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Abstract

We conjecture that every planar graph of odd-girth at least 11 admits a homomor-
phism to the Coxeter graph. Supporting this conjecture, we prove that every planar
graph of odd-girth at least 17 admits a homomorphism to the Coxeter graph.

Keywords: homomorphisms, planar graphs, projective cubes, Coxeter graph.

1. Introduction

In this paper, considering a question of the second author [5], we conjecture that:

Conjecture 1. Every planar graph of odd-girth at least 11 admits a homomorphism to
the Coxeter graph.

Supporting this conjecture we then prove that:

Theorem 2. Every planar graph of odd-girth at least 17 admits a homomorphism to the
Coxeter graph.

We start with notation and motivation. For standard terminology of graph theory we
simply refer to [2]. The length of a shortest odd-cycle of a non-bipartite graph is called
odd-girth. The class of planar graphs of odd-girth at least 2k + 1 will be denoted by P2k+1.
A plane graph is a planar graph with a given planar embedding. A homomorphism of a
graph G to another graph H is a mapping ϕ : V (G)→ V (H) which preserves adjacency.
If there exists a homomorphism of G to H, we write G → H. The image of G under ϕ
is called a homomorphic image of G. Given a class C of graphs and a graph H, if every
graph in C admits a homomorphism to H we write C � H and we say H bounds C.

The projective cube of dimension d, denoted PC(d), is the Cayley graph (Zd2, {e1, e2, . . . , ed, J})
where ei’s are the standard basis and J is the all 1-vector. The projective cube PC(d) is
isomorphic to the graph obtained from the hypercube of dimension d + 1 by identifying
antipodal vertices. It is easy to verify that PC(2k + 1) is bipartite. In contrast, PC(2k)
is of chromatic number 4, while its shortest odd-cycle is of length 2k + 1, see [4] for a
proof. PC(2) is K4, PC(3) is K4,4 and PC(4) is the well-known Clebsch graph.

Given n and k such that n ≥ 2k, the Kneser graph K(n, k) is defined to be a graph
whose vertices are k-subsets of an n-set where two such vertices are adjacent if they
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have no intersection. The Kneser graph K(2k + 1, k) is an induced subgraph of PC(2k)
(see [5]).

The existence of a homomorphism from a class of graphs to a projective cube is
of special importance. Generally, it captures a certain packing problem (see [6]). In
particular, we have the following conjecture which extends the four-color theorem:

Conjecture 3 ([4]). The class P2k+1 is bounded by PC(2k).

Note that for k = 1, the conjecture is equivalent to the four-color theorem. Conjec-
ture 3 can be seen as an optimization for the following result of J. Nešetřil and P. Ossona
De Mendez:

Theorem 4 ([8]). Let F = {F1, F2, . . . , Fr} be a finite set of connected graphs. Let M
be a minor-closed family of graphs and MF be the subclass consisting of those members
of M which admit no homomorphism from a member of F . Then there is a graph HF
which admits homomorphism from no member of F , but bounds MF .

The bounds HF built in the known proofs of this theorem in most cases are far from
being optimal (in terms of order of the bound). The question of finding an optimal
HF captures some of the most well-known problems in graph theory. For instance, the
simplest case of F = {Kn} withM being the class of Kn-minor free graphs captures the
Hadwiger conjecture. For F = {C2k−1} andM being the class of planar graphs, we have
MF = P2k+1. In this case, it was recently shown in [7] that HF must have at least 22k

vertices. Thus, if Conjecture 3 holds, then PC(2k) is an optimal bound. This conjecture
is shown, in [4], to be equivalent to a special case of a conjecture of P. Seymour (in [9])
on determining the edge-chromatic number of planar multigraphs.

For r > k, since P2r+1 is included in P2k+1, if PC(2k) bounds P2k+1, then it also
bounds P2r+1. However, in this case we believe that a proper subgraph of PC(2k) would
suffice to bound P2r+1.

Problem 5 ([5]). Given r > k, what are the optimal subgraphs of PC(2k) which bound
P2r+1?

It is shown in [5] that Problem 5 captures several interesting theories. In particular,
if K(2k + 1, k) is an answer for r = k + 1, it would determine the fractional chromatic
number of P2r+1. In this regard, while the case r = 2 and k = 1 is implied by Grötzsch’s
theorem, the best result for r = 3 and k = 2 is that of [1] where it is proved that P9 is
bounded by K(5, 2). Note that K(5, 2) is the well-known Petersen graph. For r ≥ 2k it is
claimed by the Jeager-Zhang conjecture that C2k+1 is the optimal answer for Problem 5.
This case would determine the circular chromatic number of P4k+1. While Grötzsch’s
theorem is a special case here, the best result for general k is that of X. Zhu [10] who
proved that P8k−3 is bounded by C2k+1.

The first case not covered by any of these theorems and conjectures is k = 3 and
r = 5. For this case we introduce Conjecture 1. Following [2], we will use a definition of
the Coxeter graph based on the Fano plane.
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Figure 1: Fano plane

Given a set U of size 7, a Fano plane is a set of seven 3-subsets of U such that each
pair of elements from U appears exactly in one 3-subset. It can be checked that there is
a unique such collection up to isomorphism. This collection then satisfies the axioms of
finite geometry and triples would be called lines. Throughout this paper we will use the
labeling of Figure 1 to denote the Fano plane.

The Coxeter graph, denoted by Cox, is a subgraph of K(7, 3) obtained by deleting
the vertices corresponding to the lines of the Fano plane. Therefore, Cox is an induced
subgraph of PC(6). Hence, we propose that Cox is an answer for the case k = 3 and
r = 5 of Problem 5.
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Figure 2: A representation of the Coxeter graph

Since C7 is a subgraph of Cox, the result of Zhu [10] implies that Cox also bounds P21.
The main result of this paper is to provide an improvement in this direction by proving
Theorem 2.
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Before proceeding further, we would like to mention the following interesting interpre-
tation of a homomorphism to Cox. Given a graph G, a Fano-coloring of G is to associate
to each vertex of G a triplet of elements of Fano satisfying the following two conditions:

(i) each triplet is in general position, i.e., it is not a line in Fano;

(ii) adjacent vertices have no element in common.

It simply follows from the definition that Fano-coloring is equivalent to homomorphism
to Cox.

We will need the next corollary implied by successive applications of the Folding
lemma of W. Klostermeyer and C. Q. Zhang (see [3]).

Lemma 6 (Folding lemma). Let G be a plane graph of odd-girth 2k + 1. If C =
v0v1 . . . vr−1v0 is a facial cycle of G with r 6= 2k+1, then there exists an i ∈ {0, 1, . . . , r−1}
such that the planar graph G′ obtained from G by identifying vi−1 and vi+1 (mod r) is of
odd-girth 2k + 1.

Corollary 7. Given a 2-connected planar graph G of odd-girth at least 2k + 1, there is
a homomorphic image G′ of G such that G′ is a plane graph of odd-girth 2k + 1, and
moreover every face of G′ is a (2k + 1)-cycle.

Our proof of Theorem 2 is based on the discharging technique. Assuming that there
is an element of P17 not mapping to Cox, we choose X to be such an element with the
smallest value of |V (X)| + |E(X)|. Hence, X is simple and no proper homomorphic
image of X is in P17. Since Cox is a vertex-transitive graph, X is 2-connected. Hence,
Corollary 7 implies that X has a plane embedding whose faces are all 17-cycles. We fix
such an embedding and denote it also by X.

The paper is organized as follows: in the next section we collect a list of proper-
ties of the Coxeter graph. In the following section we provide a list of small reducible
trees. Finally, in the last section we use discharging technique to obtain a contradiction.
Some larger configurations that show up during our discharging process are shown to be
reducible in this section.

Some more notation we will use are as follows. Given a graph G, a vertex of degree
d is called a d-vertex. Analogously, a d+-vertex is a vertex whose degree is d or more. A
path of length l is called an l-path. Any path Pk = x1x2 . . . xk is called an x1-xk path and
the vertices x2, . . . , xk−1 are called the internal vertices of Pk. Note that Pk has length
k− 1. A thread in X is a maximal path P = ux1x2 . . . xnv where all the internal vertices
x1, x2, . . . xn are 2-vertices of X. We will also say that P is a u-v thread. Distinct vertices
x and y are said to be weakly adjacent if there exists a thread in X containing both of
them. Given a 3+-vertex x, the number of 2-vertices weakly adjacent to x is denoted
by dweak(x). The distance dG(x, y) in G of two vertices x, y is the length of a shortest
x-y path in G. Whenever the underlying graph is clear from the context, we will write
d(x, y) instead of dG(x, y). The greatest distance between any two vertices in G is the
diameter of G. Given a positive integer i and a vertex x of G, Ni(x) denotes the set of
i-th neighbors of x, i.e., the set of vertices at distance exactly i from x. When i = 1, we
simply write N(x). For U ⊆ V (G) we write Ni(U) =

⋃
x∈U Ni(x).
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2. Coxeter graph and Cox-coloring

The Coxeter graph is well-known for its highly symmetric structure. There are many
symmetric representations of it, but we will use the representation of Figure 2. Note that
the labeling in Figure 2 is based on the labeling of the Fano plane given in Figure 1. The
main properties of this graph we will need are collected in the following lemma.

Lemma 8. The Coxeter graph satisfies the following:

(i) It is distance-transitive.

(ii) It is of diameter four.

(iii) Its girth is seven.

(iv) Given a vertex A, we have |N(A)| = 3, |N2(A)| = 6, |N3(A)| = 12 and |N4(A)| = 6.

(v) The independence number of Cox is 12.

(vi) Let A and B be a pair of vertices in Cox. If d(A,B) ≤ 3, then a 7-cycle passes
through A and B. If d(A,B) = 4, then a 9-cycle passes through A and B.

(vii) No homomorphic image of Cox is a proper subgraph of Cox.

(viii) Given an edge A1A2, there exist exactly two vertices B1 and B2 such that d(Ai, Bj) =
4 for i, j ∈ {1, 2}. Furthermore, B1 and B2 are adjacent vertices of Cox.

(ix) Let A and B be two (not necessarily distinct) subsets of V (Cox) each of size at least
14. Then there are A ∈ A and B ∈ B such that AB ∈ E(Cox).

(x) For any two distinct vertices A and B of Cox we have |N(A) ∩N(B)| ≤ 1.

(xi) For any pair A and C of vertices of Cox we have |N2(A)∩N(C)| ≤ 2 with equality
only when A ∼ C.

(xii) For any pair A and C of vertices of Cox we have |N3(A)∩N3(C)| ≥ 4. Furthermore,
when equality holds, there does not exist a vertex B in N2(A) and a vertex D in
N2(C) such that N3(A) ∩N3(C) ⊆ N(B) ∪N(D).

Proof. The properties (i) through (v) are well known. We comment on the remaining
seven.

(vi) This is readily checked using the distance-transitivity of Cox.

(vii) For contradiction, let φ be a homomorphism of Cox to a proper subgraph of itself.
Then φ must identify at least two vertices, say A1 and A2. From (vi) follows the
existence of an A1-A2 path P of odd length less than 7. Hence, the image of P
under φ contains a closed odd walk of length strictly less than 7, contradicting (iii).

(viii) Since Cox is edge-transitive, without loss of generality, we may assume that A1 =
127 and A2 = 346. It is then implied that {B1, B2} = {134, 267}.

(ix) Suppose some subsets A and B provide a counter-example, and let C = A∩B. We
may assume each of A and B is of size 14. Note that by connectivity of Cox, C is
not empty. Let C ′ = (A∪B)c. By our assumption, C is an independent set of Cox,
thus |C| ≤ 12. Furthermore, for each vertex C in C all three neighbors of C are in
C ′. Since Cox is 3-regular and |C ′| = |C|, C ∪C ′ induces a proper 3-regular subgraph
of Cox, contradicting the connectivity of Cox.
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(x) For otherwise, a 4-cycle would appear in Cox.

(xi) If A is not adjacent to C, then existence of two elements in N2(A) ∩ N(C) would
result in a cycle of length at most 6 which is a contradiction. If A is adjacent to C,
then N2(A) ∩N(C) = N(C) \ {A}.

(xii) Using the distance-transitivity of Cox, this is proved by considering the five pos-
sibilities for d(A,C). If d(A,C) = 0 then |N3(A) ∩ N3(C)| = |N3(A)| = 12. If
d(A,C) = 1, we may assume A = 127 and C = 346. Then N3(A) ∩ N3(C) =
{567, 135, 256, 145} and it is readily checked that each of the second-neighbors of
A has at most one neighbor among these four vertices, implying the last part of
the statement. If d(A,C) = 2, we may assume A = 127 and C = 125. Then
N3(A) ∩N3(C) = {234, 236, 357, 146} and it is readily checked that the vertex 146
is respectively at distances 1, 3, 3 from the vertices 357, 236, 234. This clearly implies
the last part of the statement. If d(A,C) = 3, we may assume A = 127 and C = 347.
Then N3(A) ∩ N3(C) = {236, 567, 136, 135, 245, 146}. Finally, if d(A,C) = 4, we
may assume A = 127 and C = 126. Then N3(A) ∩ N3(C) = {467, 567, 245, 145}
and each of the second-neighbors of A has at most one neighbor among these four
vertices, implying the last part of the statement.

We may refer to a mapping of a graph H to the Coxeter graph as a Cox-coloring of
H. A partial Cox-coloring of H is a mapping from a subset of vertices of H to vertices
of the Coxeter graph which preserves adjacency among the mapped vertices. Let H be
a graph, φ be a partial Cox-coloring of H and u be a vertex of H not colored yet. We
define adH,φ(u) to be the set of admissible colors for u, i.e., the set of distinct choices
A ∈ V (Cox) such that the assignment φ(u) = A is extendable to a Cox-coloring of H.
When H and φ are clear from the context, we will simply write ad(u).

3. Reducible configurations

Recall that X is a minimal counter-example to Theorem 2. Given a subgraph T of
X, let boundary of T , denoted Bdr(T ), be the set of vertices of T which have at least one
neighbor in X − T . Let the interior of T be Int(T ) = T − Bdr(T ).

Let XT = X− Int(T ) be a subgraph of X induced by vertices not in Int(T ). If Int(T )
is an induced subgraph of X and at least one Cox-coloring of XT can be extended to a
Cox-coloring of X, then (T,Bdr(T )) is called a reducible configuration. Each reducible
configuration we will consider in this paper is a tree having all its leaf vertices as its
boundary. Thus, we will simply use T to denote (T,Bdr(T )).

We note that by the minimality, X cannot contain any reducible configuration.
In this section, we provide a list of ten reducible configurations, all of which are trees

of small order. Sometimes to prove that a configuration is reducible, we will consider
smaller configurations and prove that most of the local Cox-colorings on the boundary
are extendable.

Our first lemma is about paths. Given a u-v path P of length at most five we
characterize all possible Cox-colorings of {u, v} which are extendable to P .
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Lemma 9. Let P be a u-v path of length l, l ≤ 5. Consider a partial Cox-coloring φ
given by φ(u) = A and φ(v) = B. Then, φ is extendable to P if and only if:

(i) l = 2 and d(A,B) ∈ {0, 2}, or

(ii) l = 3 and d(A,B) ∈ {1, 3}, or

(iii) l = 4 and d(A,B) 6= 1, or

(iv) l = 5 and A 6= B.

The proof of this lemma follows from Lemma 8 (i), (iii), (vi), and the following general
remark: Let P be a u-v path, and P ′ be a u′-v′ path of lengths l and l′, respectively.
Then, the mapping ψ(u) = u′, ψ(v) = v′ is extendable to a mapping of P to P ′ if and
only if l ≡ l′ (mod 2) and l ≥ l′.

Proposition 10. P7 is a reducible configuration.

Proof. Let u and v be the two end-vertices of P7. Let φ be a Cox-coloring of X− Int(P7),
say φ(u) = A and φ(v) = B. Choose a neighbor C of B distinct from A. Let v′ be the
neighbor of v in P7. Extend φ to v′ by setting φ(v′) = C. Then by Lemma 9 (iv), φ is
extendable to a Cox-coloring of P7.

In other words, the maximum length of a thread in X is at most 5. It follows imme-
diately that:

Corollary 11. Given a vertex v of X we have dweak(v) ≤ 4d(v).

For paths of length five or six we will need to know the number of ways a Cox-coloring
of the two end-vertices extends to the interior. This is achieved by the next two lemmas.

Lemma 12. Let P = xv1v2v3v4y be a 5-path. Let φ(x) = A and φ(y) = B, with B 6= A, be
a partial Cox-coloring. If d(A,B) = 2, then |ad(v1)| = |ad(v2)| = 2 with the two possible
choices for v2 being at distance three in Cox. Otherwise, |ad(v1)| = 3 and |ad(v2)| ≥ 4.

Proof. Since Cox is distance-transitive, the statement can be proven by considering the
four possibilities for d(A,B) and applying Lemma 9. If d(A,B) = 1, we may assume B =
127 and A = 346. Then ad(v1) = N(A) and ad(v2) = {346, 356, 456, 347, 467, 234, 236},
hence |ad(v1)| = 3 and |ad(v2)| = 7. In case d(A,B) = 2, we may assume B = 127 and
A = 125. Then ad(v1) = {347, 467} and ad(v2) = {135, 256}, hence |ad(v1)| = 2 and
|ad(v2)| = 2, with the two admissible colors for v2 being at distance three in Cox. If
d(A,B) = 3, we may assume B = 127 and A = 347. Then ad(v1) = N(A) and ad(v2) =
{346, 347, 467, 357}, hence |ad(v1)| = 3 and |ad(v2)| = 4. Finally, if d(A,B) = 4, we may
assume B = 127 and A = 126. Then ad(v1) = N(A) and ad(v2) = {236, 136, 256, 146},
hence |ad(v1)| = 3 and |ad(v2)| = 4.

Lemma 13. Let P = xv1v2v3v4v5y be a 6-path. Let φ(x) = A and φ(y) = B be a partial
Cox-coloring. If d(A,B) = 1, then |ad(v3)| = 4, furthermore these four colors constitute
the neighbors of an edge of Cox. If d(A,B) 6= 1, then |ad(v3)| ≥ 8.
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Proof. We again apply Lemma 9. First we consider the case of d(A,B) = 1. Since Cox is
distance-transitive, we may assume without loss of generality that A = 127 and B = 346.
In this case ad(v3) = {567, 135, 256, 145}. Note that these are the neighbors of the edge
A′B′, where A′ = 134 and B′ = 267. We note that each of A′ and B′ is at distance 4
from both A and B. This property uniquely determines the edge A′B′.

If A = B, then each vertex in N(A) ∪ N3(A) is an admissible color for v3, and we
have |ad(v3)| = 15. If d(A,B) = 2, since Cox is distance-transitive, we may assume
A = 127 and B = 125. In this case ad(v3) = {346, 356, 456, 347, 467, 234, 236, 357, 146}.
For the case of d(A,B) = 3 we may assume A = 127 and B = 347, thus ad(v3) =
{456, 256, 135, 245, 567, 146, 236, 136}. Finally, if d(A,B) = 4 we may assume A = 127
and B = 126. In this case we have ad(v3) = {346, 356, 347, 357, 467, 567, 145, 245}.

Observe that, as a consequence of the fact that X is 2-connected, any 2-vertex x in X
has exactly two weakly adjacent 3+-vertices. Thus, there exists a unique thread having
x as an internal vertex.

Proposition 14. Given distinct 3+-vertices u and v of X, there exists at most one u-v
thread.

Proof. Suppose there are two such threads, say P and P ′, of lengths l and l′, respectively.
Since the length of each thread is at most 5, l and l′ must have the same parity, otherwise
there would be an odd cycle of length less than 17 in P ∪ P ′. Without loss of generality,
we may assume that l ≥ l′. But then there exists a homomorphism P → P ′ that leaves u
and v fixed, and hence there exists a homomorphism X → X − E(P ), contradicting the
fact that no proper homomorphic image of X is in P17.

Therefore, for any pair of weakly adjacent 3+-vertices u and v, there exists a unique
u-v thread. We define T

k1k2 ...kr
with 0 ≤ k1 ≤ k2 ≤ · · · ≤ kr to be a graph obtained

from K1,r by subdividing the uti-edge ki times, where ti’s are the leaf vertices and u is
the central vertex of K1,r. Given an r-vertex u, with r ≥ 3, we will denote by T (u) the
union of all the threads in X which have u as an end-vertex. A direct consequence of
Proposition 14 is that T (u) is a T

k1k2 ...kr
with kr ≤ 4. The next few lemmas are about

the possibilities for T (u) when u is of degree 3 or 4.

Lemma 15. Let T = T222. Then the partial Cox-coloring φ(ti) = Ai, i = 1, 2, 3 is
extendable to T unless {A1, A2, A3} induces a P3 in Cox.

Proof. Consider the t1-t2 path P in T . Let v be the middle vertex of this path and
let A be the set of colors whose assignment to v is extendable to P . We use the proof
of Lemma 13 for the different values of d(A1, A2). In three of these possibilities, to be
precise, when d(A1, A2) 6= 1, 2, we have N(A) ∪ N3(A) = V (Cox). Thus, in these cases
any choice of A3 is extendable.

If d(A1, A2) = 1, then N(A) ∪ N3(A) = V (Cox) \ N({A1, A2}) ∪ {A1, A2}. Thus, in
this case a choice of A3 is extendable unless either A3 ∼ A1 and A3 6= A2 or A3 ∼ A2 and
A3 6= A1.

Finally if d(A1, A2) = 2, then N(A)∪N3(A) = V (Cox)\{B}, where B is the common
neighbor of A1 and A2.
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Proposition 16. The configurations T123 and T034 are reducible.

Proof. We give a proof for T123 , the proof for T034 is similar. Let X ′ be the subgraph of
X obtained by deleting the interior of the u-t3 thread. By the minimality of X, there is a
Cox-coloring of X ′. Thus, by Lemma 9, we may consider a Cox-coloring φ of X−Int(T123)
for which φ(t1) 6= φ(t2). Now, by Lemma 12, there is an extension of φ to the t1-t2 path
of T123 such that φ(u) � φ(t3). By Lemma 9, this extends to the rest of T123 .

Proposition 16 yields the following corollary.

Corollary 17. If v is a 3-vertex in X, then dweak(v) ≤ 6. Furthermore, if dweak(v) = 6,
then T (v) is one of the following trees: T024, T033, T114, T222.

Proof. It is easily observed that the only maximal subtrees T
k1k2k3

with central vertex
v, containing neither of the reducible configurations P7, T123 , T034 are T024 , T033 , T114 ,
T222 .

Proposition 18. The configurations T1334, T2234, T2333 are reducible.

Proof. Let T be one of the three configurations, and let φ be a Cox-coloring of X−Int(T )
with φ(t1) = A1, φ(t2) = A2, φ(t3) = A3, φ(t4) = A4.

First assume T = T1334 . Using Lemma 9, all we need is to find a choice of color which
is at distance 0 or 2 from A1 (7 choices), adjacent to neither A2 nor A3, and distinct from
A4. Thus, by Lemma 8 (xi), at least one member of N2(A1) satisfies all four conditions.

For the case of T = T2234 , using Lemma 13, if d(A1, A2) 6= 1, then we have at least
eight choices for u each of which is extendable on the u-t1 and u-t2 threads. By Lemma 9,
at least four of these choices can be extended also to the u-t3 and u-t4 threads. If
d(A1, A2) = 1, then by Lemma 13 there are exactly four choices for u each of which is
extendable on the u-t1 and u-t2 threads, furthermore at most two of these four colors are
in N(A3). Of the remaining two we have a choice distinct from A4.

For the last case, i.e., T = T2333 , by Lemma 9, the number of choices for φ(u) which
are extendable on the u-ti threads, i = 1, 2, 3, 4 are 15, 25, 25 and 25, respectively. Since
there are 28 vertices in the Coxeter graph, there are at least 6 choices for φ(u) each of
which extends on all the four threads.

Corollary 19. If v is a 4-vertex in X, then dweak(v) ≤ 12. Furthermore, if dweak(v) = 12,
then T (v) is T0444. Otherwise, dweak(v) ≤ 10.

The simple proof of this corollary is analogous to the one of the previous corollary,
hence we leave it to the reader.

Let u and v be weakly adjacent 3-vertices. We now would like to investigate T (u)∪T (v)
(see Figures 3 and 4 where the black vertices have degrees as depicted in the figures,
whereas the white vertices have arbitrary degrees greater that 2).

Proposition 20. The three trees in Figure 3 are reducible.

Proof. Consider a partial Cox-coloring of each of the configurations by assigning colors
A, B, C and D to the vertices on the boundary as shown in Figure 3. We will use these
colors to denote the respective leaf vertices of the configuration. By Lemma 9, to color u
so that it is extendable to the A-u and B-u paths of the given configuration there are at
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Figure 3: Reducible configurations of adjacent 3-vertices with a Cox-coloring of the boundary.

least 14 choices. Let A be set of those colors for u. Similarly, we have a set B of size at
least 14 for v with respect to C and D. By Lemma 8 (ix), there are adjacent elements
S ∈ A and S ′ ∈ B. Assignment of S to u and S ′ to v is now extendable.

C

B D

A

u v

t

Figure 4: Reducible configuration with a Cox-coloring of the boundary.

Proposition 21. The tree in Figure 4 is reducible.

Proof. Consider a Cox-coloring of the leaf vertices, as depicted in Figure 4. We will again
use these colors to denote the respective leaf vertices. By Lemma 9, to color u so that
it is extendable to the A-u path one can choose any vertex in N2(A). Any such choice,
except possibly B, would be extendable on the B-u path and any of its neighbors would
be admissible for t. Thus, for at least ten elements A′ ∈ N3(A) the assignment of A′

to t is extendable on the left. Furthermore, two third-neighbors of A are not admissible
colors for t if and only if B is a second-neighbor of A, and then these particular two
non-admissible colors belong to N(B). Similarly, for at least ten choices of C ′ ∈ N3(C)
the assignment of C ′ to t is extendable on the right with ten being the exact number of
choices if D ∈ N2(C). We now apply Lemma 8 (xii) to find a color for t admissible from
both sides.

The next two configurations we consider are not reducible. But we show that, up to
isomorphism, there is a unique Cox-coloring of the boundary which is not extendable to
the interior. This implies, in particular, that if there exists a second choice for a color of
one of the vertices on the boundary, then the coloring is extendable.

10



A1 B1

A2 B2

u

Figure 5: Configuration F1 with a Cox-coloring of the boundary.

Proposition 22. The partial Cox-coloring of the configuration F1 given in Figure 5 is
extendable to the whole configuration unless d(A1, A2) = d(B1, B2) = 1 and d(Ai, Bj) = 4
for i, j ∈ {1, 2}.

Proof. Consider the T222 configuration whose boundary consists of the vertex u and the
two vertices colored with A1 and A2, respectively. If d(A1, A2) 6= 1, then by Lemma 15,
there are at least 27 choices of color for u which is extendable to the interior of this
T222 . On the other hand, by Lemma 13, there are at least 4 choices of color for u that is
extendable to a Cox-coloring of the partially colored 6-path connecting B1 and B2. Thus,
there are at least three common choices of color for u which is extendable on the whole
configuration.

If d(A1, A2) = 1, then, again by Lemma 15, there are exactly four non-extendable
choices of color for u for the considered T222 configuration. These particular four choices
are the neighbors of A1 and A2 distinct from A1 and A2. If any of the other 24 choices
is extendable on the B1-B2 path, then the coloring is extendable to the whole configu-
ration. Otherwise, by the proof of Lemma 13, we have d(B1, B2) = 1 and, furthermore,
d(Ai, Bj) = 4 for i, j ∈ {1, 2}.

Corollary 23. For the configuration F1 of Figure 5, if the given partial Cox-coloring is
not extendable to the whole configuration, then A1 is uniquely determined by A2, B1 and
B2.

Proof. Note that given an edge A1A2, the property d(Ai, Bj) = 4 for i, j ∈ {1, 2} deter-
mines a unique edge in Cox, as shown in Lemma 8 (viii).

A1

B2

B1

A2

u

Figure 6: Configuration F2 with a Cox-coloring of the boundary.

Proposition 24. The partial Cox-coloring of the configuration F2 given in Figure 6 is
extendable to the whole configuration unless d(A1, A2) = 1 and {B1, B2} = {A1, A2}.
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Proof. The proof is similar to that of the previous proposition. Again we consider the
possibilities on u. If d(A1, A2) 6= 1, then, by Lemma 15, there are at least 27 choices of
color for u that would be extendable on the part connecting to A1 and A2. Of these 27
vertices in Cox, at least two are neighbors of B1 and of these two, one is distinct from
B2. This color is an extendable choice.

If d(A1, A2) = 1, then the four neighbors of A1 and A2, distinct from A1 and A2, are
the only choices for u that would make the coloring non-extendable on the left side. If
B1 /∈ {A1, A2}, then there are at least two neighbors of B1 whose assignments to u are
extendable on the left side of u, and at least one of these two is different from B2. Thus,
we may assume without loss of generality that B1 = A1. Then A2 is an extendable choice
for u unless B2 = A2.

Corollary 25. If the partial Cox-coloring of the configuration F2 given in Figure 6 is not
extendable to the whole configuration, then A1 is uniquely determined by A2, B1 and B2.

4. Discharging and further reducible configurations

Recall that X, our minimal counterexample, is a 2-connected plane graph whose faces
are all 17-cycles.

Being a plane graph, for any choice of real numbers α and β satisfying the condition
α+ β = 3, the Euler formula gives the following identity for the vertices and faces of X:∑

v

(α · d(v)− 6) +
∑
f

(β · l(f)− 6) = −12, (1)

where the second sum is taken over all faces of X with l(f) denoting the length of face
f . We remark that the identity (1) is just the well-known Euler formula V −E + F = 2

in disguise because of the identity
∑
v

d(v) = 2E =
∑
f

l(f).

Thus, by setting β = 6
17

and α = 45
17

the identity (1) reduces to∑
v

(45 · d(v)− 102) +
∑
f

0 = −204. (2)

This would lead to the following initial charge on each vertex v of X:

w0(v) = 45 · d(v)− 102.

Note that
∑

v∈V (X)w0(v) = −204 < 0, and that each 2-vertex has initial charge −12, each
3-vertex has initial charge 33, each 4-vertex has initial charge 78, etc. Note that X has
no 1-vertices as it is 2-connected. Our aim is to redistribute the charges on the vertices so
that at the final step, the charge on each vertex is non-negative. This contradiction would
disprove the existence of X. We will accomplish this through two phases of discharging.
In the first phase, we will take care of vertices of degree 2. Then, in the second phase,
we design a discharging rule that would take care of all negatively charged vertices after
the first phase. We will then show that each configuration which may lead to a vertex of
negative charge is reducible. This would complete our proof.

12



4.1. First phase of discharging

Here we use the following discharging rule:

(R1) For each pair x, y of weakly adjacent vertices in X with d(x) = 2 and d(y) ≥ 3, y
sends charge of 6 to x.

Let w1(v) denote the new charge at each vertex v. If d(v) = 2 then v receives a
total charge of 12 (6 from each of its weakly adjacent 3+-vertices), hence w1(v) = 0. If
d(v) = 3, then by Corollary 17, we have w1(v) ≥ −3. Furthermore, if dweak(v) 6= 6, then
w1(v) ≥ 3. For d(v) ≥ 4 we have w1(v) ≥ 6 by Corollaries 11 and 19.

A vertex v of X is called poor if w1(v) < 0. As a consequence of Corollary 17, we
have the following characterization of poor vertices.

Proposition 26. A vertex v of X is poor if and only if d(v) = 3 and dweak(v) = 6.

Corollary 17 also implies that for each poor vertex v, T (v) is one of the following
trees: T024 , T033 , T114 , T222 . Our aim is to seek charge for v from its closest leaf vertices of
T (v). Given a 3+-vertex x ∈ V (X), we say x supports v if: (i) w1(x) > 0, and (ii) x is a
leaf vertex of T (v) on a shortest thread of T (v). Note that each such thread has length
at most 3. Furthermore, observe that v may have more than one supporting vertex x.

4.2. Second phase of discharging

In this phase we try to increase the charge of all poor vertices. The discharging rule
is as follows:

(R2) Whenever y supports a poor vertex x, then y gives charge of 3 to x if d(x, y) = 1,
and charge of 1.5 to x if d(x, y) 6= 1.

Let w2(v) be the charge of an arbitrary vertex v after this phase. We will show that
w2(v) ≥ 0, for every vertex v of X.

Observe that the charge of each 2-vertex v remains the same, i.e. w2(v) = 0. If v is
a 5+-vertex, then by Corollary 11 we have w1(v) ≥ w0(v) − 24d(v) = 21d(v) − 102 ≥ 3.
Furthermore, if v is a support for a vertex u, then the number of 2-vertices on the v-u
thread is at most two. Thus, if v supports r vertices then w1(v) ≥ 3 + 12r. This implies
that w2(v) ≥ 3. Now, assume v is a 4-vertex. By Corollary 19, unless T (v) = T0444 , we
have w1(v) ≥ 18 and this clearly gives w2(v) ≥ 6. If T (v) = T0444 , then v supports at
most one vertex, and therefore w2(v) ≥ 3.

We are left to consider the case of a 3-vertex v. If v is non-poor, we have w1(v) ≥ 3,
and if, furthermore, dweak(v) ≤ 4, then w1(v) ≥ 9. Therefore, if v supports only one poor
vertex, or if dweak(v) ≤ 4, then w2(v) ≥ 0 is assured. The remaining two possibilities for
v are as follows: either (i) v is a poor vertex, or (ii) dweak(v) = 5 and v supports at least
two poor vertices.

We will complete our proof by showing that:

(i) If v is a poor vertex, then either v has an adjacent supporting vertex or it has at
least two supporting vertices.
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(ii) If d(v) = 3 and dweak(v) = 5, then when applying (R2) v sends total charge of at
most 3.

To prove (i), first we consider the case when v is adjacent to a 3+-vertex, say x. We
claim that x is the adjacent supporting vertex of v. To see this, suppose by contradiction
x is poor. Then, the union T (x) ∪ T (v) must be one of the configurations of Figure 3.
But these are reducible configurations as shown in Proposition 20.

Thus, we may assume that all neighbors of v are 2-vertices. Now consider the case
when there is a 3+-vertex, say x, at distance 2 from v. Then T (v) must be T114 . Hence,
there are two 3+-vertices at distance 2 from v. It remains to prove that neither of these
two vertices is poor. By contradiction, suppose x is a poor vertex. Then T (x) itself
must be T114 . Since each face of X is a 17-cycle, the union T (x) ∪ T (v) must be the
configuration of Figure 4, which is shown to be reducible in Proposition 21.

Hence we may assume that T (v) is T222 . We prove that at most one vertex in N3(v) is
poor. If x ∈ N3(v) is a poor vertex, then T (x) must be either T222 or T024 . Then, the union
F = T (v) ∪ T (x) is, respectively, the configuration of Figure 5 or the configuration of
Figure 6. Let y be another vertex in N3(v). If y is also a poor vertex, then in X− Int(F )
the vertex y is an internal vertex of an induced 5-path P . Thus, by Lemma 12, there are
at least two choices for extending a Cox-coloring of (X − Int(F )) − Int(P ) to y, one of
which is extendable to a Cox-coloring of X by Corollary 23 or Corollary 25.

To prove (ii), we begin by observing that T (v) must be one of the configurations:
T014 , T023 , T113 , T122 .

Assume first that T (v) is T014 and v supports two poor vertices. There are only
two such possible configurations, shown in Figure 7. In this figure, vertices in square
are the poor vertices whose support is v. We claim that each configuration of Figure 7
is reducible. To prove this, consider a Cox-coloring of the leaf vertices (as depicted in
Figure 7), and look first for the minimum number of possible colors for v if we were to
extend the partial Cox-coloring by A and B from left until v. This number, which is
shown on the left of v, is derived as follows. For the first configuration, by Lemma 9
we have that ad(2) = (N(A) ∪ N3(A))\{B}. Using the vertex-transitivity of Cox, it is
readily observed that the considered ad(v) surely includes A, all 6 second-neighbors of
A, at least 11 third-neighbors of A, and all 6 fourth-neighbors of A, giving the total of 24
choices. For the second configuration, Lemma 9 gives ad(2) = (N(A) ∪N(B))c. Hence,
Lemma 8 (ix) implies that the considered ad(v) = {A,B}c. Similarly, the minimum
number of possible extensions of coloring by C and D to v, from right only, is given on
the right of v. This number can be easily deduced from Lemma 9. Since the sum of the
two numbers in each of the configurations is greater than the number of vertices of Cox,
a good common choice for coloring v from both sides exists in each case.
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CC

B

A

B D

A

D

v v|ad(v)| > 24 |ad(v)| > 6 |ad(v)| > 26 |ad(v)| > 6

Figure 7: Local configurations of a center of T014 supporting two poor vertices.

For the case when T (v) is isomorphic to T023 , using the Figure 8, a similar argument
is applied.

C CA

B
D D

A

vv|ad(v)| > 24 |ad(v)| > 26 |ad(v)| > 12|ad(v)| > 12

B

Figure 8: Local configurations of a center of T023 supporting two poor vertices.

If T (v) is T113 , then v is a support of at most two poor vertices to each of which it
may send charge of 1.5. Hence, in the second phase v gives as support at most charge of
+3.

Finally, assume that T (v) is T122 . If w2(v) < 0, then by (R2), v must have given charges
to three weakly adjacent poor vertices. In this case, we have a unique local configuration,
given in Figure 9. To prove its reducibility, consider a Cox-coloring of its leaf vertices.
In this figure the minimum number of possible choices of colors for v extending partial
Cox-colorings from the three different directions to v are as given in Figure 9. The first of
these three numbers, namely the 23 choices for extending to v the partial coloring by A
and B, is derived as follows. If d(A,B) = 2, the set of admissible colors for the relevant
neighbor of v consists of the neighbors of A and the 10 third-neighbors of A that are not
adjacent to B. Hence, it is readily checked (using the distance-transitivity of Cox) that
the considered |ad(v)| = 23. Otherwise d(A,B) 6= 2, and each third-neighbor of A is an
admissible color for the relevant neighbor of v, which readily gives at least 24 colors in
the considered ad(v). The remaining two numbers in the Figure 9 follow from Lemma 9
and Lemma 15, respectively. From these three minimum numbers for admissible choices
of colors for v, it easily follows that there is a common choice.
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C

D

A

B

F

v|ad(v)| > 23

|ad
(v
)| >

24

|ad
(v
)| >

15

Figure 9: Local configuration of a center of T
122

supporting three poor vertices.

5. Concluding remarks and further work

We have shown in this paper that one may use the existence of a combinatorial design
to propose answer for special cases of the Problem 5. Our primary concern in this paper
was the case r = 5 and k = 3 of this question and we proposed an answer using the
Fano plane. At a 2011 summer workshop in Prague, Peter Cameron proposed a similar
conjecture for the case of r = 7 and k = 5 based on the existence of a unique Steiner
quintuple system of order 11.

The condition of odd-girth 17 was used only when applying Euler formula, indeed
each of the 15 reducible configurations we used in our proof is a tree. Thus if X is a min-
imal graph which admits no homomorphism to Cox (i.e., every proper subgraph admits
a homomorphism to Cox), then X does not contain any of these reducible configura-
tions. We believe that with a larger set of reducible trees and together with cumbersome
discharging steps we can improve the result for odd-girth 15. However, it seems that to
prove the conjecture using the discharging technique, if possible at all, one has to consider
reducible configurations that involve cycles.

We have considered Problem 5 for PC(2k). However, using recent developments on
signed graphs, a similar question could be asked for PC(2k− 1), see [6]. We will address
this question in forth coming works.
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