
SPADRO kick-off meeting:
Empirical Likelihood for Optimistic Algorithms in

Dynamic Resource Allocation
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Clinical Trials

Idealized situation of clinical trials :

patients visit you one after another for a given disease

you prescribe one of the (say) 5 treatments available

the treatments are not equally efficient

you do not know which one is the best, you observe the effect
of the prescribed treatment on each patient

⇒ What do you do ?

You must choose each prescription using only the previous
observations

Your goal is not to estimate each treatment’s efficiency
precisely, but to heal as many patients as possible



The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such that
for any possible choice of arm at ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = Xat,t

where, for any 1 ≤ a ≤ K and s ≥ 1, Xa,s ∼ νa, and
the (Xa,s)a,s are independent.

Reward distributions νa ∈ Fa parametric family, or not. Examples :
canonical exponential family, general bounded
rewards

Example Bernoulli rewards : θ ∈ [0, 1]K , νa = B(θa)

Strategy The agent’s actions follow a dynamical strategy
π = (π1, π2, . . . ) such that

At = πt(X1, . . . , Xt−1)



Performance Evaluation, Regret

Cumulated Reward ST =
∑T

t=1Xt

Our goal Choose π so as to maximize

E [ST ] =

T∑
t=1

K∑
a=1

E
[
E [Xt1{At = a}|X1, . . . , Xt−1]

]
=

K∑
a=1

µaE [Nπ
a (T )]

where Nπ
a (T ) =

∑
t≤T 1{At = a} is the number of

draws of arm a up to time T , and µa = E(νa).

Regret Minimization equivalent to minimizing

RT = Tµ∗ − E [ST ] =
∑

a:µa<µ∗

(µ∗ − µa)E [Nπ
a (T )]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}



Asymptotically Optimal Strategies

A strategy π is said to be consistent if, for any (νa)a ∈ FK ,

1

T
E[ST ]→ µ∗

The strategy is uniformly efficient if for all θ ∈ [0, 1]K and all
α > 0,

RT = o(Tα)

There are uniformly efficient strategies and we consider the
best achievable asymptotic performance among uniformly
efficient strategies



The Bound of Lai and Robbins

One-parameter reward distribution νa = νθa , θa ∈ Θ ⊂ R .

Theorem [Lai and Robbins, ’85]

If π is a uniformly efficient strategy, then for any θ ∈ ΘK ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
KL(νa, ν∗)

where KL(ν, ν ′) denotes the Kullback-Leibler divergence

For example, in the Bernoulli case :

KL
(
B(p),B(q)

)
= dber(p, q) = p log

p

q
+ (1− p) log

1− p
1− q



The Bound of Burnetas and Katehakis

More general reward distributions νa ∈ Fa

Theorem [Burnetas and Katehakis, ’96]

If π is an efficient strategy, then, for any θ ∈ [0, 1]K ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
Kinf (νa, µ∗)

where

Kinf (νa, µ
∗) = inf

{
K(νa, ν

′) :

ν ′ ∈ Fa, E(ν ′) ≥ µ∗
}

ν∗

δ1

δ 1
2

δ0

Kinf (νa, µ
?)

νa

µ∗



Optimism in the Face of Uncertainty

Optimism in an heuristic principle popularized by [Lai&Robins
’85 ; Agrawal ’95] which consists in letting the agent

play as if the environment was the most favorable
among all environments that are sufficiently likely
given the observations accumulated so far

Surprisingly, this simple heuristic principle can be instantiated into
algorithms that are robust, efficient and easy to implement in
many scenarios pertaining to reinforcement learning



Upper Confidence Bound Strategies

UCB [Lai&Robins ’85 ; Agrawal ’95 ; Auer&al ’02]

Construct an upper confidence bound for the expected reward
of each arm :

Sa(t)

Na(t)︸ ︷︷ ︸
estimated reward

+

√
log(t)

2Na(t)︸ ︷︷ ︸
exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79]

Its behavior is easily interpretable and intuitively appealing



UCB in Action



UCB in Action



Performance of UCB

For rewards in [0, 1], the regret of UCB is upper-bounded as

E[RT ] = O(log(T ))

(finite-time regret bound) and

lim sup
T→∞

E[RT ]

log(T )
≤

∑
a:µa<µ∗

1

2(µ∗ − µa)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate of
the variance in the exploration bonus (e.g., [Audibert&al ’07])



The KL-UCB algorithm

Parameters : An operator ΠF : M1(S)→ F ; a non-decreasing
function f : N→ R
Initialization : Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

compute for each arm a the quantity

Ua(t) = sup

{
E(ν) : ν ∈ F and KL

(
ΠF
(
ν̂a(t)

)
, ν
)
≤ f(t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



Parametric setting : Exponential Families
Assume that Fa = F = canonical exponential family, i.e. such
that the pdf of the rewards is given by

pθa(x) = exp
(
xθa − b(θa) + c(x)

)
, 1 ≤ a ≤ K

for a parameter θ ∈ RK , expectation µa = ḃ(θa)
The KL-UCB si simply :

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
For instance,

for Bernoulli rewards :

dber(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

for exponential rewards pθa(x) = θae−θax :

dexp(u, v) = u− v + u log
u

v

The analysis is generic and yields a non-asymptotic regret
bound optimal in the sense of Lai and Robbins.



The kl-UCB algorithm

Parameters : F parameterized by the expectation µ ∈ I ⊂ R with
divergence d, a non-decreasing function f : N→ R
Initialization : Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

compute for each arm a the quantity

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



The kl Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0

and if p̂s = (Z1 + · · · + Zs)/s,
then

Pθ0 (p̂s ≤ x) ≤ exp (−s kl(x, θ0))

0

kl(⋅,θ)

θ
0

x

−log(α)/s

In other words, if α = exp (−s kl(x, θ0)) :

Pθ0 (p̂s ≤ x) = Pθ0
(

kl(p̂s, θ0) ≤ −
log(α)

s
, p̂s < θ0

)
≤ α

=⇒ upper confidence bound for p at risk α :

us = sup
{
θ > p̂s : kl(p̂s, θ) ≤ −

log(α)

s

}
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Key Tool : Deviation Inequality for Self-Normalized Sums

Problem : random number of summands

Solution : peeling trick (as in the proof of the LIL)

Theorem For all ε > 1,

P
(
µa > µ̂a(t) and Na(t) d

(
µ̂a(t), µa

)
≥ ε
)
≤ e
⌈
ε log(t)

⌉
e−ε .

Thus,
P
(
Ua(t) < µa

)
≤ e
⌈
f(t) log(t)

⌉
e−f(t)



Regret bound

Theorem : Assume that all arms belong to a canonical, regular,
exponential family F = {νθ : θ ∈ Θ} of probability distributions
indexed by its natural parameter space Θ ⊆ R. Then, with the
choice f(t) = log(t) + 3 log log(t) for t ≥ 3, the number of draws
of any suboptimal arm a is upper bounded for any horizon T ≥ 3 as

E [Na(T )] ≤ log(T )

d (µa, µ?)
+2

√√√√2πσ2
a,?

(
d′(µa, µ?)

)2(
d(µa, µ?)

)3 √
log(T ) + 3 log(log(T ))

+

(
4e+

3

d(µa, µ?)

)
log(log(T )) + 8σ2

a,?

(
d′(µa, µ

?)

d(µa, µ?)

)2

+ 6 ,

where σ2a,? = max
{

Var(νθ) : µa ≤ E(νθ) ≤ µ?
}

and where
d′( · , µ?) denotes the derivative of d( · , µ?).



Non-parametric setting

Rewards are only assumed to be bounded (say in [0, 1])

Need for an estimation procedure

with non-asymptotic guarantees
efficient in the sense of Stein / Bahadur

=⇒ Idea 1 : use dber (Hoeffding)

=⇒ Idea 2 : Empirical Likelihood [Owen ’01]

Bad idea : use Bernstein / Bennett



Empirical Likelihood

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)

)
and KL(ν̂n, ν

′) ≤ ε
}

or, rather, modified Empirical Likelihood :

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)∪{1}

)
and KL(ν̂n, ν

′) ≤ ε
}

µ̂n

Un



Coverage properties of the modified EL confidence bound

Proposition : Let ν0 ∈M1([0, 1]) with E(ν0) ∈ (0, 1) and let
X1, . . . , Xn be independent random variables with common
distribution ν0 ∈M1

(
[0, 1]

)
, not necessarily with finite support.

Then, for all ε > 0,

P
{
U(ν̂n, ε) ≤ E(ν0)

}
≤ P

{
Kinf

(
ν̂n, E(ν0)

)
≥ ε
}

≤ e(n+ 2) exp(−nε) .

Remark : For {0, 1}–valued observations, it is readily seen that
U(ν̂n, ε) boils down to the upper-confidence bound above.
=⇒ This proposition is at least not always optimal : the presence

of the factor n in front of the exponential exp(−nε) term is
questionable.



Regret bound

Theorem : Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that µa > 0 for all arms a
and that µ? < 1. There exists a constant M(νa, µ

?) > 0 only
depending on νa and µ? such that, with the choice
f(t) = log(t) + log

(
log(t)

)
for t ≥ 2, for all T ≥ 3 :

E
[
Na(T )

]
≤ log(T )

Kinf

(
νa, µ?

) +
36

(µ?)4
(
log(T )

)4/5
log
(

log(T )
)

+

(
72

(µ?)4
+

2µ?

(1− µ?)Kinf

(
νa, µ?

)2
)(

log(T )
)4/5

+
(1− µ?)2M(νa, µ

?)

2(µ?)2
(
log(T )

)2/5
+

log
(
log(T )

)
Kinf

(
νa, µ?

) +
2µ?

(1− µ?)Kinf

(
νa, µ?

)2 + 4 .



Example : truncated Poisson rewards

for each arm 1 ≤ a ≤ 6 is associated with νa, a Poisson
distribution with expectation (2 + a)/4, truncated at 10.

N = 10, 000 Monte-Carlo replications on an horizon of
T = 20, 000 steps.
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Example : truncated Exponential rewards

exponential rewards with respective parameters 1/5, 1/4, 1/3,
1/2 and 1, truncated at xmax = 10 ;

kl-UCB uses the divergence d(x, y) = x/y − 1− log(x/y)
prescribed for genuine exponential distributions, but it ignores
the fact that the rewards are truncated.
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