-critical graph is
at least k−1. A classical theorem of Gallai [8] states that in every k-critical
graph, the vertices of degree k − 1 induce a graph whose blocks are either
odd cycles or complete graphs. Because of this result, a graph all of whose
blocks are either odd cycles or complete graphs is called a Gallai tree.

A natural setting of applying Gallai’s theorem is that of list colorings.
Given a graph G and a list L(v) of colors for each vertex v, we say G is
L-colorable if there is a proper coloring of G (i.e. each color class is an inde-
pendent set) such that each vertex v is assigned a color from L(v). Having a
k-critical graph G, one may assume that we have (somehow) colored vertices
of degree larger than k − 1 with k − 1 colors and that only vertices whose
degree in G is k − 1 are left to be colored. Denote the subgraph induced
by the vertices of degree k − 1 by S. Now, each vertex v ∈ V (S) has a
list L(v) of available colors, and |L(v)| = degS(v). This setting is used to
formulate Gallai’s theorem for list colorings. It was obtained independently
by Borodin [3] and Erdős et al. [5]. Kostochka et al. [9] generalized it to
hypergraphs.

Theorem 1.1 ([3],[5]). Let G be a connected graph, and L a list-assignment
for G. Suppose that |L(x)| ≥ deg(x) for each x ∈ V (G), and G is not L-
colorable. Then G is a Gallai tree.

The following theorem has been proved by Thomassen [13], while the
generalization to hypergraphs can be found in [9].

Theorem 1.2. Let L be an arbitrary list-assignment for a graph G. Let X
be a subset of vertices such that G[X] is connected and |L(x)| ≥ degG(x) for
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each x ∈ X. Assume that G − X is L-colorable. If G is not L-colorable,
then G[X] is a Gallai tree and |L(x)| = degG(x) for every x ∈ X.

Digraph colorings and the Brooks Theorem

Let D be a digraph. A vertex set A ⊂ V (D) is called acyclic if the induced
subdigraph D[A] has no directed cycles. A k-coloring of D is a partition
of V (D) into k acyclic sets. The minimum integer k for which there exists
a k-coloring of D is the chromatic number χ(D) of the digraph D. The
above definition of the chromatic number of a digraph was first introduced
by Neumann-Lara [12]. The same notion was independently introduced
much later by the second author when considering the circular chromatic
number of weighted (directed or undirected) graphs [10]. The chromatic
number of digraphs was further investigated by Bokal et al. [2]. The notion
of chromatic number of a digraph shares many properties with the notion of
the chromatic number of undirected graphs. Note that if G is an undirected
graph, and D is the digraph obtained from G by replacing each edge with
the pair of oppositely directed arcs joining the same pair of vertices, then
χ(D) = χ(G) since any two adjacent vertices in D induce a directed cycle of
length two. The second author [11] provides some further evidence for the
close relationship between the chromatic number of a digraph and the usual
chromatic number.

Note that the blocks in Gallai’s theorem for undirected graphs are pre-
cisely complete graphs and odd cycles, which also appear in Brooks’ theorem.
For digraphs, a version of Brooks’ theorem was proved in [11].

Theorem 1.3 ([11]). Suppose that D is a k-critical digraph in which for
every vertex v ∈ V (D), d+(v) = d−(v) = k − 1. Then one of the following
cases occurs:

1. k = 2 and D is a directed cycle of length n ≥ 2.

2. k = 3 and D is a bidirected cycle of odd length n ≥ 3.

3. D is bidirected complete graph of order k ≥ 4.

Note that the last two cases of Theorem 1.3 are the analogues of odd
cycles and complete graphs in the undirected version of Brooks’ and Gallai’s
theorems. Thus, it is expected that the first case of Theorem 1.3 will appear
in the Gallai’s theorem for digraphs, which is proved in the sequel.
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Basic definitions and notation

We end this section by introducing some terminology that we will be using
throughout the paper. The notation is standard and we refer the reader
to [1] for an extensive treatment of digraphs. We use xy to denote the arc
joining vertices x and y, where x is the initial vertex and y is the terminal
vertex of the arc xy. We denote by A(D) the set of arcs of the digraph D.
Digraphs discussed in the paper will not have parallel arcs. We do allow,
however, the existence of two arcs between two vertices going in opposite
directions. For v ∈ V (D) and e ∈ A(D), we denote by D − v and D − e
the subdigraph of D obtained by deleting v and the subdigraph obtained by
removing e, respectively. We let d+

D(v) and d−D(v) denote the out-degree (the
number of arcs whose initial vertex is v) and the in-degree (the number of
arcs whose terminal vertex is v) of v in D, respectively. A vertex v ∈ V (D)
is said to be Eulerian if d+(v) = d−(v). The digraph D is Eulerian if every
v in D is Eulerian. We say that u is an out-neighbor (in-neighbor) of v if
vu (uv) is an arc. We denote by N+(v) and N−(v) the set of out-neighbors
and in-neighbors of v, respectively. Every undirected graph G determines
a bidirected digraph D(G) that is obtained from G by replacing each edge
with two oppositely directed edges joining the same pair of vertices. If D is a
digraph, we let G(D) be the underlying undirected graph obtained from D by
“forgetting” all orientations. A digraph D is said to be (weakly) connected if
G(D) is connected. The blocks of a digraph D are the maximal subdigraphs
D′ of D whose underlying undirected graph G(D′) is 2-connected. A cycle
in a digraph D is a cycle in G(D) that does not use parallel edges. A directed
cycle in D is a subdigraph forming a directed closed walk in D whose vertices
are all distinct. A directed cycle consisting of exactly two vertices is called
a digon.

The rest of the paper is organized as follows. In Section 2, we derive an
analogue of Gallai’s theorem for directed graphs. In Section 3, we consider
algorithmic questions for list coloring a digraph.

2 List coloring and Gallai Theorem

We define list colorings of digraphs in an analogous way as for undirected
graphs. Let C be finite set of colors. Given a digraph D, let L : v 7→ L(v) ⊆ C
be a list-assignment for D, which assigns to each vertex v ∈ V (D) a set of
colors. The set L(v) is called the list (or the set of admissible colors) for v.
We say D is L-colorable if there is an L-coloring of D, i.e., each vertex v
is assigned a color from L(v) such that every color class induces an acyclic
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subdigraph in D. We say that D is L-critical if D is not L-colorable but
every proper subdigraph of D is L-colorable. Clearly, by saying that a
subdigraph H is L-colorable, we use the restriction of the list-assignment L
to V (H). The main result of this section is the following digraph analogue
of Gallai Theorem.

Theorem 2.1. Let D be a connected digraph, and L an assignment of colors
to the vertices of D such that |L(v)| ≥ max{d+(v), d−(v)}. Suppose that D
is not L-colorable. Then D is Eulerian and every block of D is one of the
following:

(a) directed cycle (possibly a digon),

(b) an odd bidirected cycle, or

(c) a bidirected complete digraph.

Moreover, for each block B of D, whose vertices have in-degree and out-
degree dB, there is a set CB of colors so that for each vertex v ∈ V (D), we
have

L(v) = {CB | B is a block of D and v ∈ V (B)}.

Furthermore, |L(v)| = d+(v), implying that the blocks B containing v have
pairwise disjoint color sets CB.

(a) (b) (c)

Figure 1: Possible blocks in Gallai trees: (a) a directed cycle, (b) a bidirected
odd cycle, and (c) a bidirected complete graph.

The proof of Theorem 2.1 relies on several lemmas. The first of these
gives information about the lists of L-critical Eulerian digraphs.

Lemma 2.2. Let D be an Eulerian digraph, and let L be an assignment of
colors to the vertices of D. Suppose that |L(v)| = d+(v) (v ∈ V (D)) and
that D is L-critical. Given a vertex v ∈ V (D), let f be an L-coloring of
D − v. Then the following holds:
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1. L(v) = {f(u) | u ∈ N−(v)} = {f(w) | w ∈ N+(v)}, and so each color
in L(v) appears exactly once in N−(v) and once in N+(v).

2. If u is a neighbor of v with f(u) = c, then uncoloring u and coloring
v with c gives an L-coloring of D − u.

Proof. If a color c ∈ L(v) would not appear on the out-neighborhood of v,
we could color v by c and obtain an L-coloring of D. Similarly, each color
c ∈ L(v) also appears on the in-neighborhood of v. This establishes the first
claim.

To prove the second claim, remove color c from u and color v with c.
Suppose, without loss of generality, that u is an out-neighbor of v. Since
c appeared on the out-neighbors of v only once, we get an L-coloring of
D − u.

Lemma 2.3. Let D be a connected digraph. Let L be an assignment of colors
to the vertices of D with |L(v)| ≥ max{d+(v), d−(v)} for each v ∈ V (D).
Suppose that D is not L-colorable. Then

1. D is Eulerian and |L(v)| = d+(v) = d−(v) for every v ∈ V (D).

2. D is L-critical.

Proof. To prove 1), we will use induction on |V (D)|. The claim is clear if
|V (D)| = 1. If |V (D)| = 2, then D is either a directed edge (and hence
L-colorable since L(v) 6= ∅ for v ∈ V (D)) or a digon, in which case 1) holds.
So, assume now that |V (D)| ≥ 3.

Suppose there exists a vertex v ∈ V (D) such that d+
D(v) 6= d−D(v). Let

D′ = D − v. If D′ was L-colorable so would be D, since one of the colors
in L(v) would not appear among the in-neighbors or out-neighbors of v.
Thus, D′ is not L-colorable. Then D′ has a connected component D′′ that
is not L-colorable. Applying the induction hypothesis to D′′, we conclude
that D′′ is Eulerian and |L(u)| = d+

D′′(u) = d−D′′(u) for every u ∈ V (D′′).
Now, choosing a vertex u ∈ V (D′′) which is a neighbor of v we obtain
that d+

D′′(u) = |L(u)| ≥ max{d+
D(u), d−D(u)} ≥ d+

D′′(u) + 1, a contradiction.
Therefore, |L(v)| = min{d+

D(v), d−D(v)} = max{d+
D(v), d−D(v)}, and the result

follows.
To prove 2), we use induction on |A(D)|. The claim is clearly true when

|A(D)| ≤ 2. So, suppose |A(D)| ≥ 3. Now, let e = uv be any arc, and let
D′ = D−e. Let D′′ be any component of D′. By part 1), D is Eulerian which
implies that D′′ is not Eulerian. Therefore, by the induction hypothesis, D′′

is L-colorable. Similarly, if there exists a second component of D′, it is also
L-colorable. Therefore, D′ is L-colorable, and thus D is L-critical.
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Let C = v1v2...vk be a cycle (not necessarily directed) in a digraph D.
Let f be a coloring of D−v1. A shift of colors around C is a color assignment
g for D − v1, where g(v2) = f(v3), g(v3) = f(v4), ..., g(vk) = f(v2) and
g(v) = f(v) for v ∈ V (D)\V (C). Let us observe that in the case of Eulerian
L-critical graphs, Lemma 2.2 guarantees that g is a (proper) L-coloring of
D − v1 since g can be obtained by repeatedly using part (2) of Lemma 2.2:
first we uncolor v2 and color v1, then uncolor v3 and color v2, etc. until the
last step when we uncolor v1 and color vk. This fact will be used throughout
this section.

Lemma 2.4. Let D be a connected digraph, and L an assignment of colors to
the vertices of D such that |L(v)| = max{d+(v), d−(v)} for each v ∈ V (D).
Suppose that D is not L-colorable. Let C be a cycle of length 3 or 4 in the
underlying graph G(D). If the orientation of the edges of C in D is not
cyclic, then V (C) induces a complete bidirected graph in D.

Proof. By Lemma 2.3, D is Eulerian and L-critical. First, assume that
C = v1v2v3 has length three. We may assume that the edges of C are
directed as follows: v3v1, v1v2 and v3v2. We will show that the arcs v1v3,
v2v3 and v2v1 are also present in D. Consider a coloring f of D − v1. Let
f(v2) = a. If f(v3) = a, then uncoloring v3 and coloring v1 with a would
give an L-coloring of D − v3 where v3 has two out-neighbors colored a,
a contradiction by Lemma 2.2. Therefore, f(v3) = b 6= a. Now, the out-
neighbor of v1 that is colored b must be on the cycle C since otherwise doing
a shift of colors around C we would get a new L-coloring of D − v1 with v1

having two out-neighbors colored b, so we could complete the coloring. The
only way the out-neighbor of v1 colored b is on C is when v1v3 ∈ A(D). By
a similar reasoning, v2v1 ∈ A(D). To show the existence of the arc v2v3,
consider an L-coloring of D − v3 and the cycle C ′ consisting of the arcs
v1v2, v1v3, and v3v2. The same proof as above shows that v2v3 ∈ A(D).
This settles the case when C is a cycle of length 3.

Suppose now that C = v1v2v3v4v1 is a 4-cycle, and assume that the arcs
of C are not cyclic. We may assume that the vertex v1 has both vertices,
v2 and v4, as its out-neighbors. Now, by criticality, D − v1 is L-colorable.
Moreover, every coloring f assigns different colors to v2 and v4 by Lemma
2.2. So suppose f(v2) = a and f(v4) = b, a 6= b. Now, f(v3) 6= a, since
otherwise making the counter-clockwise shift of colors around C we would
get two out-neighbors of v1 colored a. Similarly, if we do a clockwise shift
of colors around C we deduce that f(v3) 6= b. Therefore, assume f(v3) = c,
c 6= a, b. Now, if we do a clockwise shift of colors around C we get that the
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color a disappears in the out-neighborhood of v, unless the vertex v3 is an
out-neighbor of v1. Thus, by Lemma 2.2, v1v3 ∈ A(D).

Now, regardless of the orientation of edges v2v3 and v3v4, the two tri-
angles v1v2v3 and v1v3v4 have acyclic orientations and therefore by the first
part of the proof, these sets induce bidirected cycles in D. Therefore, we
have that C is a bidirected cycle that also has the chords v1v3 and v3v1.
Now we apply the same proof to the cycle C ′ with arcs v2v3, v3v4, v4v1, v2v1

in which v2 has two out-neighbors. We conclude that also the chords v2v4

and v4v2 are in D. This completes the proof of the lemma.

Using Lemma 2.4, we now obtain the following.

Lemma 2.5. Let D be a connected digraph, and L an assignment of colors to
the vertices of D such that |L(v)| = max{d+(v), d−(v)} for each v ∈ V (D).
Suppose that D is not L-colorable. Let C = v1v2...vkv1, k ≥ 3, be a cycle of
length k in the underlying graph. Suppose that the orientation of the edges
of C is not cyclic. Then the following holds:

1. If k is even, then V (C) induces a complete bidirected subdigraph in D,

2. If k is odd, then V (C) either induces a complete bidirected cycle or a
complete bidirected subdigraph in D.

Proof. By Lemma 2.3, D is Eulerian and L-critical. We proceed by induction
on k. The cases k = 3 and k = 4 are established by Lemma 2.4. So we
assume that k ≥ 5. First, suppose that k is odd. We may assume that the
two neighbors of v1 on the cycle C, v2 and vk, are an out-neighbor and an
in-neighbor, respectively. Such a vertex must exist by parity. We consider
two cases. First, suppose there is a chord incident to v1, say v1vi, 2 < i < k.
Then regardless of the orientation of the edge v1vi, one of the two cycles
v1v2...viv1 and v1vivi+1...vkv1 has acyclic orientation. By induction, we must
have the arcs v1vi and viv1 present in D. The arcs v1vi and viv1 divide the
cycle C into an odd cycle and an even cycle. Suppose C1 = v1v2...vi is the
even cycle. We can make sure that C1 has its edges oriented acyclically
by appropriately picking either the arc v1vi or viv1. Thus, by induction,
C1 induces a complete bidirected digraph. Similarly, C2 = v1vivi+1...vkv1

induces either a bidirected cycle or a bidirected clique. Now, consider the
cycle C3 = v2vivi+1...vkv1v2. We can choose the appropriate bidirected
arcs to ensure that C3 has acyclic orientation. Since C3 is an even cycle
and it is shorter than C, it follows that C3, and hence also C2, induces a
complete bidirected digraph. It remains to show that every vertex on C1 has
bidirected arcs to every vertex on C2. But this is clear, since for any vj on
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C2, v1vjvivi+1...vkv1 is an even cycle and thus induces a complete bidirected
graph by the same argument as used above.

Now, suppose there is no chord incident to v1. Let f be an L-coloring
of D− v1. First, we claim that f(vk) 6= f(v2). Suppose, for a contradiction,
that f(vk) = f(v2) = a. By repeatedly making a shift of colors around C,
we conclude that all the original colors on C were equal to a. Let vi be a
vertex on C that has both of its neighbors on C as in-neighbors. Passing
the color of v2 to v1 (by using Lemma 2.2(2)), the color of v3 to v2,· · · , the
color of vi to vi−1, we get a proper L-coloring of D− vi. But now vi has two
in-neighbors colored a, so we can complete the coloring to a coloring of D, a
contradiction. So we may assume that f(v2) = a and f(vk) = b, a 6= b. Now,
the out-neighbor of v1 that has color b must be vk for otherwise doing a shift
of colors we would get a coloring of D − v1 with two out-neighbors colored
b. So, v1vk ∈ A(D). By a similar argument, v2v1 ∈ A(D). Now, consider
the vertex v2 and a coloring of D− v2. Since the edges v1v2, v2v1, v1vk, vkv1

exist, we can change C to a non-directed cycle C ′ in which v2 has an in-
neighbor and an out-neighbor. As above, we either get a bidirected clique
or both arcs v2v3 and v3v2. Repeating this argument, we deduce that V (C)
induces a bidirected cycle or a bidirected clique.

Next, suppose k is even. We may assume that v1’s neighbors on C, v2

and vk, are both in-neighbors. We claim that there is a chord of C incident
to v1 and directed inwards (i.e., v1 has another in-neighbor on C). Suppose
not. Consider a coloring of D − v1 and let f(v2) = a and f(vk) = b. Now
if we do a shift of colors around C we deduce that f(v3) = f(v5) = f(v7) =
· · · = f(vk−1) = b. But this is impossible since after performing a shift of
colors in the opposite direction, we will obtain a valid coloring of D−v1 with
vk and v2 both colored b. Therefore, there is an arc viv1 ∈ A(D). If this
arc divides C into two even cycles, then by an inductive argument similar
to the case when k is odd we can deduce that C is a complete bidirected
digraph. Therefore, assume that i is odd so that viv1 splits the cycle C into
two odd cycles C1 = v1v2...viv1 and C2 = v1vivi+1...vkv1. By induction, we
have that all the edges of C are actually bidirected arcs. Also, we know
that viv1, v1vi ∈ A(D). Next, we show that there must be further chords
incident to v1 in addition to those coming from vi. Suppose not. Consider
a coloring g of D − v1, and suppose g(v2) = a, g(vk) = b and g(vi) = c.
Now, if we do shift of colors around C1, we conclude that g(v2) = g(v4) =
· · · = g(vi−1) = a and g(v3) = g(v5)... = g(vi) = c. Similarly, doing shift
of colors around C2 we conclude that g(vi) = g(vi+2) = g(vk−1) = c and
g(vi+1) = g(vi+3) = · · · = g(vk) = b. Since k ≥ 6, if we now do two shifts
of colors around C, we will get a coloring of D− v1 where there is the same
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color appearing twice in the neighborhood of v1, contradicting Lemma 2.2.
Therefore, there are other chords incident to v1 except the ones coming from
vi. This implies that one of the cycles C1 or C2 is divided into an even cycle
and an odd cycle and we are done by a similar argument as in the case when
k is odd.

Now, we can prove the main result of this section.

Proof of Theorem 2.1. By Lemma 2.3, D is Eulerian and L-critical. Let H
be a block of D, for which none of (a)-(c) applies. Note that H cannot
be a single arc by L-criticality. The theorem is clear if |V (H)| ≤ 3. Note
that H cannot be a non-directed cycle or a cycle with some but not all
edges bidirected, since every such cycle induces new arcs by Lemma 2.5. So
we may assume that |V (H)| ≥ 4 and that H (as an undirected graph) is
not a cycle. Then there are two vertices in H with three internally vertex-
disjoint paths between them, say P1, P2, P3. Two of these paths, say P1 and
P2, create a cycle C of even length. We claim that the cycle C induces
a complete bidirected graph. Suppose not. Then C is a directed cycle by
Lemma 2.5. This implies that at least one of the cycles P1∪P3 or P1∪P2 is
not directed. By applying Lemma 2.5 again, this new cycle induces at least
a bidirected cycle and therefore some of the arcs of C are bidirected. But
this is a contradiction, which shows that C induces a complete bidirected
digraph.

Let v be any vertex of H that is not on C. Since H is a block, there are
two paths P and Q from v to C whose only common vertex is v. Now, simply
take an even cycle C ′ that contains the path P ∪Q and one or two additional
arcs of C. We may choose the arcs of C ′ so that C ′ is a non-directed cycle.
Now, Lemma 2.5 shows that C ′ induces a complete bidirected digraph. By
using different vertices of C when making C ′ (by possibly including more
than two arcs of C), we conclude that every vertex of P ∪Q is adjacent to
each other and to every vertex on C. Therefore, if we take any maximal
bidirected clique K in H we conclude that all the vertices of H are on K.
Hence, H is a complete bidirected digraph.

It remains to prove the last part of the theorem. Let us consider a
block B of D. Note that B satisfies one of (a)–(c). If B = D, then it is
an easy exercise to show that the only list assignment L, for which D is
not L-colorable, has all lists L(v), v ∈ V (D), equal to each other. So, we
may assume that B 6= D. Next, we L-color D′ = D − V (B). After this,
each vertex v ∈ V (B) is left with at least d+

B(v) colors that do not appear
on N(v). Let L′(v) ⊆ L(v) denote these colors. Now, every L′-coloring
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of B gives rise to an L-coloring of D, so B is not L′-colorable. But since
|L′(v)| ≥ d+

B(v) for all v ∈ V (B), we conclude, by the same arguments as
above, that |L′(v)| = d+

B(v) for each v ∈ V (B) and that all lists L′(v) are
the same. By denoting this common color set by CB, we obtain the last
part of the theorem. Since |L(v)| = d+(v), it is easy to see that the color
sets CB of all blocks B containing v are pairwise disjoint.

Note that the condition |L(v)| ≥ max{d+(v), d−(v)} in Theorem 2.1
cannot be strengthened to, say, |L(v)| ≥ d+(v), since we could take any
digraph which has a vertex with no out-neighbors and an empty list of colors.
However, this becomes possible if we know that the digraph is L-critical.

Corollary 2.6. Let D be a connected digraph and L an assignment of colors
to the vertices of D such that |L(v)| ≥ d+(v), for every v ∈ V (D). Suppose
that D is L-critical. Then D is Eulerian, and hence the conclusions of
Theorem 2.1 hold.

Proof. If D is not Eulerian, then there exists a vertex v ∈ V with d+(v) >
d−(v). Consider an L-coloring of D−v. Now, since |L(v)| ≥ d+(v) > d−(v),
there is a color c ∈ L(v) that does not appear on the in-neighborhood of v.
Coloring v with color c gives an L-coloring of D, a contradiction.

The next corollary obtains a similar result when the criticality condi-
tioned is dropped, but we insist that vertices whose out-degree is larger
than their in-degree have an extra admissible color.

Corollary 2.7. Let D be a connected digraph, and L an assignment of
colors to the vertices of D such that |L(v)| ≥ d−(v) if d+(v) ≤ d−(v) and
|L(v)| ≥ d−(v) + 1 otherwise. Suppose that D is not L-colorable. Then D is
Eulerian, and hence the conclusions of Theorem 2.1 hold.

Proof. We use induction on |A(D)|. If |A(D)| ≤ 3 and D is not Eulerian,
then D is L-colorable for any choice of L. So, we may assume from now on
that |A(D)| ≥ 4.

We first show that D is L-critical. Let e = uv be an arc of D and suppose
for a contradiction that D−uv is not L-colorable. Consider a component C
of D−uv that is not L-colorable. By the induction hypothesis, we have that
C is Eulerian and that conclusions of Theorem 2.1 hold. If u ∈ V (C) (say),
then u is not an Eulerian vertex in D, so |L(u)| > d+

C(u), which contradicts
the conclusions of Theorem 2.1 for C.

Now, suppose that D is not Eulerian. Since
∑

v d
+(v) =

∑
v d
−(v) =

|A(D)|, there exists a vertex v such that d+(v) > d−(v). Then |L(v)| ≥

11



d−(v) + 1. Remove an arc e incident to v from D, and choose an L-coloring
of D − e. Now, putting the edge e back, we see that we still have a color
in L(v) not appearing on the in-neighborhood of v, allowing us to complete
the coloring to an L-coloring of D, a contradiction.

The reader may wonder why do we request an additional color for non-
Eulerian vertices. As we shall see in the next section, the situation changes
drastically if this were not the case.

3 Complexity of list coloring of digraphs with Brooks’
condition

It is natural to ask whether the condition of Corollary 2.7 can be relaxed
to |L(v)| ≥ min{d+(v), d−(v)}. It turns out that the answer is negative
even if the digraph is L-critical. There is an example on four vertices;
see Figure 2, where the numbers at the vertices indicate the correspond-
ing lists of colors. Further examples of digraphs that are L-critical with
|L(v)| ≥ min{d+(v), d−(v)} for every v ∈ V (D), and yet do not admit a
block decomposition described by Theorem 2.1, are not hard to construct.

1,2

1,2

11

Figure 2: An L-critical digraph with |L(v)| ≥ min{d+(v), d−(v)} that is not
Eulerian

Not only that there are many such examples, it turns out that the list
coloring problem restricted to such a restricted class of instances is NP-hard.
This (surprising) fact and its proof is the subject of the remainder of this
section.

Computational complexity of digraph colorings has been studied by sev-
eral authors. We have the following complexity theorem for digraphs proven
in Bokal et al. [2].

12



Theorem 3.1 ([2]). Let D be a digraph. It is NP-complete to decide whether
χ(D) ≤ 2.

Stronger results were obtained by Feder, Hell and Mohar [6].
We study the following problem.

Problem: List Coloring with Brooks’ Condition
Instance: A digraph D, a list-assignment L such that for every
vertex v ∈ V (D), |L(v)| = min{d+(v), d−(v)}.
Question: Is the digraph D L-colorable?

If we restrict the instances to planar graphs, we get the Planar List
Coloring Problem with Brooks’ Condition.

Theorem 3.2. The Planar List Coloring Problem with Brooks’
Condition is NP-complete.

For a polynomial time reduction, we shall use the following problem,
which was proved to be NP-complete in [7].

Problem: Planar (≤ 3, 3)-Satisfiability
Instance: A formula Φ in conjunctive normal form with a set
C of clauses over a set X of boolean variables such that

(1) each clause involves at most three distinct variables,

(2) every variable occurs in exactly three clauses, once positive
and twice negative, and

(3) the graph GΦ = (X ∪ C, {xc | x ∈ X,x ∈ c ∈ C or ¬x ∈ c ∈
C}) is planar.
Question: Is Φ satisfiable?

Proof. Clearly, every list coloring problem is in NP since after guessing an L-
coloring, one can check in polynomial time whether each color class induces
an acyclic subdigraph using Breadth-First-Search.

For the polynomial-time reduction we use Planar (≤ 3, 3)-Satisfiability.
Let the formula Φ be an instance of Planar (≤ 3, 3)-Satisfiability. Note
that G = GΦ is a bipartite graph with bipartition {X,C}. We create an
instance of list coloring for digraphs as follows.

• Direct all the edges of G from X to C.

• For each x ∈ X, we create a new vertex x′ and add the arcs x′x and
c1x
′, c2x

′, where c1, c2 are the two clauses that contain ¬x.
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• Add the arc c3x, where c3 is the clause containing the literal x.

• For every variable x ∈ X, we define two colors, x and x̄. For each
x ∈ X, set L(x) = {x, x̄}. For each c ∈ C, we set L(c) = {x̄ | x ∈
c} ∪ {x | ¬x ∈ c}. Finally, let L(x′) = {x} for every x′.

Let D be the resulting digraph. Clearly, every x ∈ X has out-degree 3
and in-degree 2 because x appears in three clauses, twice negative and once
positive. Therefore, |L(x)| = min{d+(v), d−(v)}. For a given clause c ∈ C,
for every arc xc we have exactly one of the two arcs cx or cx. Therefore,
d+(c) = d−(c) = |L(c)|. Now, every x′ has in-degree 2 and out-degree 1,
which implies that |L(x′)| = min{d+(x′), d−(x′)}. Therefore, all the list
sizes match with minimum degree. Now, we claim that Φ is satisfiable if
and only if D is L-colorable.

Suppose first that f is an L-coloring of D. Define a truth assignment
φ as follows: φ(x) = true if f(x) = x and φ(x) = false if f(x) = x̄. We
need to show that every clause c is satisfied. If f(c) = x for some variable x,
then ¬x ∈ c. Also, f(x) 6= x for otherwise we would have a monochromatic
triangle cx′x of color x. Therefore, f(x) = x̄, thus φ(x) = false, and hence
c is satisfied. Similarly, if f(c) = x̄, then x ∈ c. Further, f(x) = x for
otherwise we would have a monochromatic digon. Therefore, φ(x) = true

and c is satisfied.
Conversely, let φ be a satisfying truth assignment. Define the following

L-coloring f : f(x) = x if φ(x) = true, and f(x) = x̄ if φ(x) = false.
For each clause c, choose a variable x which satisfies c and set f(c) = x if
¬x ∈ c, and f(c) = x̄, if x ∈ c. Clearly, f(x′) = x for all x′. To see that f is a
coloring, consider an arc xc. We claim that f(x) 6= f(c). Suppose f(x) = x
(the other case is similar) and that ¬x ∈ c. Since f(x) = x, φ(x) = true

which implies that ¬x = false. Therefore, f(c) 6= x. Thus, no arc from X
to C is monochromatic, so f is a coloring. This completes the proof.

We note that the above proof implies the following obvious corollary.

Corollary 3.3. List coloring of digraphs is NP-complete even if restricted
to planar digraphs where each vertex v has d0(v) = min{d+(v), d−(v)} ≤ 3
and the list size for v is equal to d0(v).

Next, we consider the problem where the list sizes of vertices with
d+(v) > d−(v) have an additional color.

Problem: List Coloring With Relaxed Brooks’ Condi-
tion

14



Instance: A digraph D, a list-assignment L such that for every
vertex v ∈ V (D) with d+(v) ≤ d−(v), |L(v)| ≥ d+(v), and for
every vertex v with d+(v) > d−(v), we have |L(v)| ≥ d−(v) + 1.
Question: Is the digraph D L-colorable?

Theorem 3.4. The problem List Coloring With Relaxed Brooks’
Condition can be solved in linear time O(|V (D)|+ |A(D)|).

Proof. Note that it is sufficient to provide an algorithm for connected di-
graphs because we can then apply it to all the components. We first give an
algorithm for the Eulerian instances of D, and then show that the general
case can be reduced to the Eulerian case.

So suppose D is Eulerian. We will apply Theorem 2.1. If there exists
a vertex v ∈ V (D) such that |L(v)| > d+(v), then D is L-colorable by
Theorem 2.1. So we may assume that |L(v)| = d+(v) for all v ∈ V (D). We
first find the blocks of D; this can be done in time O(|V (D)|+ |A(D)|) using
Depth-First-Search, see for example [4]. By Theorem 2.1, if there exists a
block of D that is not of type (a)–(c), then D is L-colorable. So we may
assume that all blocks of D are of type (a), (b) or (c). Let B be a leaf block
in the block-cutpoint tree of D. If B = D, then as mentioned in the proof
of Theorem 2.1, D is not L-colorable if and only if all the lists of D are the
same. This can be checked in linear time. Otherwise, let v ∈ V (B) be the
single cut-vertex in B. If there are two vertices in u,w ∈ V (B)\{v} with
L(u) 6= L(w) or there exists a vertex x ∈ V (B)\{v} such that L(x) * L(v),
then D is L-colorable by Theorem 2.1. Therefore, we may assume that for
all u,w ∈ V (B)\{v}, L(u) = L(w) and L(u) ⊆ L(v). In this case, it is easy
to see that D is L-colorable if and only if D − (V (B)\{v}) is L′-colorable,
where L′(v) = L(v)\L(u), for some u ∈ V (B)\{v}, and L′(x) = L(x) for all
x ∈ V (D)\V (B). Thus, we can reduce the problem by deleting a leaf block
B at each step by using at most O(|V (B)|+ |A(B)|) time, which results in
a O(|V (D)|+ |A(D)|) overall time.

Next, suppose that D is not Eulerian. We give a linear time reduction
to the Eulerian case. Since

∑
v d

+(v) =
∑

v d
−(v) = |A(D)|, there exists a

vertex u such that d+(u) > d−(u). Consider D − u. We claim that D is
L-colorable if and only if D − u is L-colorable. Clearly, if D is L-colorable
then D− u is L-colorable. Now, suppose D− u is L-colorable, and let f be
such a coloring. Since d+(u) > d−(u), we have that there is a color in L(u)
that does not appear in the in-neighborhood of u. By using such a color, we
can complete the coloring of D − u to an L-coloring of D.

Repeating this reduction we will obtain a (possibly empty) digraph D∗

such that d+
D∗(v) = d−D∗(v) for every v ∈ V (D∗). Since d+(v) ≥ d+

D∗(v), it
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follows that |L(v)| ≥ d+
D∗(v) = d−D∗(v). Now, using the algorithm for the

Eulerian case, we can decide whether each component of D∗ is L-colorable.
Then clearly D is L-colorable if and only if each component of D∗ is L-
colorable.

To keep the list of vertices v with d+(v) > d−(v), and updating this
list after every vertex-removal takes overall linear time. We only need to
consider at most min{d+(v), d−(v)}+ 1 colors at v, so when comparing the
lists in the blocks we only need O(|V (D)| + |A(D)|) time. Thus, it takes
O(|V (D) + |A(D)|) time to reduce D to the Eulerian digraph D∗. Since we
need linear time to decide whether an Eulerian digraph is L-colorable, we
have an O(|V (D)|+ |A(D)|) algorithm.

The algorithm of Theorem 3.4 can be extended to a linear-time algorithm
which also returns an L-coloring if D is L-colorable. The additional steps
for doing this follow the reductions made in the proof of Theorem 2.1.
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