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Chromatic number and sparse graphs

Theorem (Erdős 1959, Canad. J. Math.)

∀ g , k ∃ graph G s.t. girth(G ) ≥ g and χ(G ) ≥ k.

Remark: Bollobas and Sauer (1976 Canad. J. Math.) showed
that G can be taken to be uniquely k-colorable.
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Coloring and homomorphisms

Definition
A homomorphism from graph G to H is a mapping
φ : V (G )→ V (H) that preserves adjacencies.

Proposition

G is k-colorable if and only if G → Kk .



Extending Erdős

I Erdős’ theorem implies that ∃ sparse G s.t. G 9 Kk for any k

I Instead of Kk look at arbitrary graph H.

I Clearly, ∃ G (of arbitrary girth) s.t. G 9 H.

I Question: Does there exist graph G ∗ “diluted” from G s.t.
G ∗ 9 H?
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“Diluting” G

Idea: G and H given. Suppose G 9 H. Does there exist a
sparse graph G ∗ s.t.

G ∗ → G

G ∗ 9 H

Theorem (Zhu 1996 J. Graph Theory)

G and H graphs, and G 9 H. Then ∀g ∃ G ∗ with:
girth(G ∗) ≥ g, G ∗ → G and G ∗ 9 H.

Remark: Set G = Kr and H = Kr−1 to recover Erdős’
theorem.
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Digraphs

Digraphs here will have no loops and no multiple arcs but digons
are allowed.



Digraphs

D and C digraphs. φ : V (D)→ V (C ) is an acyclic
homomorphism if

(i) ∀v ∈ V (C ), φ−1(v) is acyclic;

(ii) for every arc uv ∈ E (D), either φ(u) = φ(v) or φ(u)φ(v)
is an arc in C .

We write D →ac C
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Graph Homomorphisms and Acyclic digraph
homomorphisms

Fact: Let G and H be graphs, D and C the bidirected digraphs of
G and H, respectively. Then

G → H ⇔ D →ac C .



Analog of Zhu’s theorem

Theorem (H, Kayll, Mohar, Rafferty, 2012 Canad. J. Math)

D and C digraphs, and D 9ac C. Then ∀g ∃ D∗ with:
girth(D∗) ≥ g, D∗ →ac D and D∗ 9ac C.



Unique colorability: Cores

Definition
Let G and H be graphs (digraphs). G is uniquely H-colorable if
every homomorphism (or acyclic homomorphism) from G to H is
surjective and any two homomorphisms φ, ψ of G differ by some
automorphism π of H (i.e., φ = π ◦ ψ).

Graph (digraph) H is a core if it is uniquely H-colorable.
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Remark: Has applications on coloring of digraphs and digraph
circular chromatic number.
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The applications

Theorem
∀g , k ∃ digraph D of girth g that is uniquely k-colorable.

Theorem
Let 1 ≤ d ≤ k be relative prime integers. Then ∀g, ∃ digraph D of
girth at least g and χc(D) = k

d .
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