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Abstract

A global offensive alliance in a graph G = (V,E) is a subset S of
V such that for every vertex v not in S at least half of the vertices in
the closed neighborhood of v are in S. The cardinality of a minimum
size global offensive alliance in G is called the global offensive alliance
number of G. We give an upper bound on the global (strong) offensive
alliance number of a graph in terms of its degree sequence. We also
study global offensive alliances of random graphs. In particular, it is
proved that if p(log n)1/2 →∞ then with high probability G(n, p) has
a global offensive alliance of size at most cn if c > 1/2 and no global
offensive alliance of size at most cn if c < 1/2.

Keywords: Global offensive alliances, degree sequence, upper bounds,
random graph.

1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedet-
niemi and Kristiansen [9]. They introduced the concepts of defensive and
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offensive alliances, global offensive and global defensive alliances and studied
alliance numbers of a class of graphs such as cycles, wheels, grids and com-
plete graphs. Haynes et al. [7] studied the global defensive alliance numbers
of different classes of graphs. They gave lower bounds for general graphs,
bipartite graphs and trees, and upper bounds for general graphs and trees.
Rodriquez-Velazquez and Sigarreta [14] studied the defensive alliance number
and the global defensive alliance number of line graphs. A characterization
of trees with equal domination and global strong defensive alliance numbers
was given by Haynes, Hedetniemi and Henning [8]. Offensive k-alliances were
introduced in [4].

Offensive alliances were first studied by Favaron et. al [5], where they
derived some bounds on the offensive alliance number. Rodriguez-Velazquez
and Sigarreta [11] gave bounds for offensive and global offensive alliance
numbers in terms of the algebraic connectivity, the spectral radius, and the
Laplacian spectral radius of a graph. They also gave bounds on the global
offensive alliance number of cubic graphs in [12] and the global offensive al-
liance number for general graphs in [13]. Some bounds on the global offensive
alliances were given in [6]. Balakrishnan et al. [2] studied the complexity of
global alliances. They showed that the decision problems for global defensive
and global offensive alliances are both NP-complete for general graphs.

This paper further studies the global offensive alliance number of a graph.
We start with the notation and definitions

Given a simple graph G = (V,E) and a vertex v ∈ V , the open neighbor-
hood of v, N(v), is defined as N(v) = {u : uv ∈ E}. The closed neighborhood
of v, denoted by N [v], is N [v] = N(v) ∪ {v}.

Definition 1.1. A set S ⊂ V is a global offensive alliance if for every
v ∈ V − S, |N [v] ∩ S| ≥ |N [v]− S|.

Definition 1.2. A global offensive alliance S is called a global strong offen-
sive alliance if for every v ∈ V − S, |N [v] ∩ S| > |N [v]− S|.

Definition 1.3. The global (strong) offensive alliance number of G is the
cardinality of a minimum size global (strong) offensive alliance in G, and is
denoted by γo(G)(γô(G)). A minimum size global offensive alliance is called
a γo(G)-set.

In this paper, we study the global (strong) offensive alliance number of
general graphs. We give an upper bound on the global (strong) offensive
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alliance number of general graphs. Additionally, we study the global (strong)
offensive alliance number of random graphs.

The rest of the paper is organized as follows. In Section 2, we give an
upper bound on the global (strong) offensive alliance number of a general
graph in terms of its order and degree sequence. Using this bound, we obtain
a second upper bound on the global (strong) offensive alliance number in
terms of the minimum degree of the graph. In Section 3, we study the global
(strong) offensive alliance number of the random graph G(n, p).

2 Global Offensive Alliances in Graphs

In this section we give an upper bound on γo(G) for any graph G. Our result
derives an upper bound on γo(G) in terms of the degree sequence of the graph
G. The method of the proof is probabilistic. All the required probabilistic
tools can be found in [1]. Note that exp(x) is the exponential function ex.

Theorem 2.1. Let G = (V,E) be a graph of order n. Let deg(v) denote the
degree of vertex v. Then for all 1/2 > α > 0,

γo(G) ≤
(

1

2
+ α

)
n+

(
1

2
− α

)∑
v∈V

exp

(
− α2

1 + 2α
· deg(v)

)
Proof. We put every vertex v ∈ V in a set S with probability p, indepen-
dently. The value of p will be determined later. The random set S is going
to be part of the global offensive alliance. For every vertex v ∈ V , let Xv

denote the number of vertices in the neighborhood of v that are in S. Let

Y =
{
v ∈ V : v /∈ S and Xv ≤

⌊
deg(v)

2

⌋}
. Clearly, S ∪ Y is a global offensive

alliance. Note that E[|S|] = np. Now, we estimate E[|Y |].
It is not hard to see that Xv is a Binomial(deg(v), p) random variable.

We use the Chernoff Bound(see, for example, Alon and Spencer [1]) to bound

P[Xv ≤ deg(v)
2

]. The Chernoff Bound states that for any a > 0 and random
variable X that has binomial distribution with probability p and mean pn,

P[X − pn < −a] < e−a
2/2pn. (1)
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Set a = εpn, where ε = 1− 1
2p

. Then, by the Chernoff Bound,

P
[
Xv ≤

deg(v)

2

]
= P[Xv ≤ (1− ε)p(deg(v))]

< e−ε
2 deg(v)p/2

= e−(1−
1
2p

)2 deg(v)p/2.

Chernoff’s bound holds whenever ε > 0, or equivalently when p > 1
2
.

Now,

P[v ∈ Y ] = P[{v /∈ S} ∩ {Xv ≤ deg(v)/2}]
= P[v /∈ S]P[Xv ≤ deg(v)/2]

≤ (1− p)e−(1−
1
2p

)2 deg(v)p/2,

by independence. By linearity of expectation, we get that

E[|Y |] ≤
∑
v∈V

(1− p)e−(1−
1
2p

)2 deg(v)p/2.

Now, we have that

E[|S ∪ Y |] ≤ np+
∑
v∈V

(1− p)e−(1−
1
2p

)2 deg(v)p/2. (2)

Therefore, there exists a global offensive alliance in G of size at most

np+
∑
v∈V

(1− p)e−(1−
1
2p

)2 deg(v)p/2. (3)

Thus, we have that

γo(G) ≤ np+
∑
v∈V

(1− p)e−(1−
1
2p

)2 deg(v)p/2. (4)

The only constraint we have on p is that p > 1
2
. We set p = 1

2
+ α for any

1/2 > α > 0. This completes the proof.

A similar result can be derived for the global strong offensive alliance
number of a graph.
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Theorem 2.2. Let G = (V,E) be a graph of order n. Then for all 1/2 >
α > 0,

γô(G) ≤
(

1

2
+ α

)
n+

∑
v∈V

exp

(
− α2

1 + 2α
· (deg(v) + 1)

)
.

Proof. The proof is in the same spirit as the proof of Theorem 2.1. We put
every vertex v ∈ V in a set S with probability p, independently. For every ver-
tex v ∈ V , let Xv denote the number of vertices of the closed neighborhood of

v that are in S. Similarly to Theorem 2.1, let Y =
{
v ∈ V : Xv < bdeg(v)+1

2
c
}

.

Clearly, S ∪ Y is a global strong offensive alliance. Now, we are going to es-
timate |Y |.
It is not hard to see that Xv is a Binomial(deg(v) + 1, p) random variable

and as before we will apply the Chernoff Bound to bound P[Xv <
deg(v)+1

2
].

Let ε = 1− 1
2p

. Then, by the Chernoff Bound,

P
[
Xv <

deg(v) + 1

2

]
= P[Xv < (1− ε)p(deg(v) + 1)]

< e−ε
2p(deg(v)+1)/2

= e−(1−
1
2p

)2p(deg(v)+1)/2.

As before, the bound holds whenever p > 1
2
. Now, we have that

E[|S ∪ Y |] ≤ np+
∑
v∈V

e−(1−
1
2p

)2p(deg(v)+1)/2. (5)

Therefore, there exists a global strong offensive alliance of size at most

np+
∑
v∈V

e−(1−
1
2p

)2p(deg(v)+1)/2 (6)

Thus, we have that

γo(G) ≤ np+
∑
v∈V

e−(1−
1
2p

)2p(deg(v)+1)/2 (7)

Now, set p = 1
2

+ α where α > 0 is arbitrary. This completes the proof.
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If G is a regular graph, the expressions in Theorems 2.1 and 2.2 simplify
and using simple calculus it is not hard to find the optimal value of α that
gives the best bound. In fact, we only require that the minimum degree of
G be large.

Corollary 2.3. Let G be a graph of minimum degree d ≥ 2. Then

γo(G) ≤

(
1

2
+

(
log d

d

)1/2

+
1

2
√
d
−
√

log d

d

)
n.

Proof. Let α =
(
log d
d

)1/2
and apply Theorem 2.1.

Corollary 2.4. Let G be a graph of minimum degree d ≥ 2. Then

γô(G) ≤

(
1

2
+

(
log d

d+ 1

)1/2

+
1√
d

)
n.

Proof. Let α =
(
log d
d+1

)1/2
and apply Theorem 2.2.

Note that if the minimum degree d of a graph G tends to infinity, corol-
laries 2.3 and 2.4 imply that γo(G) and γô(G) approach to n/2.

The following tight bounds were obtained for γo(G) and γô(G) in [10].
For large minimum degree d, our results improve these bounds.

Theorem 2.5 ([10]). For every connected graph G of order n ≥ 2, γo(G) ≤
2n
3

. If the minimum degree of G is at least 2, γô(G) ≤ 5n
6

.

3 Global Offensive Alliances in Random Graphs

The random graph G(n, p) is the graph on n vertices where each possible
edge is present with probability p, independently. It seems plausible that
the random graph G(n, 1/2) should have a global offensive alliance number
of approximately n/2. In this section, we provide some evidence that this is
the case. The main result of this section is the following theorem.

Theorem 3.1. Suppose that p(log n)1/2 →∞. Then

P[γo(G(n, p)) = n/2 + o(n)] = 1− o(1).
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Proof. First, we will show that for a fixed constant c < 1/2,
P[γo(G(n, p)) ≤ cn] = o(1). This will establish the lower bound.

Let A ⊂ V be a fixed set of size cn. We label the vertices of the set
V − A as {v1, ..., vn−cn}. We will compute the probability that A is a global
offensive alliance. To this end, for a vertex vi ∈ V − A, let Bi be the event
that in the closed neighborhood of vi there are at least as many vertices in
A as in V − A. For n sufficiently large, we have

P[γo(G(n, p)) ≤ cn] ≤
(
n

cn

)
P[A is a global offensive alliance]

≤ 2nP[A is a global offensive alliance]

= 2nP[B1 ∩B2... ∩Bn−cn]

≤ 2nP[B1 ∩B2... ∩Blogn]

Let E be the event that the set {v1, ..., vlogn} is an independent set. Then
clearly P[B1 ∩ B2... ∩ Blogn] ≤ P[B1 ∩ B2... ∩ Blogn | E]. Now, it is easy to
see that the events Bi | E are independent, and thus we have

P[γo(G(n, p)) ≤ cn] ≤ 2nP[B1 ∩B2... ∩Blogn]

≤ 2n
logn∏
i=1

P[Bi | E]

≤ 2n(P[Bi | E])logn

Now, we compute P[B1 | E]. Let X and Y be random variables with the
following distributions: X ∼ Binomial(cn, p) and Y ∼ Binomial(n − cn −
log n, p). Then clearly P[B1 | E] = P[X > Y ] = P[X − Y > 0].

To bound P[X−Y > 0], we let Z = X−Y and bound P[Z > 0]. Clearly,
E[Z] = E[X] − E[Y ] = ((2c − 1)n + log n)p. Note that for n sufficiently
large, E[Z] < 0. We will use Azuma’s inequality to show that Z is strongly
concentrated around its expected value.

Lemma 3.2 (Azuma’s Inequality). [3] Let Z1, ..., Zl be independent random
variables with Zk taking values in a set Ωk. Let f : Ω = Ω1 × ... × Ωl → R
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be a measurable function such that if ω ∈ Ω and ω′ ∈ Ω differ only in their
kth coordinate then |f(ω) − f(ω′)| ≤ c, for some positive constant c. Then
the random variable Z = f(Z1, ..., Zl) satisfies the following inequality for all
t ≥ 0,

P[Z ≥ E[Z] + t] ≤ e−2t
2/lc2 .

Clearly, the random variable Z = X−Y depends only on presence of the
edges that could be the neighbors of v1. Since we know that {v1, ..., vlogn}
is an independent set, Z depends on exactly n − log n indicator random
variables. Note that each indicator random variable could change Z by at
most 2, and thus, c = 2 in Azuma’s inequality. Now, since p = ω(1/

√
log n)

and c < 1/2, we may choose a function w(n)→∞ such that nw(n)√
logn

+E[Z] < 0.

Now, applying Azuma’s inequality with t = nw(n)√
logn

, we have that

P[Z > 0] ≤ P[Z ≥ E[Z] + t] ≤ exp(−nw(n)2/4 log n).

Now, it follows that

P[γo(G(n, p)) ≤ cn] ≤ 2n(P[Bi | E])logn ≤ 2nexp(−nw(n)2/4) = o(1).

This establishes the lower bound. For the upper bound, assume that
c > 1/2. We need to prove that P[γo(G(n, p)) ≤ cn] = 1 − o(1). We will
actually show something stronger: P[γô(G(n, p)) ≤ cn] = 1− o(1).

Given c > 1/2, let d be the smallest positive integer such that
(
log d
d+1

)1/2
+

1√
d
≤ c− 1

2
. We first show that G(n, p) has minimum degree at least d with

high probability. Let Xi be the number of vertices of degree i in G(n, p).
Then

E[Xi] ≤ n

(
n− 1

i

)
(1− p)n−1−i ≤ ni+1e−pn+p(i+1).

Since d is a constant and p(log n)1/2 → ∞, it follows that for all i ≤ d,
E[Xi] = o(1). Thus,

d∑
i=0

E[Xi] = o(1).
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Now, Markov’s inequality yields that G(n, p) has no vertex of degree at most
d. Therefore, with high probability, G(n, p) has minimum degree at least d.
Now, Corollary 2.4 implies that, with probability 1− o(1),

γô(G(n, p)) ≤

(
1

2
+

(
log d

d+ 1

)1/2

+
1√
d

)
n ≤ cn,

as required.

Since a global strong offensive alliance in a graph G is also a global offen-
sive alliance in G, Theorem 3.1 and its proof immediately imply the following.

Corollary 3.3. Suppose that p(log n)1/2 →∞. Then

P[γô(G(n, p)) = n/2 + o(n)] = 1− o(1).
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