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Decomposition of graphs

T -decomposition: edge-partition into copies of T.

S4-decomposition P3-decomposition
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Wilson’s Theorem

Theorem (Wilson 1976)

For any tree T , Kn admits a T -decomposition, for n sufficiently large (provided
divisibility condition).
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Minimum degree condition

Theorem (Barber, Kuhn, Lo, Osthus 2016)

For every T , ∃ εT > 0 s.t. if G has minimum degree (1− εT )|V (G )|, then G has
T -decomposition (provided divisibility condition).
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Barát-Thomassen conjecture

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T , there exists a positive constant cT such that
every cT -edge-connected graph with size divisible by |E (T )| admits a T -
decomposition.

Verified for T being

stars
[Thomassen – 2012]

1

2

k

1

2

k+1

(k, k + 1)-bistars
[Thomassen – 2013]

of deg. sequence (1, 1, 1, 2, 3)
[Barát, Garbner – 2014]

... and actually whenever diam(T ) ≤ 4 [Merker – 2015+].
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Barát-Thomassen conjecture for paths

When T is a path: T = P`

` ∈ {3, 4} [Thomassen – 2008],

` = 2k for any k [Thomassen – 2013],

` = 5 [Botler, Mota, Oshiro, Wakabayashi – 2015+],

` is any value [Botler, Mota, Oshiro, Wakabayashi – 2015+].
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Is edge-connectivity necessary?

The following would be best optimal:

3-edge-connectivity,

Note: 2-edge-connectivity does not suffice; e.g. for

... and make δ increase with preserving non P9-decomposability.
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Relations to Tutte’s nowhere zero 3-flow conjecture

Theorem (Tutte’s Conjecture)

Every 4-edge-connected graph admits a nowhere zero 3-flow.

K1,3-decompositions relate to flows: Tutte’s conjecture implies every 10-e.c.
graph has K1,3-decomposition.

Conversely, if every 8-e.c. G admits a K1,3-decomposition, then Tutte holds
with e.c = 8.
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Barát-Thomassen Conjecture

Theorem (Bensmail, Le, Merker, Thomassé, H. – 2015+)

The Barát-Thomassen conjecture is true.
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Preliminaries: Bipartite graphs

Theorem (Barát-Gerbner (2014), also Thomassen (2013))

It is sufficient to prove the conjecture for G bipartite.
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Proof technique

’Absorbing’ technique STABILITY RESULT + NOISE

1. Prove that from G can extract a ’rich/stable’ structure S

2. Use probabilistic tools to get a ’nearly good’ decomposition on S .

3. Use the structure S to repair ’blemishes’.
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Preliminaries: T -equitable coloring

Definition

G = (A,B) bipartite, T = (TA,TB) a tree. An edge-colouring φ : E (G )→ E (T )
is called T -equitable, if for any pair of vertices v ∈ V (G ), t ∈ V (T ) in the same
part, we have dj(v) = dk(v) for all pair of colors j , k incident to t.

t v

T G

Theorem (Merker 2015+)

A highly edge connected bipartite G (+ other divisibility assumptions) has a
T -equitable coloring where the min. degree in each color is large.
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Match edges randomly

For each v ∈ V (G ) and t ∈ V (T ) in the same part, let v “play the role” of t
by matching randomly all the colored edges around t on v .

t v

T G

This yields a natural decomposition, but... some trees in G may intersect
themselves.

Overwhelming majority of copies are isomorphic to T .
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Number of non-isomorphic trees

t0 v

T G

t1 t2

t3 t4
t5

Xv := number of non-isomorphic trees where v is the root.

Xv (ti , tj) := number of non-isomorphic trees where v is the root where
images of ti and tj are the same.

E[Xv (t0, tj)] ≤ 1!
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Probabilistic Machinery involved

McDiarmid’s Inequality (Simplified version)

Let X be a non-negative random variable, determined by m independent
random permutations Π1, ...,Πm satisfying the following conditions for
some d , r > 0

interchanging two elements in any one permutation can affect X by
at most d ;

for any s, if X ≥ s then there is a set of at most rs choices whose
outcomes certify that X ≥ s,

then for any 0 ≤ t ≤ E[X ],

Pr [|X − E[X ]| > t + 60d
√

rE[X ]] ≤ 4e
− t2

8d2rE[X ] .
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Probabilistic Machinery involved

Lovász Local Lemma

Let A1, ...,An be events in some probability space Ω with P[Ai ] ≤ p for
all i ∈ {1, . . . , n}. Suppose that each Ai is mutually independent of all
but at most d other events Aj . If 4pd < 1, then P[∩ni=1Ai ] > 0.
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Fixing bad ’trees’

A non-isomorphic T is i-good if the images of t0, ..., ti are pairwise distinct.

Use one isomorphic copy to fix each homomorphic copy which is bad at t4 by
switching subtrees at the parent of t4

This creates even more bad ’trees’, but all of them 4-good!

Repeat for t5, t6 etc.
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Conclusion

Conjecture: There is a function f such that, for any fixed tree T with
maximum degree ∆T , every f (∆T )-edge-connected graph with its number of
edges divisible by |E (T )| and minimum degree at least f (|E (T )|) can be
T -decomposed.

Theorem (Bensmail, Le, Thomassé, H. 2016+)

Let G be a 24-e.c. graph with ` | |E (G )| and of sufficiently large minimum degree
(wrt to `). Then G admits a P`-decomposition.

Thank you.
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