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Bandit Problems

(Idealized) Motivation : Clinical Trials

Imagine you are a doctor :

patients visit you one after another for a given disease

you prescribe one of the (say) 5 treatments available

the treatments are not equally efficient

you do not know which one is the best, you observe the effect
of the prescribed treatment on each patient

⇒ What do you do ?

You must choose each prescription using only the previous
observations

Your goal is not to estimate each treatment’s efficiency
precisely, but to heal as many patients as possible



Bandit Problems

The (stochastic) Multi-Armed Bandit Model

Environment K arms ν = (ν1, . . . , νK) such that for any possible
choice of arm at ∈ {1, . . . ,K} at time t, the reward is

Xt = Xat,na(t)

where na(t) =
∑

s≤t 1{at = a}, and for any
1 ≤ a ≤ K,n ≥ 1, Xa,n ∼ νa, and the (Xa,n)a,n are
independent.

Reward distributions νa ∈ Fa = parametric family (canonical
exponential family) or not (general bounded rewards)

Example Bernoulli rewards : νa = B(θa)

Strategy The agent’s actions follow a dynamical strategy
π = (π1, π2, . . . ) such that

At = πt(X1, . . . , Xt−1)



Bandit Problems

Real challenges

Randomized clinical trials

original motivation since the 1930’s
dynamic strategies can save resources

Recommender systems :

advertisement
website optimization
news, blog posts, . . .

Computer experiments

large systems can be simulated in order to optimize some
criterion over a set of parameters
but the simulation cost may be high, so that only few choices
are possible for the parameters

Games and planning (tree-structured options)



Bandit Problems

Performance Evaluation, Regret

Cumulated Reward ST =
∑T

t=1Xt

Our goal Choose π so as to maximize

E [ST ] =

T∑
t=1

K∑
a=1

E
[
E [Xt1{At = a}|X1, . . . , Xt−1]

]
=

K∑
a=1

µaE [Nπ
a (T )]

where Nπ
a (T ) =

∑
t≤T 1{At = a} is the number of

draws of arm a up to time T , and µa = E(νa).

Regret Minimization equivalent to minimizing

RT = Tµ∗ − E [ST ] =
∑

a:µa<µ∗
(µ∗ − µa)E [Nπ

a (T )]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}
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Lower Bounds for the Regret

Asymptotically Optimal Strategies

A strategy π is said to be consistent if, for any ν ∈ F ,

1

T
E[ST ]→ µ∗

The strategy is uniformly efficient if for all ν ∈ F and all
α > 0,

RT = o(Tα)

There are uniformly efficient strategies and we consider the
best achievable asymptotic performance among uniformly
efficient strategies



Lower Bounds for the Regret

The Lower Bound of Lai and Robbins

One-parameter reward distribution νa = νθa , θa ∈ Θ ⊂ R .

Theorem [Lai and Robbins, ’85]

If π is a uniformly efficient strategy, then for any θ ∈ ΘK ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
KL(νa, ν∗)

where KL(ν, ν ′) denotes the Kullback-Leibler divergence

For example, in the Bernoulli case :

KL
(
B(p),B(q)

)
= dber(p, q) = p log

p

q
+ (1− p) log

1− p
1− q



Lower Bounds for the Regret

Generalization by Burnetas and Katehakis

More general reward distributions νa ∈ Fa

Theorem [Burnetas and Katehakis, ’96]

If π is an efficient strategy, then, for any ν ∈ F ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
Kinf(νa, µ∗)

where

Kinf(νa, µ
∗) = inf

{
K(νa, ν

′) :

ν ′ ∈ Fa, E(ν ′) ≥ µ∗
}

ν∗

δ1

δ 1
2

δ0

Kinf (νa, µ
?)

νa

µ∗



Lower Bounds for the Regret

Intuition

First assume that µ∗ is known and that T is fixed

How many draws na of νa are necessary to know that µa < µ∗

with probability at least 1− 1/T ?

Test : H0 : µa = µ∗ against H1 : ν = νa

Stein’s Lemma : if the first type error αna ≤ 1/T , then

βna % exp
(
− naKinf(νa, µ

∗)
)

=⇒ it can be smaller than 1/T if

na ≥
log(T )

Kinf(νa, µ∗)

How to do as well without knowing µ∗ and T in advance ?
Not asymptotically ?
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Optimistic Algorithms

Optimism in the Face of Uncertainty

Optimism in an heuristic principle popularized by [Lai&Robins
’85 ; Agrawal ’95] which consists in letting the agent

play as if the environment was the most favorable
among all environments that are sufficiently likely
given the observations accumulated so far

Surprisingly, this simple heuristic principle can be instantiated into
algorithms that are robust, efficient and easy to implement in
many scenarios pertaining to reinforcement learning



Optimistic Algorithms

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85 ; Agrawal ’95 ; Auer&al ’02]

Construct an upper confidence bound for the expected reward
of each arm :

Sa(t)

Na(t)︸ ︷︷ ︸
estimated reward

+

√
log(t)

2Na(t)︸ ︷︷ ︸
exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79]

Its behavior is easily interpretable and intuitively appealing



Optimistic Algorithms

UCB in Action



Optimistic Algorithms

UCB in Action



Optimistic Algorithms

Performance of UCB

For rewards in [0, 1], the regret of UCB is upper-bounded as

E[RT ] = O(log(T ))

(finite-time regret bound) and

lim sup
T→∞

E[RT ]

log(T )
≤

∑
a:µa<µ∗

1

2(µ∗ − µa)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate of
the variance in the exploration bonus (e.g., [Audibert&al ’07])
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The Kullback-Leibler UCB Algorithm

The KL-UCB algorithm

Parameters : An operator ΠF : M1(S)→ F ; a non-decreasing
function f : N→ R
Initialization : Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

• compute for each arm a the quantity

Ua(t) = sup

{
E(ν) : ν ∈ F and KL

(
ΠF
(
ν̂a(t)

)
, ν
)
≤ f(t)

Na(t)

}
• pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



The Kullback-Leibler UCB Algorithm

Sketch of analysis
• For every sub-optimal arm a,

{At+1 = a} ⊆
{
µ? ≥ Ua?(t)

}
∪
{
µ? < Ua(t) and At+1 = a

}
,

• Choose f(t) such that for all a, P
(
µa < Ua(t)

)
≤ 1/t

•
{
µ? < Ua(t)

}
=
{
ν̂a,Na(t) ∈ Cµ?, f(t)/Na(t)

}
where for µ ∈ R and γ > 0,

Cµ,γ ⊆
{
ν ∈M1(S) : Kinf

(
ΠF (ν), µ

)
≤ γ

}
κa(γ)

µ∗

γ

ν∗

δ0 δ1

νa

Cµ∗,γ

δ 1
2

Kinf(νa, µ
⋆)

ν

• This event is typical iff Na(t) ≤ f(T )/Kinf(νa, µ
?) :∑

n>
f(T )

Kinf (νa,µ
?)

P
({
ν̂a,n ∈ Cµ?, f(t)/n

})
= o
(

log(T )
)



The Kullback-Leibler UCB Algorithm

Parametric setting : Exponential Families
Assume that Fa = canonical one-dimensional exponential
family, i.e. such that the pdf of the rewards is given by

pθa(x) = exp
(
xθa − b(θa) + c(x)

)
, 1 ≤ a ≤ K

for a parameter θ ∈ RK , expectation µa = ḃ(θa)
The KL-UCB si simply :

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
For instance,

for Bernoulli rewards :

dber(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

for exponential rewards pθa(x) = θae−θax :

dexp(u, v) = u− v + u log
u

v

The analysis is generic and yields a non-asymptotic regret
bound optimal in the sense of Lai and Robbins.



The Kullback-Leibler UCB Algorithm

The kl-UCB algorithm

Parameters : F parameterized by the expectation µ ∈ I ⊂ R with
divergence d, a non-decreasing function f : N→ R
Initialization : Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

• compute for each arm a the quantity

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
• pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



The Kullback-Leibler UCB Algorithm

The kl Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0

and if p̂s = (Z1 + · · · + Zs)/s,
then

Pθ0 (p̂s ≤ x) ≤ exp (−s kl(x, θ0))

0

kl(⋅,θ)

θ
0

x

−log(α)/s

In other words, if α = exp (−s kl(x, θ0)) :

Pθ0 (p̂s ≤ x) = Pθ0
(

kl(p̂s, θ0) ≤ − log(α)

s
, p̂s < θ0

)
≤ α

=⇒ upper confidence bound for p at risk α :

us = sup
{
θ > p̂s : kl(p̂s, θ) ≤ −

log(α)

s

}



The Kullback-Leibler UCB Algorithm

The kl Upper Confidence Bound in Picture
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kl(⋅,θ)

p
s

kl(p
s
,⋅)

u
s

−log(α)/s
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Pθ0 (p̂s ≤ x) = Pθ0
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{
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s

}



The Kullback-Leibler UCB Algorithm

Key Tool : Deviation Inequality for Self-Normalized Sums

Problem : random number of summands

Solution : peeling trick (as in the proof of the LIL)

Theorem For all ε > 1,

P
(
µa > µ̂a(t) and Na(t) d

(
µ̂a(t), µa

)
≥ ε
)
≤ e
⌈
ε log(t)

⌉
e−ε .

Thus,
P
(
Ua(t) < µa

)
≤ e
⌈
f(t) log(t)

⌉
e−f(t)



The Kullback-Leibler UCB Algorithm

Regret bound

Theorem : Assume that all arms belong to a canonical, regular,
exponential family F = {νθ : θ ∈ Θ} of probability distributions
indexed by its natural parameter space Θ ⊆ R. Then, with the
choice f(t) = log(t) + 3 log log(t) for t ≥ 3, the number of draws
of any suboptimal arm a is upper bounded for any horizon T ≥ 3 as

E [Na(T )] ≤ log(T )

d (µa, µ?)
+2

√√√√2πσ2
a,?

(
d′(µa, µ?)

)2(
d(µa, µ?)

)3 √
log(T ) + 3 log(log(T ))

+

(
4e+

3

d(µa, µ?)

)
log(log(T )) + 8σ2

a,?

(
d′(µa, µ

?)

d(µa, µ?)

)2

+ 6 ,

where σ2
a,? = max

{
Var(νθ) : µa ≤ E(νθ) ≤ µ?

}
and where

d′( · , µ?) denotes the derivative of d( · , µ?).



The Kullback-Leibler UCB Algorithm

Results : Two-Arm Scenario
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Figure: Performance of various algorithms when θ = (0.9, 0.8). Left :
average number of draws of the sub-optimal arm as a function of time.
Right : box-and-whiskers plot for the number of draws of the sub-optimal
arm at time T = 5, 000. Results based on 50, 000 independent
replications



The Kullback-Leibler UCB Algorithm

Results : Ten-Arm Scenario with Low Rewards
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Figure: Average regret as a function of time when
θ = (0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01). Red line : Lai
& Robbins lower bound ; thick line : average regret ; shaded regions :
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Non-parametric setting : Empirical Likelihood

Non-parametric setting

Rewards are only assumed to be bounded (say in [0, 1])

Need for an estimation procedure

with non-asymptotic guarantees
efficient in the sense of Stein / Bahadur

=⇒ Idea 1 : use dber (Hoeffding)

=⇒ Idea 2 : Empirical Likelihood [Owen ’01]

Not so good idea : use Bernstein / Bennett



Non-parametric setting : Empirical Likelihood

First idea : use dber

Idea : rescale to [0, 1], and take the divergence dber.

−→ because Bernoulli distributions maximize deviations among
bounded variables with given expectation

This fact (well-known for the variance) also holds for all
exponential moments and thus for Cramer-type deviation bounds :

Lemma (Hoeffding ’63)

Let X denote a random variable such that 0 ≤ X ≤ 1 and denote
by µ = E[X] its expectation. Then, for all λ ∈ R,

E [exp(λX)] ≤ 1− µ+ µ exp(λ) .



Non-parametric setting : Empirical Likelihood

Regret Bound for kl-UCB

Theorem

With the divergence dber, for all T > 3,

E
[
Na(T )

]
≤ log(T )

dber(µa, µ?)
+

√
2π log

(
µ?(1−µa)
µa(1−µ?)

)
(
dber(µa, µ?)

)3/2 √
log(T ) + 3 log

(
log(T )

)

+

(
4e+

3

dber(µa, µ?)

)
log
(
log(T )

)
+

2

(
log
(
µ?(1−µa)
µa(1−µ?)

))2

(dber(µa, µ?))
2 + 6 .

kl-UCB satisfies an improved logarithmic finite-time regret
bound

Besides, it is asymptotically optimal in the Bernoulli case



Non-parametric setting : Empirical Likelihood

Comparison to UCB
KL-UCB addresses exactly the same problem as UCB, with the
same generality, but it has always a smaller regret as can be seen
from Pinsker’s inequality

dber(µ1, µ2) ≥ 2(µ1 − µ2)2
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Non-parametric setting : Empirical Likelihood

Idea 2 : Empirical Likelihood

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)

)
and KL(ν̂n, ν

′) ≤ ε
}

or, rather, modified Empirical Likelihood :

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)∪{1}

)
and KL(ν̂n, ν

′) ≤ ε
}

µ̂n

Un

=⇒ Linear algorithm for computing U(ν̂n, ε).



Non-parametric setting : Empirical Likelihood

Coverage properties of the modified EL confidence bound

Proposition : Let ν0 ∈M1([0, 1]) with E(ν0) ∈ (0, 1) and let
X1, . . . , Xn be independent random variables with common
distribution ν0 ∈M1

(
[0, 1]

)
, not necessarily with finite support.

Then, for all ε > 0,

P
{
U(ν̂n, ε) ≤ E(ν0)

}
≤ P

{
Kinf

(
ν̂n, E(ν0)

)
≥ ε
}

≤ e(n+ 2) exp(−nε) .

Remark : For {0, 1}–valued observations, it is readily seen that
U(ν̂n, ε) boils down to the upper-confidence bound above.
=⇒ This proposition is at least not always optimal : the presence

of the factor n in front of the exponential exp(−nε) term is
questionable.



Non-parametric setting : Empirical Likelihood

Idea of the proof

• [Owen ’01] For all ν ∈ F and all µ ∈ (0, 1),

Kinf(ν, µ) = max
λ∈[0,1]

Eν
[
hλ,µ(X)

]
,

where hλ,µ is the mapping

hλ,µ : x ∈ [0, 1] 7−→ log

(
1− λ x− µ

1− µ

)
.

• [Honda&Takemura ’11] Grid of λ :

sup
λ∈[0,1]

1

n

n∑
k=1

log

(
1− λ Zk − µ

1− µ

)
≤ γ+ max

λ′∈Λγ

1

n

n∑
k=1

log

(
1− λ′ Zk − µ

1− µ

)
and union bound.



Non-parametric setting : Empirical Likelihood

Regret bound

Theorem : Assume that F is the set of finitely supported
probability distributions over [0, 1], that µa > 0 for all arms a and
that µ? < 1. There exists a constant M(νa, µ

?) > 0 only
depending on νa and µ? such that, with the choice
f(t) = log(t) + log

(
log(t)

)
for t ≥ 2, for all T ≥ 3 :

E
[
Na(T )

]
≤ log(T )

Kinf

(
νa, µ?

) +
36

(µ?)4

(
log(T )

)4/5
log
(

log(T )
)

+

(
72

(µ?)4
+

2µ?

(1− µ?)Kinf

(
νa, µ?

)2
)(

log(T )
)4/5

+
(1− µ?)2M(νa, µ

?)

2(µ?)2

(
log(T )

)2/5
+

log
(
log(T )

)
Kinf

(
νa, µ?

) +
2µ?

(1− µ?)Kinf

(
νa, µ?

)2 + 4 .



Non-parametric setting : Empirical Likelihood

Example : truncated Poisson rewards

for each arm 1 ≤ a ≤ 6 is associated with νa, a Poisson
distribution with expectation (2 + a)/4, truncated at 10.

N = 10, 000 Monte-Carlo replications on an horizon of
T = 20, 000 steps.
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Non-parametric setting : Empirical Likelihood

Example : truncated Exponential rewards

exponential rewards with respective parameters 1/5, 1/4, 1/3,
1/2 and 1, truncated at xmax = 10 ;

kl-UCB uses the divergence d(x, y) = x/y − 1− log(x/y)
prescribed for genuine exponential distributions, but it ignores
the fact that the rewards are truncated.
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Non-parametric setting : Empirical Likelihood

Conclusion

UCB algorithms = versatile tool for dynamic allocation
problems

The bounds must be as tight as possible =⇒ direct
consequences on the regret

Non-asymptotic Empirical Likelihood Estimation procedures

Interest of intermediate-complexity classes of distributions
(between one-parameter and finitely supported)

Need for better bounds on EL-based confidence intervals
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