Sparsity and homomorphisms of graphs and digraphs

Ararat Harutyunyan (Oxford)

joint work

Bojan Mohar (Simon Fraser), Mark Kayll (U. Montana) Liam Rafferty (U.Montana)

November 14, 2013

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Chromatic number and sparse graphs

Theorem (Erdős 1959, Canad. J. Math.) $\forall g, k \exists graph \ G \ s.t. \ girth(G) \ge g \ and \ \chi(G) \ge k.$

Chromatic number and sparse graphs

Theorem (Erdős 1959, Canad. J. Math.) $\forall g, k \exists graph \ G \ s.t. \ girth(G) \ge g \ and \ \chi(G) \ge k.$

Remark: Bollobas and Sauer (1976 Canad. J. Math.) showed that G can be taken to be *uniquely* k-colorable.

Coloring and homomorphisms

Definition A homomorphism from graph G to H is a mapping $\phi: V(G) \rightarrow V(H)$ that preserves adjacencies.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

G is *k*-colorable if and only if $G \to K_k$.

▶ Erdős' theorem implies that \exists sparse *G* s.t. *G* $\rightarrow \rightarrow K_k$ for any *k*

▶ Erdős' theorem implies that \exists sparse *G* s.t. *G* \rightarrow *K*_k for any *k*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Instead of K_k look at arbitrary graph H.

▶ Erdős' theorem implies that \exists sparse *G* s.t. *G* \nrightarrow *K*_k for any *k*

- Instead of K_k look at arbitrary graph H.
- Clearly, $\exists G$ (of arbitrary girth) s.t. $G \nrightarrow H$.

- ▶ Erdős' theorem implies that \exists sparse *G* s.t. *G* → *K*_k for any *k*
- Instead of K_k look at arbitrary graph H.
- Clearly, $\exists G$ (of arbitrary girth) s.t. $G \rightarrow H$.
- Question: Does there exist graph G^* "diluted" from G s.t. $G^* \rightarrow H$?

"Diluting" G

Idea: G and H given. Suppose $G \rightarrow H$. Does there exist a sparse graph G^* s.t.

$$G^* \rightarrow G$$

 $G^* \rightarrow H$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Diluting" G

Idea: G and H given. Suppose $G \rightarrow H$. Does there exist a sparse graph G^* s.t.

$$G^* \to G$$

 $G^* \to H$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Zhu 1996 J. Graph Theory) G and H graphs, and $G \rightarrow H$. Then $\forall g \exists G^*$ with: girth(G^*) $\geq g$, $G^* \rightarrow G$ and $G^* \rightarrow H$.

"Diluting" G

Idea: G and H given. Suppose $G \rightarrow H$. Does there exist a sparse graph G^* s.t.

$$G^* \rightarrow G$$

 $G^* \rightarrow H$

Theorem (Zhu 1996 J. Graph Theory) *G* and *H* graphs, and $G \rightarrow H$. Then $\forall g \exists G^*$ with: $girth(G^*) \ge g, G^* \rightarrow G$ and $G^* \rightarrow H$.

Remark: Set $G = K_r$ and $H = K_{r-1}$ to recover Erdős' theorem.

Digraphs here will have no loops and no multiple arcs but digons are allowed.

D and *C* digraphs. $\phi: V(D) \rightarrow V(C)$ is an acyclic homomorphism if

D and *C* digraphs. $\phi : V(D) \rightarrow V(C)$ is an acyclic homomorphism if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(i) $\forall v \in V(C)$, $\phi^{-1}(v)$ is acyclic;

D and *C* digraphs. $\phi: V(D) \rightarrow V(C)$ is an acyclic homomorphism if

(i) $\forall v \in V(C)$, $\phi^{-1}(v)$ is acyclic;

(ii) for every arc $uv \in E(D)$, either $\phi(u) = \phi(v)$ or $\phi(u)\phi(v)$ is an arc in C.

D and *C* digraphs. $\phi: V(D) \rightarrow V(C)$ is an acyclic homomorphism if

(i) $\forall v \in V(C)$, $\phi^{-1}(v)$ is acyclic;

(ii) for every arc $uv \in E(D)$, either $\phi(u) = \phi(v)$ or $\phi(u)\phi(v)$ is an arc in C.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We write $D \rightarrow_{ac} C$

Graph Homomorphisms and Acyclic digraph homomorphisms

Fact: Let G and H be graphs, D and C the bidirected digraphs of G and H, respectively. Then

 $G \rightarrow H \Leftrightarrow D \rightarrow_{ac} C.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Analog of Zhu's theorem

Theorem (H, Kayll, Mohar, Rafferty, 2012 Canad. J. Math) *D* and *C* digraphs, and $D \rightarrow_{ac} C$. Then $\forall g \exists D^*$ with: $girth(D^*) \ge g$, $D^* \rightarrow_{ac} D$ and $D^* \rightarrow_{ac} C$.

Unique colorability: Cores

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Unique colorability: Cores

Definition

Let G and H be graphs (digraphs). G is uniquely H-colorable if every homomorphism (or acyclic homomorphism) from G to H is surjective and any two homomorphisms ϕ, ψ of G differ by some automorphism π of H (i.e., $\phi = \pi \circ \psi$).

Unique colorability: Cores

Definition

Let G and H be graphs (digraphs). G is uniquely H-colorable if every homomorphism (or acyclic homomorphism) from G to H is surjective and any two homomorphisms ϕ, ψ of G differ by some automorphism π of H (i.e., $\phi = \pi \circ \psi$).

Graph (digraph) H is a core if it is uniquely H-colorable.

Theorem (Bollobas-Sauer 1976, Canad. J. Math.) $\forall g, k \exists G \text{ of girth } g \text{ that is uniquely } k\text{-colorable.}$

Theorem (Bollobas-Sauer 1976, Canad. J. Math.) $\forall g, k \exists G \text{ of girth } g \text{ that is uniquely } k\text{-colorable.}$

Theorem (Zhu 1996, J. Graph Theory) $\forall g \text{ and every core } H, \exists graph H^* \text{ of girth } g \text{ that is uniquely } H\text{-colorable.}$

Theorem (Bollobas-Sauer 1976, Canad. J. Math.) $\forall g, k \exists G \text{ of girth } g \text{ that is uniquely } k\text{-colorable.}$

Theorem (Zhu 1996, J. Graph Theory) $\forall g \text{ and every core } H, \exists graph H^* \text{ of girth } g \text{ that is uniquely } H\text{-colorable.}$

Remark: Setting $H = K_k$ gives Bollobas-Sauer .

Digraph analog

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Digraph analog

Theorem (H, Kayll, Mohar Rafferty 2012, Canad. J. Math.) $\forall g \text{ and every core } D, \exists graph D^* \text{ of girth } g \text{ that is uniquely } H\text{-colorable.}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (H, Kayll, Mohar Rafferty 2012, Canad. J. Math.) $\forall g \text{ and every core } D, \exists graph D^* \text{ of girth } g \text{ that is uniquely } H\text{-colorable.}$

Remark: Has applications on coloring of digraphs and digraph circular chromatic number.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The applications

The applications

Theorem

 $\forall g, k \exists$ digraph D of girth g that is uniquely k-colorable.

The applications

Theorem

 $\forall g, k \exists$ digraph D of girth g that is uniquely k-colorable.

Theorem

Let $1 \le d \le k$ be relative prime integers. Then $\forall g, \exists$ digraph D of girth at least g and $\chi_c(D) = \frac{k}{d}$.

Thank You