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The Problem



Best-Arm ldentification with Fixed Confidence

K options = probability distributions v = (v,)1<a<k
v, € F exponential family parameterized by its expectation i,

11 1%} V3 Vg Us

At round t, you may:

e choose an = ¢¢ (A, X1y, A1, Xeeny) €41, K}
e observe a new
so as to identify the best arm and ¥ = maxpu,
a
as fast as possible: T .
Fixed-budget setting Fixed-confidence setting
givenT =T minimize E[7]
minimize P(a, # a*) | under constraint P(a, # a*) < ¢ 3
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Most simple setting: for all a € {1,..., K},

Vs =N(pa, 1) ]

For example: u = [2,1.75,1.75,1.6,1.5].

At time t:
=» you have sampled n, times the option a

o~
0

=» your empirical average is X, p,. ami am2 ams ama ams

— if you stop at time t, your
is:

X X )_<an — Ma — )_< i = _
]P)(Xa,na>X]_’n1):IP< 23 H ( 1,m N’l) > 1 Ha )

V1/m+1/n, V1/nm+1/n,

= H1 — Ha - o gu%/2
=0 | ———— where ®(u) = du
(N/l/n1+1/na> e $1) /u V2r \
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Intuition: Equalizing the Probabilities of Confusion

Most simple setting: for all a € {1,..., K},

Vs = N(pa, 1)
For example: u = [2,1.75,1.75,1.6,1.5].

=» You allocate a to op-
tion a, with wy +--- + wy = 1.

At time t:
=» you have sampled n, =~ w,t times the option @  an: amz ams ams ams

=» your empirical average is )_(ay,,a.
— if you stop at time t, your
is:

P ()_(a,na > )_<1,n1) =P (Xa,na — Ha — (Xl,m - Ml) S 1 — fa )

V1/m +1/n, V1/nm +1/n,

- H1 — Ha
V1/m +1/n, 6
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Optimal Proportions
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How to Turn this Intuition into a Theorem?

The arms are not Gaussian (no formula for probability of confusion)
— large deviations (Sanov, KL)

You do not allocate a relative budget at first, but you use sequential
sampling

— no fixed-size samples: sequential experiment

— tracking lemma

e How to compute the optimal proportions?
— lower bound, game

The parameters of the distribution are unknown
— (sequential) estimation

When should you stop?
—— Chernoff’s stopping rule
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Exponential Families

v1,...,Vk belong to a

Pro,b = {v9,0 € © : 1 has density fy(x) = exp(0x — b(6)) w.r.t. A}
Example: Gaussian, Bernoulli, Poisson distributions...
e 1y can be parametrized by its mean vt = Vi—1(n)

Notation: Kullback-Leibler divergence

For a given exponential family,
d(u, p') == KL(* 1/"/) = Ex,u |log M(X)
9 " 9 X~v dl/l‘l’,
is the KL-divergence between the distributions of mean p and p'.

We identify v = (v#,...,v"<) and p = (p1, ..., pk) and consider
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Lower Bound




Lower-Bounding the Sample Complexity

Let o = (p1,..., k) and A = (A1, ..., Ak) be two elements of S.
Uniform §-PAC Constraint [Kaufmann, Cappé, G. "15]
If a*(p) # a*(A), any 0-PAC algorithm satisfies

where kl(p, q) = p|0g§ + (1 —p)log }:J'

o6— oo

Ha Mz M2 my My

Let Alt(p) = {X:a*(A) # a*(pn)}. Take: Mi=mp—e Xy =ma+e

EpNi(7s)] d(p1, mz — €) + Ep[No(75) ] d(p2, m2 +€) = Kl(6,1— )
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Ha Hs M2 mg Hy

Let Alt(p) = {X:a*(A) # a*(u)}. Take: Ay =m3—e A3=m3+e

B[N ()] (s, 2 — )+ B Na(rs) d(pz, ma ) > KI(6,1-5)
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1—q- "' " ‘

Ha Hy Mo My ty
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E [Ni(75)]) d(pa, mo — €) + Epu[No(7s) 1 d(p2, ma+€) > k1(6,1—0)
Ep[Ni(7s)] d(p1, m3 — €) + Eu[Na(75)] d(ps, ms +€) > k(5,1 —10)
B[N (3, ma — €) + B[ Ne(rs)] d(jias me + ) > KI(5,1—6)

14



Lower-Bounding the Sample Complexity

Let o = (p1,- .., k) and A = (A1, ..., Ak) be two elements of S.
Uniform §-PAC Constraint [Kaufmann, Cappé, G. "15]
If a*(p) # a*(A), any 0-PAC algorithm satisfies

where kl(p, g) = plogg + (1 —p)log }%’;.
Let Alt(p) = {A:a*(A) # a*(pn)}.

Mg U3 HoMg Mg My Ky

K
S EuINa(rs) d(pas As) > KIS, 1 —6)
a=1

K

- Eu[Na(75)]
E £ =N g, N,) > K516
ul7s] x /\eﬂt(“) 2 " E, 7] (HasAa) > KI( )

14

K
E“[Tg]x<sup inf )Zwad(ua,)\a)> > kI(d,1 - 0)
=1

we T, AEALt() £



Lower Bound: the Complexity of BAI

For any 6-PAC algorithm,

Eu[rs] > kl(6,1 —9),

where

e kI(6,1 —6) ~ log(1/8) when § — 0, kI(5,1 — &) > log (1/(2.49))
e cf. [Graves and Lai 1997, Vaidhyan and Sundaresan, 2015]
=> the are

K
w*(p) = argmax  inf <Z wod(pa, )\a))
a=1

wEX K AEAIt(p)

=» they 15



PAC-BAI as a Game

Given a parameter p = (fi1, ..., k) :

e the statistician chooses proportions of arm draws w = (w;,),
e the opponent chooses an alternative model A

e the payoff is the minimal number T = T(w, A) of draws necessary
to ensure that he does not violate the §-PAC constraint

K
> Tw, d(pa; Xa) > KI(8, 1 6)
a=1

o T*(u)kl(d,1 — ) = value of the game

*

w* = optimal action for the statistician

16



PAC-BAI as a Game

Given a parameter gt = (p1, ..., pux) such that gy > o > -+ > pk:
e the statistician chooses proportions of arm draws w = (w;),
e the opponent chooses an arm a € {2, ..., K} and

Mg Mz Mz mg 1
the payoff is the minimal number 7 = T(w,a.0) of draws

necessary to ensure that

Twy d(p1, Aa —€) + Twad(pa, As +¢) > k(6,1 — 6)

kl(6,1 — ¢)
wy d(p1, Aa — €) + wa d(pa, As + €)
T*(p)kl(d,1 — 0) = value of the game
* = optimal action for the statistician

that is T(w,a,0) =

w
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Properties of T*(1) and w*(u)

o n =

solution, solution of only
For all € S, for all a,
w* is inevery p € S

If g > po > -+ > pk, one has

(one may have wy" () < wy' ()

Case of [Kaufmann, Cappé, G. '14]:
kl(6,1 — 9)

E,[rs] > —— .
ulri] di(p1, p12)

where d, is the ‘reversed’ Chernoff information

di(pi1, p2) = d(pa, ) = d(p2, p) -

. algebraic equation but no simple formula for K > 3.

A3 - A3

a=1

K K

202 202
Y < THw) < 7.
a=1
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The Track-and-Stop Strategy




Sampling rule: Tracking the optimal proportions

o(t) = (f1(t),. .., fik(t)): vector of empirical means

Introducing

U, = {a NL(t) < \/E},

the arm sampled at round t + 1 is

argmin N,(t) if U £ 0 ( )
At+1 c acU; R
argmax £ w}(fu(t)) — Na(t) )
1<a<K
Lemma

Under the Tracking sampling rule,

P (im0 = wi)) =1

t—o0
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Sequential Generalized Likelihood Test

High values of the Generalized Likelihood Ratio
maxga:a,>x,} APA(X1, - -, Xe)

Zyp(t) =1
.'b( ) g max{)‘:)\ag)\b} C{P)\()<17 . 7)(,_»)

— No(t) d(a(t), fiaso(8)) + No(£) d (726(t), fiap(£)) if fialt) > ()

—Zp 5(t) otherwise

reject the hypothesis that (p, < up).

We stop when
, according to a GLR test:

s=inf{teN:Jac{1,... K},Vb#a,Z,,(t) > B(t,6)}
= inf : Z(t) = in Z, p(t B(t, 0
in {teN (1) N a6(t) > B(t, )}
Chernoff stopping rule [Chernoff '59]

Two other possible interpretations of the stopping rule:
-

Zo,p(t) = (Na(t) + No(t)) H (f1a,6(£)) — [Na(t)H (1(2)) + No(t)H (f16(t))] .



Sequential Generalized Likelihood Test

High values of the Generalized Likelihood Ratio

: dP(X4, ..., X
Za,b(t) = |og Max{x,>Ap} >\( 1, t)

max{)‘:/\ag)\b} CIIP)\()<17 . 7)(1_»)
reject the hypothesis that (1, < pp).

We stop when one arm is assessed to be significantly larger than all other

arms, according to a GLR test:

75 = inf {t eN: Z(t):= ae{r?axK} Tnga p(t) > B(t,é)}

Chernoff stopping rule [Chernoff '59]

Two other possible interpretations of the stopping rule:

=» plug-in complexity estimate: with F(w, inf Wd 7]
plug- plexity (w, ) AeAMuZ (tar A

stop when Z(t) =t F( Na(t) : f(t)) > [(t,0) instead of the lower bound

=tF(w",u)>kl(5,1—9).
20



Calibration

Theorem

The Chernoff rule is 6-PAC for 3(t,d) = log (M)

Lemma

If o < pp, whatever the sampling rule,
2t
P, (3t e N: Z, ,(t) > log 5 <9

The proof uses:
=» Barron's lemma (change of distribution)
=» and Krichevsky-Trofimov's universal distribution

(very information-theoretic ideas)

21



Asymptotic Optimality of the T&S strategy

The Track-and-Stop strategy, that uses

the
. with 3(t,6) = log (2(K5—1)t)
and recommends 3,, = argmax [i,(75)

a=1...K

is 9-PAC for every ¢ € (0,1) and satisfies

E#[T5] _ —/—*(“)

.
0" log(1/0)

22



Why is the T&S Strategy asymptotically Optimal?
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Sketch of prOOf (almost-sure convergence only)

e forced exploration = N,(t) — oo a.s. forallae {1,..., K}
= u(t) = pas.
- w(a(t)) — w* as.

N, (t
=» tracking rule: M (t) — wj as.

t t—00
but th ing F: ) = f

e but the mapping (v )\GArIIt " )Z wad(ph, A

continuous at (g, w*(p)):
<+ Z(t)=tx F(,ﬁ(t).(Nd(t) f)gﬁl) ~tx F(p,w®) =t x T*(p)™
and for every € > 0 there exists tp such that

t>ty = Z(t) >t x(1+e) 1Tt

— Thus7s < to/\inf{t EN:(14+e) 1 T(p) 't > log(2(K — 1)t/5)}
<(1+4¢€)T"(pn) as.

and limsu 7o
5—0 P |Og(1/5)

24



Numerical Experiments

o 1y =[0504504304] = w*(u1)=[0.420.39 0.14 0.06]
o o =1[0.30.210.20.19 0.18]w*(p2) = [0.34 0.25 0.18 0.13 0.10]

In practice, set the threshold to (¢, 0) = log <u> (6-PAC OK)

Track-and-Stop | Chernoff-Racing | KL-LUCB | KL-Racing
u1 4052 4516 8437 9590
[ 1406 3078 2716 3334

Table 1:  Expected number of draws E,, [75] for 6 = 0.1, averaged over
N = 3000 experiments.

=» Empirically good even for ‘large’ values of the risk ¢
=» Racing is sub-optimal in general, because it plays wy = w»

=>» LUCB is sub-optimal in general, because it plays wy = 1/2
25



For best arm identification, we showed that

K
f | M[T5] — f
PAC ;Ir;onthm IT_S>(L)JP Iog(l/&) Wseusz AGIAnlt Z /la, a
and provided

Future work:

e - anytime stopping =¥ gives a
e « find an arm
e - find the m-best arms
e - design and analyze more algorithm (hint: optimism)
e = give a simple algorithm with a
candidate: play action maximizing the expected increase of Z(t)
e - extend to structured and settings

T T T T T 26
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