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Framework

Given an input x ∈ X , a (complex)
codes returns

F(x,U) = f(x) + η

where U is an independent U [0, 1] r.v.
and E[η] = 0. Possibly, η = 0.

Source: freesourcecode.net.

Goal: maximize f

using a sequential choice of inputs.

Examples:

• Numerical Dosimetry (foetus exposure to Radio Frequency
Electromagnetic Fields) - Jalla et al., Mascotnum 2013

• Traffic Optimization (find the shortest path from A to B)
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Sequential Optimizing Without
Noise: Some Ideas



Methods not mentionned here

Gradient descent
Here: search for global
optimum, no convexity
hypothesis

Source: www.d.umn.edu/̃deoka001/

Simulated annealing
slowly lower the temper-
ature of a hot mate-
rial, minimizing the sys-
tem energy

Source: freesourcecode.net

Genetic Algorithms, Cutting Plane methods, Sum of Squares,... 5



The Branch-and-Bound Paradigm [Munos, 2014, de Freitas
et al., 2012]

Also used for discrete and combinatorial optimization problems

• Branching = hierarchical partitioning
(recursive splitting) of X

• Each cell C has a representative xC ∈ C
• Assumption: possibility to compute an
upper-bound of f on each cell (using
the regularity of f)

• Start with 1 active cell = X and x̂ = xX
• At each iteration:

• Pick an active cell C
• f(xC) > f(x̂), update x̂ := xC
• Split C into sub-cells and desactivate C
• Set all sub-cells with upper-bounds
larger that f(x̂) to be active

Source: veendeta.wordpress.com

Source: de Freitas et al. [2012]
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The SOO algorithm Munos [2011]

SOO = Simultaneous Optimistic Optimization

Requires a multi-scale decomposition of X :
∀h ≥ 0,

X =

Nh∪
i=1

Ch,i .

Ex: binary splitting.
Source: veendeta.wordpress.com

SOO
FOR r=1..R

FOR every non-empty depth d
SPLIT the cell Ch,i of depth d with highest f(x)

No need to know the (possibly anisotropic) regularity of f !
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SOO: an Example

f(x, y) = (x− c1)2 − 0.05|y− c2|

n = 10
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SOO: an Example

f(x, y) = (x− c1)2 − 0.05|y− c2|

n = 20
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SOO: an Example

f(x, y) = (x− c1)2 − 0.05|y− c2|

n = 30
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SOO: an Example

f(x, y) = (x− c1)2 − 0.05|y− c2|

n = 50
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SOO: an Example

f(x, y) = (x− c1)2 − 0.05|y− c2|

n = 90
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SOO: an Example

f(x, y) = (x− c1)2 − 0.05|y− c2|

n = 120
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Analysis: Near-Optimality Dimension

For every ϵ > 0, let

Xϵ =
{
x ∈ X : f(x) ≥ f∗ − ϵ

}
.

Definition: Near-Optimality Dimension

The near-optimality dimension of f is the smallest d ≥ 0 such that
there exists C > 0 for which, for all ϵ > 0, the maximal number of
disjoint balls of radius ϵ with center in Xϵ is less than Cϵ−d.
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Speed of convergence of SOO [Valko et al., 2013]

Theorem: If δ(h) = cγh and if the near-optimality dimension of f is
d = 0, then

f∗ − f(x̂t) = O
(
γt
)
.

If the near-optimality dimension of f is d > 0, then

f∗ − f(x̂t) = O
(

1
t1/d

)
.

Idea of the proof:
For every scale h let

δ(h) = max
i

sup
x,x′∈Ch,i

f(x)− f(x′) and Ih =
{
Ch,i : f(xh,i)+δ(h) ≥ f∗

}
At every level h, the number of cells splitted before the one
containing x∗ is at most |Ih| ≤ Cδ(h)−d.
Thus, after t splits, the algorithm has splitted a cell containing x∗ of
level at least h∗t such that C

∑h∗t
l=0 δ(l)−d ≥ t.
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Kriging: Gaussian Process Regres-
sion



Kriging

Bayesian model: f is drawn from a random distribution.

Gaussian Process: for every t and every x1, . . . , xt ∈ X ,
f(x1)
f(x2)
...

f(xt)

 ∼ N




0
0
...
0

 , Kt =


k(x1, x1) k(x1, x2) . . . k(x1, xt)
k(x2, x1) k(x2, x2) . . . k(x2, xt)

...
...

...
...

k(xt, x1) k(xt, x2) . . . k(xt, xt)




where k : X × X → R is a covariance function.

Possibility to incorporate Gaussian noise: Y⃗t = f⃗t + ϵ⃗t.

12



Why kriging?

Conditionally on Ft, f is still a Gaussian process:

L
(
f|Ft

)
= GP

(
µt : u 7→ kt(u)TK−1t Y⃗t, kt : u, v 7→ k(u, v)− k⃗t(u)TK−1t k⃗t(v)

)

where

k⃗t(u) =


k(u, x1)
k(u, x2)

...
k(u, xt)

 .

Source: wikipedia
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The GP-UCB Algorithm [Srinivas et al., 2012]

• Initialization: space-filling (LHS)
• Iteration t:

• For every x ∈ X , compute
u(x) = quantile of f(x)
conditionally on Ft−1 of level
1− 1/t

• Choose Xt = argmaxx∈X u(x)
• Observe Yt = F(Xt,Ut) Source: de Freitas et al. [2012]

Source: Srinivas et al. [2012]
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GP-UCB: Convergence

Two kinds of results:

• If f is really drawn from the Gaussian Process: for the Gaussian
kernel the cumulated regret is bounded as

E

[ T∑
t=1

f∗ − f(Xt)
]
= O

(√
T
(
log(T)

) d+1
2
)
.

• If f has a small norm in the RKHS corresponding to the kernel k
(= regularity condition), similar results

Also Expected Improvement (similar idea, slightly different criterion),
see Vazquez and Bect [2010].
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GP-UCB is not limited to smooth functions: BrownUCB

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

res$x

re
s$

f

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●
●●●●●●●●
●●
●
●●
●
●●
●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

16



Optimizing in the presence of
noise



Sequential Strategies

A strategy is a triple:

• Sampling rule: Xt is Ft−1-measurable, where

Yt = F(Xt,Ut) and Ft = σ(X1, Y1, . . . , Xt, Yt) .

• Stopping rule: the number of observations τ is a stopping time
wrt (Ft)t.

• Decision rule: x̂ is Fτ -measurable.
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Objectives

At least three relevant goals:

• Cumulated regret: τ = T, maximize E
[∑T

t=1 Yt
]

ex: clinical study protocol
• Simple regret: τ = T, minimize f∗ − E

[
f(x̂T)

]
• PAC analysis: among (ϵ, δ)-Probably Approximately Correct
methods satisfying

P
(
f(x̂) ≥ f∗ − ϵ

)
≥ 1− δ ,

minimize the sample complexity E[τ ].

19



The Bandit Approach



Advertisement: Perchet Course

In this workshop, 2 introductory lectures by Vianney Perchet:

• Lecture 1 (thursay 9:00):
the stochastic case
(as above)

• Lecture 2 (friday 9:00):
adversarial case
(game-theoretic/robust
approach)

Here: optimization point of view.
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Simplistic case: X finite

• X = {1, . . . , K}
• f ∈ [0, 1]K, no structure
• F(x,U) ∼ B(fx)
• (ϵ, δ)−PAC analysis
• ϵ = 0.

Ex: extreme clinical trials in dictatorship.

Not so simple!
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Racing Algorithms: Successive Elimination
[Even-Dar et al., 2006, Kaufmann and Kalyanakrishnan, 2013]

• At start, all arms are active;
• Then, repeatedly cycle thru active arms until only one arm is
still active

• At the end of a cycle, eliminate arms with statistical evidence of
sub-optimality: desactivate x if

max f̂(t)− f̂x(t) ≥ 2
√
log(Kt2/δ)

t
Theorem: Sucessive Elimination is (0, δ)− PAC and, with probability
at least 1− δ,

τδ = O

∑
x̸=x∗

log K
δ∆x

∆2
x


where for all x ∈ {1, . . . , K}, ∆x = f∗ − f(x).
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The LUCB Algorithm
[Kaufmann and Kalyanakrishnan, 2013]

See also Kalyanakrishnan et al. [2012], Gabillon et al. [2012], Jamieson et al. [2014].

• Maintain, at every step, a lower- and an
upper-confidence bound for each arm;

• Successively draw the best empirical
arm and the challenger with highest
upper-confidence bound;

• Stop when, for some x ∈ X , the lower
bound on fx is by ϵ of the highest
upper-bound of the other arms.

Theorem: The sample complexity E[τ ] of LUCB (with adequate
confidence bounds) is upper-bounded by O

(
Hϵ log(Hϵ/δ)

)
, where

Hϵ =
∑
x

1
(∆x ∨ ϵ/2)2 ,

∆x∗ = f(x∗)−maxx̸=x∗ f(x) and, for x ̸= x∗, ∆x = f(x∗)− f(x). 24



Lower bound [Garivier and Kaufmann, 2016]

Let ΣK = {ω ∈ Rk
+ : ω1 + · · ·+ ωK = 1} and

A(f) := {g ∈ [0, 1]K : argmax f ̸= argmaxg} ,

Theorem: For any δ-PAC strategy and any function f ∈ [0, 1]K,

E[τδ] ≥ T∗(f) kl(δ, 1− δ),

where

T∗(f)−1 := sup
w∈ΣK

inf
g∈A(f)

K∑
x=1

wx kl(fx,gx)

and kl(x, y) := x log(x/y) + (1− x) log((1− x)/(1− y)).

Note: kl(δ, 1− δ) ≈ log(1/δ) when δ → 0.
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About the Computation of T∗(f) and w∗

The proof shows that the maximizer w∗(f) of

sup
w∈ΣK

inf
g∈A(f)

K∑
x=1

wxd(fx,gx)

is the optimal proportion of arm draws.

Introducing

Iα(y, z) := αkl
(
y, αy+ (1− α)z

)
+ (1− α)kl

(
z, αy+ (1− α)z

)
,

one can see that

T∗(f)−1 = sup
w∈ΣK

min
x̸=1

(w1 + wx)I w1
w1+wx

(f1, fx) .

T∗(f) and w∗(f) can be computed by a succession of scalar equation
resolutions, and one proves that:

1. For all f ∈ [0, 1]K and all 1 ≤ x ≤ K, w∗
x (f) > 0;

2. w∗(f) is continuous in every f;
3. If f1 > f2 ≥ · · · ≥ fK, one has w∗

2 (f) ≥ · · · ≥ w∗
K(f).
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Tracking Strategy: Sampling Rule [Garivier and Kaufmann, 2016]

Let f̂(s) be the ML-estimator of f based on observations Y1, . . . , Ys.

For every ϵ ∈ (0, 1/K], let wϵ(f) be a L∞ projection of w∗(f) on
Σϵ
K =

{
(w1, . . . ,wK) ∈ [ϵ, 1] : w1 + · · ·+ wK = 1

}
. Let ϵt = (K2 + t)−1/2/2

and

Xt+1 ∈ argmax
1≤x≤K

t∑
s=0

wϵs
x (̂f(s))− 1{Xs = x} ,

Then for all t ≥ 1 and x ∈ {1, . . . , K},
Nx(t) =

∑t
s=0 1{Xs = x}(t) ≥

√
t+ K2 − 2K and

max
1≤x≤K

∣∣∣∣∣Nx(t)−
t−1∑
s=0

w∗
x (̂f(s))

∣∣∣∣∣ ≤ K(1+
√
t) .
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Tracking Strategy: Stopping Rule [Garivier and Kaufmann, 2016]

For x ∈ {0, 1}∗ let pθ(x) = θ
∑

x(1− θ)
∑

(1−x).

Chernoff’s Stopping Rule (see Chernoff [1959]): for 1 ≤ x, z ≤ K let

Zx,z(t) = log
maxf′x≥f′z pf′x

(
XxNx(t)

)
pf′z
(
XzNz(t)

)
maxf′x≤f′z pf′x

(
XxNx(t)

)
pf′z
(
XzNz(t)

)
= Nx(t)d

(̂
fx(t), f̂x,z(t)

)
+ Nz(t)d

(̂
fz(t), f̂x,z(t)

)
if f̂x(t) ≥ f̂z(t), and Zx,z(t) = −Zz,x(t).

The stopping rule is defined by:

τδ = inf
{
t ≥ 1 : Z(t) := max

x∈{1,...,K}
min

z∈{1,...,K}\{x}
Zx,z(t) > β(t, δ)

}
where β(t, δ) is the threshold to be tuned.
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Optimality Result

Proposition: For every δ ∈]0, 1[, whatever the sampling strategy,
Chernoff’s stopping rule with

β(t, δ) = log
(
2t(K− 1)

δ

)
ensures that for all f ∈ [0, 1]K, P (τδ < ∞, x̂τδ ̸= x∗) ≤ δ.

Theorem: With the sampling rule and the stopping rule given above,
τδ < ∞ a.s. and

P
(
lim sup

δ→0

τδ
log(1/δ) ≤ T∗(f)

)
= 1.
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Bandit Algorithms for the Contin-
uous Case



Kriging: GP-UCB Srinivas et al. [2012]

If f ∼ GP(0, k) and if for all t ≥ 1

• Yt = f(Xt) + ϵt

• the noise ϵt is Gaussian

then Y⃗t is still a Gaussian vector.

=⇒ the covariance kernel is modified, but one can still compute
E[f(x)|Ft] for every x, and apply the GP-UCB algorithm!

Works well in pratice, but limited guarantees.
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Extensions to Continuous Spaces [Munos, 2014]

HOO maintains, for every cell Ch,i, two upper-
confidence bounds (UCB) on maxx∈Ch,i f(x):
Bh,i based on all observations on the cell, and
Uh,i = min{Bh,i,Uh+1,j} computed from the
children j of Ch,i.

Source: veendeta.wordpress.com

The HOO Algorithm [Bubeck et al., 2011]
FOR t=1..T

GO DOWN the tree picking each time the node
with highest Ui,h until a leave is met

PICK a point at random in leave cell
UPDATE Uh,i and Bh,i of all nodes in the path

Theorem: If f has near-optimality dimension d, then cumulated
regret of HOO is upper-bounded as

RT = O(T(d+1)/(d+2) log1/(d+2)(T)) . 32



The HOO Algorithm

Source: aresearch.wordpress.com
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The StoSOO Algorithm of Valko et al. [2013]

Stochastic Simulataneous Optimistic Optimization:
instead of f(x), use an upper-confidence bound.

StoSOO
FOR r=1..R

FOR every non-empty depth d
PICK the cell Ch,i of depth d
with highest upper-confidence bound on f(xCh,i)
IF xCh,i has been evaluated T/ log3(T) times

THEN SPLIT it
ELSE evaluate at xCh,i

Theorem: If the near-optimality dimension of f is d = 0, then

E[f∗ − f(x̂T)] = O
(
log2(T)√

T

)
.
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Conclusion

Still a lot to be done, from both ends:

• Kriging: Powerful and versatile algorithms, but with very low
guarantees.

• Optimal bandit algorithms for very limited settings, to be
extended!

• Adaptivity to the problem difficulty: function regularity,
partitioning scheme.
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Questions?
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