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Machine Learning

Supervised Learning : given observations (Xt ,Yt )t where
Yt = f (Xt ) + εt and f is the unknown target function, estimate f in order
to make predictions

Un-supervised Learning : given observations (Xt )t , find structure in
this data (e.g., classes), estimate density, ...

Reinforcement Learning : the data arrives progressively, and
decisions must be taken at the same time



3 / 45 Telecom ParisTech Aurélien Garivier

General framework of RL

Agent Envir.

Reward Rt

Action At

Observation St

exploration
p

exploitation
dilemma

Agent = Actor, not spectator [Sutton ’92; Bertsekas ’95]
At each timestep t , he chooses an action At ∈ A depending on
past actions and rewards (Ss,Rs)s<t in order to maximize the
cumulative reward

∑n
t=1 Rt

Examples: clinical trial, robotic, advertisement, finance, mobile
networks, . . .



4 / 45 Telecom ParisTech Aurélien Garivier

History

Emerged at the end of the 1970’s from the meeting of
Computational neuroscience (Hebbs’ rule, Rescorla and Wagner
models)
Experimental psychology, models of animal behavior (
reinforcement of behaviors leading to satisfaction), behaviorists
Adequate mathematical framework: Dynamic Programming by
Bellman (50’, 60’), optimal control



5 / 45 Telecom ParisTech Aurélien Garivier

Experimental Psychology

Law of effects (Thorndike, 1911)

Of several responses made to the same situation, those
which are accompanied or closely followed by satisfaction
to the animal will, other things being equal, be more firmly
connected with the situation, so that, when it recurs, they
will be more likely to recur; those which are accompanied
or closely followed by discomfort to the animal will, other
things being equal, have their connections with that situ-
ation weakened, so that, when it recurs, they will be less
likely to occur. The greater the satisfaction or discomfort,
the greater the strengthening or weakening of the connec-
tion
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Example: inverted pendulum

The learing algorithm used by Martin is Neural Fitted Q iteration
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Applications 1/2

TD-Gammon. [Tesauro 1992-1995]: backgammon player, best in
the world
KnightCap [Baxter et al. 1998]: chess player (’2500 ELO)
Computer poker (computates the Nash Equilibrium with
adversarial bandits), [Alberta, 2008]
Computer go [Mogo, 2006]
Robotic: acrobots, ... [Schaal et Atkeson, 1994]
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Applications 2/2

Command of a lift bunch [Crites et Barto, 1996]
Internet packets routing [Boyan et Littman, 1993]
Task ordering [Zhang et Dietterich, 1995]
Machine management [Mahadevan et al., 1997]
Social Networks [Acemoglu et Ozdaglar, 2010]
Yield Management, pricing of plane tickets [Gosavi 2010]
Load prevision for electrical prevision [S. Meynn, 2010]
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Wishful Thinking

Optimistic algorithms: [Lai&Robins ’85; Agrawal ’95]

Make as if you were in the environment that is most favorable to you,
among all those for which the past observations are sufficiently likely

First introduced for bandit problems, recently generalized to general
RL problems
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Properties

Somewhat unexpectedly, optimistic methods are:
relevant in very different frameworks
efficient
robust
simple to implement

We show two examples now
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Outline

What is Reinforcement Learning?

Bandits problems
The model
An Optimistic Method : UCB
Optimality

MDP : Markov Decision Processes
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RL Formulations

Constant Environnement
Conditionnally on the actions
(At )1≤t≤n, the rewards (Rt )1≤t≤n are
i.i.d. with expected values µAt

Goal : choose action a∗ with highest expected reward :

µa∗ = max
a∈A

µa

Measure of performance : cumulated regret

Regret(n) =
n∑

t=1

µa∗ − µAt
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Upper Confidence Bound (UCB)

Optimistic algorithm : [Lai&Robins ’85; Agrawal ’95]

Make as if you were in the environment that is most favorable to
you, among all those for which the past observations are

sufficiently likely

Here : UCB (Upper Confidence Bound) = compute an
upper-bound of the expected reward for each action, and choose
the most promizing one [Auer&al ’02; Audibert&al ’07]
Advantage : easily interpretable and acceptable behavior

⇒ the regret grows only a C log(n), where C depends on

∆ = min
µa<µa∗

µa∗ − µa
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UCB in action

DÃ c©but
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UCB in action

DÃ c©but
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Proof

UCB tends to equalize the upper bounds of the confidence intervals

We upper-bound the number of times a sub-optimal arm is chosen

We work conditionnally on the confidence intervals

A weak arm cannot have an UCB higher than a good arm very often



18 / 45 Telecom ParisTech Aurélien Garivier
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Lai&Robbins Lower Bound

Denote KL(pj |p∗) the Kullback-Leibler between the reward distributions
of the j-th arm and the optimal arm

Theorem: whatever strategy that always plays ”sufficiently often” the
best arm, the number of times a sub-optimal arm j is played is
bounded in expectation as:

E[T j(n)] ≥ log(n)

KL(pj |p∗)

Corollary : any strategy as a regret at least C log(n), where C depends
on the arms distributions
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Minimax Lower Bound

Theorem: For n and N sufficiently large, there is a bandit problem for
which the regret of any strategy is at least

1
20

√
Nn

Remark : the maximal regret of UCB can be upper-bounded as

C
√

n log(n)

for a constant C that does not depend on the problem.
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The model 1/2

The state of the system evolves as a Markov Chain controlled by the
actions:

St+1 ∼ P(·; St ,At ) et Rt = r(St ,At ) + εt

Exemple / Benchmark : RiverSwim [Strehl&Littman’08]

0.4 0.6 0.6 0.6 0.6 0.6

0.6 0.35 0.350.350.35

0.05 0.05 0.05 0.05 0.4

1 2 3 4 5 6 R=10000R=5

Action 2

Action 1

courant
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The model 2/2

[Bellman 1957, Howard 1960, Dubins et Savage 1965, Fleming et
Rishel 1975, Bertsekas 1987, Puterman 1994]

MDP = (S,A,p, r), where:
S = state space (finite, countable, uncountable)
A action space (finite, countable, uncountable)
p(y |x ,a) : transition probability from state x ∈ S to y ∈ S when
action a is chosen:

p(y |x ,a) = P(Xt + 1 = y |Xt = x ,At = a)

r(x ,a, y): reward obtained during the transition from state x to y ,
as action a has been chosen
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Our Goal: Model-Based Online Reinforce-
ment Learning

Assuming a finite
state-space finite
action-space Markov
Decision Process
(MDP)

Agent Envir.

Reward Rt

Action At

Observation St

with unknown
Transition P(s′; s,a) = P(St+1 = s′|St = s,At = a)

Reward r(s,a) = E(Rt |St = s,At = a)

Implement an on-policy strategy for controlling the agent
Doing “almost as good” (in terms of cumulated rewards) as an
oracle agent that knows the optimal policy
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Policy

Politique π = decision rule, determines which action is chosen

Two types of policies:
deterministic : π : S → A

π(x) = action chosen in state x .
stochastic : π : S →M1(A)

π(a|x) = probability of choosing action a in state x .
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Policy Value
Finite horizon:

Vπ(x , t) = Eπ

[
T∑

s=t

r(Xs, π(Xs))|Xt = x ;

]

Infinite horizon with discounted criterion:

Vπ(x) = Eπ

[ ∞∑
t=0

γt r(Xs, π(Xs))|X0 = x ;

]
where γ ∈]0,1[ is a discount factor.

Infinite horizon with average criterion:

Vπ(x) = lim
T→∞

1
T

Eπ

[
T−1∑
t=0

r(Xs, π(Xs))|X0 = x ;

]



27 / 45 Telecom ParisTech Aurélien Garivier

Optimal policy

Goal: find policy π : S→ A with highest expected cumulated
reward :

ρπ = lim
n→∞

1
n
Eπ
[

n∑
t=0

Rt

]
Even if the parameters of the MDP are known, finding an optimal
policy is not completely obvious: it is called the planning problem
⇒ Dynamic Programming
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Upper Confidence Reinforcement learning

In MDPs, [Auer et al, 07–10; Tewari & Bartlett, 07–08] propose to replace
the upper confidence bound of UCB by an optimistic MDP (P∗, r∗)
whose average reward ρ∗ = lim n−1∑n−1

t=0 Eπ∗(Rt ) and bias vector
h∗(s) satisfy an extended version of Bellman’s optimality equations

∀s, h∗(s) + ρ∗ = max
P,r∈CP

t ×Cr
t

max
a∈A

(
r(s,a) +

∑
s′∈S

P(s′; s,a)h∗(s′)

)

∀s, π∗(s) = argmax
a∈A

(
r∗(s,a) +

∑
s′∈S

P∗(s′; s,a)h∗(s′)

)

where CR
t and Cr

t are confidence sets for P and r , respectively
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Extended Value Iteration

The bias vector h∗ is determined (up to a constant) as the limit of
extended value iterations

While span(Vk+1 − Vk ) > ε,

∀s , Vk+1(s) = max
a∈A

(
max
r∈Cr

t

r(s,a) + max
P∈CP

t

∑
s′∈S

P(s′; s,a)Vk (s′)

)
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Issues Not Discussed Here

Influence of the termination tolerance ε Ignored in our work, analyzed
in [Auer et al, 07–10]

Convergence of extended value iterations Considered (for L1

neighborhoods) by [Auer et al, 07–10; Tewari & Bartlett,
07–08] and for KL neighborhoods in the discounted case
by [Nilim & EL Ghaoui, 05]

Persistence of policies In MDPs it is not possible to continuously
change the policy as in MABs. We used the episodic
construction of [Auer et al, 07–10] in which the optimistic
policy is recomputed at times that approximately follow a
geometric progression with ratio 2
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Definition of the Confidence Set

[Auer et al, 07–10; Tewari & Bartlett, 07–08] consider rectangular
confidence sets of the form

∀(s,a),
∥∥∥P̂t (.; s,a)− P(.; s,a)

∥∥∥
1
≤ δP

∀(s,a), |r̂t (s,a)− r(s,a)| ≤ δR

where P̂t (s′; s,a) = Nt (s,a)−1∑t−1
i=0 1{Si+1 = s′,Si = s,Ai = a} and

r̂t (s,a) = Nt (s,a)−1∑t−1
i=0 Ri1{Ai = a} are the empirical estimates of P

and r at time t

The probabilities of violating the confidence sets are controlled by the
Hoeffding inequality for r̂t (s,a) and by the bound of [Weissman et al , 03]
for P̂(.; s,a)
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How Does L1 Extended Value Iteration
Operates?

For each state and action pair, one
must solve a problem of the form

q∗ = argmax
q:‖p−q‖1≤δ

q′V

where p is the empirical estimate of
the transition probabilities and V is the
current estimate of the bias vector

inflate pi (if possible) by a total amount of δ for indices i that
maximize Vi

reduce pi (as much as needed) for indices i where Vi is the
smallest

⇒ easy both to implement an interpret, but...
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Outline

What is Reinforcement Learning?

Bandits problems

MDP : Markov Decision Processes
Markov Decision Processes
Upper Confidence Reinforcement Learning (UCRL)
Kullback-Leibler URCL (KL-UCRL)
Discussion



35 / 45 Telecom ParisTech Aurélien Garivier

Our Proposal: Kullback-Leibler URCL
The role played by the KL divergence in large deviations of multinomial
experiments suggests that the proper confidence neighborhoods are

rather than

⇒ Use KL rather than L1 constraints!
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Solving KL-Extended Value Maximization

For each state-action pair, one must solve a
linear program under KL constraint

q∗ = argmax
q:KL(p;q)≤δ

q′V

The solution is given by an explicit non-linear transformation of p which
is fully controlled by the solution ν to the equation f (ν) = δ, where f is
the one-dimensional decreasing stricly convex function on
(maxi:pi>0 Vi ,∞) defined by

f (ν) =
∑

i

pi log(ν − Vi) + log

(∑
i

pi

ν − Vi

)
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KL-LP’s Rule I
“Bigger rewards gets more likely”
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KL-LP’s Rule II
“You can’t get to heaven when δ is too
small”
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Regret Bound

Adapting the proof of [Auer et al, 07–10] it is possible to show that
KL-UCRL achieves logarithmic regret in communicating MDPs (as
does UCRL)
Main arguments of the proof

Pinsker’s inequality ‖p − q‖1 ≤
√

2KL(p; q)

Bound of [Garivier & Leonardi, 10]

P
(
∀t ≤ n, KL(p̂t ; p) >

δ

t

)
≤ 2e(δ log(n) + |S|)e−δ/|S|

�

In simulations however (benchmark and random sparsely connected
environments), KL-UCRL performs significantly better than UCRL
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Discussion: Continuity of the optimistic MDP

L1 Neighborhoods KL Neighborhoods
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Discussion: Compatibility with observed transitions

L1 Neighborhoods KL Neighborhoods
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Discussion: Tradeoff between the attraction to-

wards the best state and the statistical evidence that

it may not be reachable from all states

L1 Neighborhoods KL Neighborhoods
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Simulations : RiverSwim
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Figure: Regrets for UCRL-2 et KL-UCRL.
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Thank you!
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