A proof of a conjecture of Barát and Thomassen

Julien Bensmail (Sophia-Antipolis), <u>Ararat Harutyunyan</u>, Tien-Nam Le (ENS Lyon), Martin Merker (Tech. U. Denmark) and Stéphan Thomassé (ENS Lyon)

Institut de Mathématiques, University of Toulouse III (Paul Sabatier)

Bordeaux Graph Workshop November 8, 2016 *T*-decomposition: edge-partition into copies of T.

T-decomposition: edge-partition into copies of T.

T-decomposition: edge-partition into copies of T.

 P_3 -decomposition

Theorem (Wilson 1976)

For any tree T, K_n admits a T-decomposition, for n sufficiently large (provided divisibility condition).

Theorem (Barber, Kuhn, Lo, Osthus 2016)

For every T, $\exists \epsilon_T > 0$ s.t. if G has minimum degree $(1 - \epsilon_T)|V(G)|$, then G has T-decomposition (provided divisibility condition).

Conjecture [Barát, Thomassen - 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph with size divisible by |E(T)| admits a T-decomposition.

Barát-Thomassen conjecture

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph with size divisible by |E(T)| admits a T-decomposition.

Verified for *T* being

Barát-Thomassen conjecture

Conjecture [Barát, Thomassen – 2006]

For every fixed tree T, there exists a positive constant c_T such that every c_T -edge-connected graph with size divisible by |E(T)| admits a T-decomposition.

Verified for *T* being

... and actually whenever $\operatorname{diam}(\mathcal{T}) \leq 4$ [Merker – 2015+].

When T is a path: $T = P_{\ell}$

- $l \in \{3, 4\}$ [Thomassen 2008],
- $\ell = 2^k$ for any k [Thomassen 2013],
- $\ell = 5$ [Botler, Mota, Oshiro, Wakabayashi 2015+],
- ℓ is any value [Botler, Mota, Oshiro, Wakabayashi 2015+].

Is edge-connectivity necessary?

The following would be best optimal:

• 3-edge-connectivity,

Is edge-connectivity necessary?

The following would be best optimal:

• 3-edge-connectivity,

Note: 2-edge-connectivity does not suffice; e.g. for

... and make δ increase with preserving non $\mathit{P}_9\text{-}\mathsf{decomposability}.$

Theorem (Tutte's Conjecture)

Every 4-edge-connected graph admits a nowhere zero 3-flow.

- $K_{1,3}$ -decompositions relate to flows: Tutte's conjecture implies every 10-e.c. graph has $K_{1,3}$ -decomposition.
- Conversely, if every 8-e.c. G admits a $K_{1,3}$ -decomposition, then Tutte holds with e.c = 8.

Theorem (Bensmail, Le, Merker, Thomassé, H. – 2015+)

The Barát-Thomassen conjecture is true.

Theorem (Barát-Gerbner (2014), also Thomassen (2013))

It is sufficient to prove the conjecture for G bipartite.

• 'Absorbing' technique STABILITY RESULT + NOISE

- 'Absorbing' technique STABILITY RESULT + NOISE
- 1. Prove that from G can extract a 'rich/stable' structure S
- 2. Use probabilistic tools to get a 'nearly good' decomposition on S.
- 3. Use the structure S to repair 'blemishes'.

Preliminaries: T-equitable coloring

Definition

G = (A, B) bipartite, $T = (T_A, T_B)$ a tree. An edge-colouring $\phi : E(G) \to E(T)$ is called *T***-equitable**, if for any pair of vertices $v \in V(G), t \in V(T)$ in the same part, we have $d_j(v) = d_k(v)$ for all pair of colors j, k incident to t.

Preliminaries: T-equitable coloring

Definition

G = (A, B) bipartite, $T = (T_A, T_B)$ a tree. An edge-colouring $\phi : E(G) \to E(T)$ is called *T***-equitable**, if for any pair of vertices $v \in V(G), t \in V(T)$ in the same part, we have $d_j(v) = d_k(v)$ for all pair of colors j, k incident to t.

Preliminaries: T-equitable coloring

Definition

G = (A, B) bipartite, $T = (T_A, T_B)$ a tree. An edge-colouring $\phi : E(G) \to E(T)$ is called *T***-equitable**, if for any pair of vertices $v \in V(G), t \in V(T)$ in the same part, we have $d_j(v) = d_k(v)$ for all pair of colors j, k incident to t.

Theorem (Merker 2015+)

A highly edge connected bipartite G (+ other divisibility assumptions) has a T-equitable coloring where the min. degree in each color is large.

For each v ∈ V(G) and t ∈ V(T) in the same part, let v "play the role" of t by matching randomly all the colored edges around t on v.

Match edges randomly

For each v ∈ V(G) and t ∈ V(T) in the same part, let v "play the role" of t by matching randomly all the colored edges around t on v.

Match edges randomly

For each v ∈ V(G) and t ∈ V(T) in the same part, let v "play the role" of t by matching randomly all the colored edges around t on v.

• This yields a natural decomposition, but... some trees in *G* may intersect themselves.

Match edges randomly

For each v ∈ V(G) and t ∈ V(T) in the same part, let v "play the role" of t by matching randomly all the colored edges around t on v.

- This yields a natural decomposition, but... some trees in *G* may intersect themselves.
- Overwhelming majority of copies are isomorphic to *T*.

Number of non-isomorphic trees

Number of non-isomorphic trees

 $X_v :=$ number of non-isomorphic trees where v is the root.

 $X_v(t_i, t_j) :=$ number of non-isomorphic trees where v is the root where images of t_i and t_j are the same.

Number of non-isomorphic trees

 $X_v :=$ number of non-isomorphic trees where v is the root.

 $X_v(t_i, t_j) :=$ number of non-isomorphic trees where v is the root where images of t_i and t_j are the same.

$\mathbb{E}[X_v(t_0,t_j)] \leq 1!$

McDiarmid's Inequality (Simplified version)

Let X be a non-negative random variable, determined by m independent random permutations $\Pi_1, ..., \Pi_m$ satisfying the following conditions for some d, r > 0

- interchanging two elements in any one permutation can affect X by at most d;
- for any s, if X ≥ s then there is a set of at most rs choices whose outcomes certify that X ≥ s,

then for any $0 \leq t \leq \mathbb{E}[X]$,

$$\Pr[|X - \mathbb{E}[X]| > t + 60d\sqrt{r\mathbb{E}[X]}] \le 4e^{-\frac{t^2}{8d^2r\mathbb{E}[X]}}.$$

Lovász Local Lemma

Let $A_1, ..., A_n$ be events in some probability space Ω with $\mathbb{P}[A_i] \leq p$ for all $i \in \{1, ..., n\}$. Suppose that each A_i is mutually independent of all but at most d other events A_i . If 4pd < 1, then $\mathbb{P}[\bigcap_{i=1}^n \overline{A_i}] > 0$.

• A non-isomorphic T is *i*-good if the images of $t_0, ..., t_i$ are pairwise distinct.

- A non-isomorphic T is *i*-good if the images of $t_0, ..., t_i$ are pairwise distinct.
- Use one isomorphic copy to fix each homomorphic copy which is bad at t_4 by switching subtrees at the parent of t_4

- A non-isomorphic T is *i*-good if the images of $t_0, ..., t_i$ are pairwise distinct.
- Use one isomorphic copy to fix each homomorphic copy which is bad at t_4 by switching subtrees at the parent of t_4
- This creates even more bad 'trees', but all of them 4-good!

- A non-isomorphic T is *i*-good if the images of $t_0, ..., t_i$ are pairwise distinct.
- Use one isomorphic copy to fix each homomorphic copy which is bad at t_4 by switching subtrees at the parent of t_4
- This creates even more bad 'trees', but all of them 4-good!
- Repeat for t_5, t_6 etc.

• **Conjecture:** There is a function f such that, for any fixed tree T with maximum degree Δ_T , every $f(\Delta_T)$ -edge-connected graph with its number of edges divisible by |E(T)| and minimum degree at least f(|E(T)|) can be T-decomposed.

• **Conjecture:** There is a function f such that, for any fixed tree T with maximum degree Δ_T , every $f(\Delta_T)$ -edge-connected graph with its number of edges divisible by |E(T)| and minimum degree at least f(|E(T)|) can be T-decomposed.

Theorem (Bensmail, Le, Thomassé, **H.** 2016+)

Let G be a 24-e.c. graph with $\ell \mid |E(G)|$ and of sufficiently large minimum degree (wrt to ℓ). Then G admits a P_{ℓ} -decomposition.

• **Conjecture:** There is a function f such that, for any fixed tree T with maximum degree Δ_T , every $f(\Delta_T)$ -edge-connected graph with its number of edges divisible by |E(T)| and minimum degree at least f(|E(T)|) can be T-decomposed.

Theorem (Bensmail, Le, Thomassé, **H.** 2016+)

Let G be a 24-e.c. graph with $\ell \mid |E(G)|$ and of sufficiently large minimum degree (wrt to ℓ). Then G admits a P_{ℓ} -decomposition.

• Thank you.