

On the Complexity of Best Arm Identification with Fixed Confidence

Discrete Optimization with Noise

Aurélien Garivier[†], Emilie Kaufmann*
Journées MAS, August 29th 2016, Grenoble

[†] Institut de Mathématiques de Toulouse LabeX CIMI Université Paul Sabatier. France

^{*} Université Lille, CNRS UMR 9189 Laboratoire CRIStAL F-59000 Lille. France

The Problem

Best-Arm Identification with Fixed Confidence

K options = probability distributions $\nu = (\nu_a)_{1 \leq a \leq K}$ $\nu_a \in \mathcal{F}$ exponential family parameterized by its expectation μ_a

At round *t*, you may:

- choose an option $A_t = \phi_t(A_1, X_1, \dots, A_{t-1}, X_{t-1}) \in \{1, \dots, K\}$
- ullet observe a new independent sample $X_t \sim
 u_{A_t}$

so as to identify the best arm $a^* = \operatorname*{argmax}_a \mu_a$ and $\mu^* = \operatorname*{max}_a \mu_a$ as fast as possible: stopping time τ .

Fixed-budget setting	Fixed-confidence setting
given $\tau = T$	minimize $\mathbb{E}[au]$
minimize $\mathbb{P}(\hat{a}_{ au} eq a^*)$	under constraint $\mathbb{P}(\hat{a}_ au eq a^*) \leq \delta$

Best-Arm Identification with Fixed Confidence

K options = probability distributions $\nu = (\nu_a)_{1 \leq a \leq K}$ $\nu_a \in \mathcal{F}$ exponential family parameterized by its expectation μ_a

At round t, you may:

- choose an option $A_t = \phi_t(A_1, X_1, ..., A_{t-1}, X_{t-1}) \in \{1, ..., K\}$
- observe a new independent sample $X_t \sim \nu_{A_t}$

so as to identify the best arm $a^* = \operatorname{argmax}_a \mu_a$ and $\mu^* = \max_a \mu_a$ as fast as possible: stopping time τ .

Fixed-budget setting	Fixed-confidence setting
given $\tau = T$	minimize $\mathbb{E}[au]$
minimize $\mathbb{P}(\hat{a}_{ au} eq a^*)$	under constraint $\mathbb{P}(\hat{a}_ au eq a^*) \leq \delta$

Best-Arm Identification with Fixed Confidence

K options = probability distributions $\nu = (\nu_a)_{1 \leq a \leq K}$ $\nu_a \in \mathcal{F}$ exponential family parameterized by its expectation μ_a

At round t, you may:

- choose an option $A_t = \phi_t(A_1, X_1, ..., A_{t-1}, X_{t-1}) \in \{1, ..., K\}$
- observe a new independent sample $X_t \sim \nu_{A_t}$

so as to identify the best arm $a^* = \operatorname{argmax}_a \mu_a$ and $\mu^* = \max_a \mu_a$ as fast as possible: stopping time τ_δ .

Fixed-budget setting	Fixed-confidence setting
given $\tau = T$	minimize $\mathbb{E}[au_{\delta}]$
minimize $\mathbb{P}(\hat{a}_{ au} eq a^*)$	under constraint $\mathbb{P}(\hat{a}_{ au} eq a^*) \leq \delta$

Intuition

Most simple setting: for all $a \in \{1, \dots, K\}$,

$$u_{\mathsf{a}} = \mathcal{N}(\mu_{\mathsf{a}}, 1)$$

For example: $\mu = [2, 1.75, 1.75, 1.6, 1.5]$.

At time t:

- \rightarrow you have sampled n_a times the option a
- \rightarrow your empirical average is X_{a,n_a} .

 \longrightarrow if you stop at time t, your probability of preferring arm $a \ge 2$ to arm $a^* = 1$ is:

$$\begin{split} \mathbb{P}\left(\bar{X}_{a,n_{a}} > \bar{X}_{1,n_{1}}\right) &= \mathbb{P}\left(\frac{\bar{X}_{a,n_{a}} - \mu_{a} - \left(\bar{X}_{1,n_{1}} - \mu_{1}\right)}{\sqrt{1/n_{1} + 1/n_{a}}} > \frac{\mu_{1} - \mu_{a}}{\sqrt{1/n_{1} + 1/n_{a}}}\right) \\ &= \bar{\Phi}\left(\frac{\mu_{1} - \mu_{a}}{\sqrt{1/n_{1} + 1/n_{a}}}\right) \qquad \quad \text{where } \bar{\Phi}(u) = \int_{u}^{\infty} \frac{e^{-u^{2}/2}}{\sqrt{2\pi}} du \end{split}$$

4

Intuition: Equalizing the Probabilities of Confusion

Most simple setting: for all $a \in \{1, ..., K\}$,

$$\nu_{\mathsf{a}} = \mathcal{N}(\mu_{\mathsf{a}}, 1)$$

For example: $\mu = [2, 1.75, 1.75, 1.6, 1.5]$.

Active Learning

→ You allocate a relative budget w_a to option a, with $w_1 + \cdots + w_K = 1$.

- ightharpoonup you have sampled $\mathbf{n_a} \approx \mathbf{w_a} \mathbf{t}$ times the option a
- \rightarrow your empirical average is \bar{X}_{a,n_a} .

 \longrightarrow if you stop at time t, your probability of prefering arm $a \ge 2$ to arm $a^* = 1$ is:

$$\mathbb{P}\left(\bar{X}_{a,n_a} > \bar{X}_{1,n_1}\right) = \mathbb{P}\left(\frac{X_{a,n_a} - \mu_a - (X_{1,n_1} - \mu_1)}{\sqrt{1/n_1 + 1/n_a}} > \frac{\mu_1 - \mu_a}{\sqrt{1/n_1 + 1/n_a}}\right) \\
= \bar{\Phi}\left(\frac{\mu_1 - \mu_a}{\sqrt{1/n_1 + 1/n_a}}\right)$$

Improving: trial 3

Improving: trial 3

Improving: trial 3

How to Turn this Intuition into a Theorem?

- The arms are not Gaussian (no formula for probability of confusion)
 - → large deviations (Sanov, KL)
- You do not allocate a relative budget at first, but you use sequential sampling
 - → no fixed-size samples: sequential experiment
 - → tracking lemma
- How to compute the optimal proportions?
 - → lower bound, game
- The parameters of the distribution are unknown
 - → (sequential) estimation
- When should you stop?
 - \longrightarrow Chernoff's stopping rule

Exponential Families

 u_1, \dots, ν_K belong to a one-dimensional exponential family

$$\mathbb{P}_{\lambda,\Theta,b} = \left\{ \nu_{\theta}, \theta \in \Theta : \nu_{\theta} \text{ has density } f_{\theta}(x) = \exp(\theta x - b(\theta)) \text{ w.r.t. } \lambda \right\}$$

Example: Gaussian, Bernoulli, Poisson distributions...

• ν_{θ} can be parametrized by its mean $\mu = \dot{b}(\theta)$: $\nu^{\mu} := \nu_{\dot{b}^{-1}(\mu)}$

Notation: Kullback-Leibler divergence

For a given exponential family,

$$\frac{d(\mu,\mu') := \mathsf{KL}(\nu^{\mu},\nu^{\mu'}) = \mathbb{E}_{X \sim \nu^{\mu}} \left[\log \frac{d\nu^{\mu}}{d\nu^{\mu'}}(X) \right]$$

is the KL-divergence between the distributions of mean μ and μ' .

We identify $u=(
u^{\mu_1},\dots,
u^{\mu_K})$ and $\boldsymbol{\mu}=(\mu_1,\dots,\mu_K)$ and consider

$$S = \left\{ \boldsymbol{\mu} \in (\dot{b}(\Theta))^K : \exists \boldsymbol{a} \in \{1, \dots, K\} : \mu_{\boldsymbol{a}} > \max_{i \neq \boldsymbol{a}} \mu_i \right\}$$

Lower Bound

Let
$$\mu = (\mu_1, \dots, \mu_K)$$
 and $\lambda = (\lambda_1, \dots, \lambda_K)$ be two elements of S .

Uniform δ-PAC Constraint [Kaufmann, Cappé, G. '15]

If $a^*(\mu) \neq a^*(\lambda)$, any δ -PAC algorithm satisfies

$$\sum_{s=1}^K \mathbb{E}_{\boldsymbol{\mu}} \big[\mathsf{N}_{\boldsymbol{a}}(\tau_{\delta}) \big] \ d(\mu_{\boldsymbol{a}}, \lambda_{\boldsymbol{a}}) \geq \mathrm{kl}(\delta, 1 - \delta)$$

where
$$kl(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$$
.

Let
$$Alt(\mu) = \{ \lambda : a^*(\lambda) \neq a^*(\mu) \}$$
. Take: $\lambda_1 = m_2 - \epsilon$ $\lambda_2 = m_2 + \epsilon$

$$\mathbb{E}_{\boldsymbol{\mu}}[N_1(\tau_{\delta})] d(\mu_1, m_2 - \epsilon) + \mathbb{E}_{\boldsymbol{\mu}}[N_2(\tau_{\delta})] d(\mu_2, m_2 + \epsilon) \geq \operatorname{kl}(\delta, 1 - \delta)$$

Let
$$\mu = (\mu_1, \dots, \mu_K)$$
 and $\lambda = (\lambda_1, \dots, \lambda_K)$ be two elements of S .

Uniform δ -PAC Constraint [Kaufmann, Cappé, G. '15]

If $a^*(\mu) \neq a^*(\lambda)$, any δ -PAC algorithm satisfies

$$\sum_{s=1}^K \mathbb{E}_{m{\mu}}ig[\mathsf{N}_{m{s}}(au_{\delta}) ig] \ d(\mu_{m{s}}, \lambda_{m{s}}) \geq \mathrm{kl}(\delta, 1-\delta)$$

where
$$\mathrm{kl}(p,q) = p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$$
.

Let Alt(
$$\mu$$
) = { λ : $a^*(\lambda) \neq a^*(\mu)$ }. Take: $\lambda_1 = m_3 - \epsilon$ $\lambda_3 = m_3 + \epsilon$

$$\mathbb{E}_{\boldsymbol{\mu}}[N_1(\tau_{\delta})] d(\mu_1, m_2 - \epsilon) + \mathbb{E}_{\boldsymbol{\mu}}[N_2(\tau_{\delta})] d(\mu_2, m_2 + \epsilon) \geq \operatorname{kl}(\delta, 1 - \delta)$$

$$\mathbb{E}_{\boldsymbol{\mu}}[N_1(\tau_{\delta})] d(\mu_1, m_3 - \epsilon) + \mathbb{E}_{\boldsymbol{\mu}}[N_3(\tau_{\delta})] d(\mu_3, m_3 + \epsilon) \geq \operatorname{kl}(\delta, 1 - \delta)$$

Let
$$\mu = (\mu_1, \dots, \mu_K)$$
 and $\lambda = (\lambda_1, \dots, \lambda_K)$ be two elements of S .

Uniform δ-PAC Constraint [Kaufmann, Cappé, G. '15]

If $a^*(\mu) \neq a^*(\lambda)$, any $\delta ext{-PAC}$ algorithm satisfies

$$\sum_{s=1}^K \mathbb{E}_{m{\mu}}ig[\mathsf{N}_{m{s}}(au_{\delta}) ig] \ d(\mu_{m{s}}, \lambda_{m{s}}) \geq \mathrm{kl}(\delta, 1-\delta)$$

where $\mathrm{kl}(p,q) = p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$.

Let
$$\mathrm{Alt}(\boldsymbol{\mu}) = \{ \boldsymbol{\lambda} : a^*(\boldsymbol{\lambda}) \neq a^*(\boldsymbol{\mu}) \}$$
. Take: $\lambda_1 = m_4 - \epsilon$ $\lambda_4 = m_4 + \epsilon$

$$\mathbb{E}_{\mu}[N_{1}(\tau_{\delta})] d(\mu_{1}, m_{2} - \epsilon) + \mathbb{E}_{\mu}[N_{2}(\tau_{\delta})] d(\mu_{2}, m_{2} + \epsilon) \geq \text{kl}(\delta, 1 - \delta)$$

$$\mathbb{E}_{\mu}[N_{1}(\tau_{\delta})] d(\mu_{1}, m_{3} - \epsilon) + \mathbb{E}_{\mu}[N_{3}(\tau_{\delta})] d(\mu_{3}, m_{3} + \epsilon) \geq \text{kl}(\delta, 1 - \delta)$$

$$\mathbb{E}_{\mu}[N_{1}(\tau_{\delta})] d(\mu_{1}, m_{4} - \epsilon) + \mathbb{E}_{\mu}[N_{4}(\tau_{\delta})] d(\mu_{4}, m_{4} + \epsilon) \geq \text{kl}(\delta, 1 - \delta)$$

Let $\mu = (\mu_1, \dots, \mu_K)$ and $\lambda = (\lambda_1, \dots, \lambda_K)$ be two elements of S.

Uniform δ-PAC Constraint [Kaufmann, Cappé, G. '15]

If $a^*(\mu) \neq a^*(\lambda)$, any $\delta ext{-PAC}$ algorithm satisfies

$$\sum_{a=1}^K \mathbb{E}_{\boldsymbol{\mu}}\big[N_{\boldsymbol{a}}(\tau_{\delta})\big] \ d(\mu_{\boldsymbol{a}},\lambda_{\boldsymbol{a}}) \geq \mathrm{kl}(\delta,1-\delta)$$

where
$$\mathrm{kl}(p,q) = p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$$
.

Let
$$Alt(\boldsymbol{\mu}) = \{ \boldsymbol{\lambda} : a^*(\boldsymbol{\lambda}) \neq a^*(\boldsymbol{\mu}) \}.$$

$$\inf_{\substack{\lambda \in \operatorname{Alt}(\boldsymbol{\mu}) \\ \lambda = 1}} \sum_{a=1}^K \mathbb{E}_{\boldsymbol{\mu}}[N_a(\tau_\delta)] \, d(\mu_a, \lambda_a) \;\; \geq \;\; \operatorname{kl}(\delta, 1 - \delta)$$

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \times \inf_{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\mu})} \sum_{\mathbf{a}}^{K} \frac{\mathbb{E}_{\boldsymbol{\mu}}[N_{\mathsf{a}}(\tau_{\delta})]}{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]} \ d(\mu_{\mathsf{a}}, \lambda_{\mathsf{a}}) \ \geq \ \operatorname{kl}(\delta, 1 - \delta)$$

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \times \left(\sup_{\boldsymbol{w} \in \Sigma_{K}} \inf_{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\mu})} \sum_{a=1}^{K} w_{a} \, d(\mu_{a}, \lambda_{a}) \right) \ \geq \ \operatorname{kl}(\delta, 1 - \delta)$$

Lower Bound: the Complexity of BAI

Theorem

For any δ -PAC algorithm,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \geq T^*(\boldsymbol{\mu}) \operatorname{kl}(\delta, 1 - \delta) ,$$

where

$$T^*(\mu)^{-1} = \sup_{\mathbf{w} \in \Sigma_K} \inf_{\lambda \in \mathrm{Alt}(\mu)} \left(\sum_{a=1}^K w_a \, d(\mu_a, \lambda_a) \right).$$

- $\mathrm{kl}(\delta,1-\delta)\sim\log(1/\delta)$ when $\delta\to0$, $\mathrm{kl}(\delta,1-\delta)\geq\log\left(1/(2.4\delta)\right)$
- cf. [Graves and Lai 1997, Vaidhyan and Sundaresan, 2015]
- → the optimal proportions of arm draws are

$$\mathbf{w}^*(\mu) = \operatorname*{argmax}_{\mathbf{w} \in \Sigma_K} \operatorname*{inf}_{\lambda \in \operatorname{Alt}(\mu)} \left(\sum_{a=1}^K w_a d(\mu_a, \lambda_a) \right)$$

 \rightarrow they do not depend on δ

PAC-BAI as a Game

Given a parameter $\mu = (\mu_1, \dots, \mu_K)$:

- the statistician chooses proportions of arm draws $\mathbf{w} = (w_a)_a$
- ullet the opponent chooses an alternative model λ
- the payoff is the minimal number $T = T(\mathbf{w}, \lambda)$ of draws necessary to ensure that he does not violate the δ -PAC constraint

$$\sum_{\mathsf{a}=1}^{K} \mathsf{Tw}_{\mathsf{a}} \, d(\mu_{\mathsf{a}}, \lambda_{\mathsf{a}}) \geq \mathrm{kl}(\delta, 1-\delta)$$

• $T^*(\mu) \operatorname{kl}(\delta, 1 - \delta)$ = value of the game \mathbf{w}^* = optimal action for the statistician

PAC-BAI as a Game

Given a parameter $\mu=(\mu_1,\ldots,\mu_K)$ such that $\mu_1>\mu_2\geq\cdots\geq\mu_K$:

- the statistician chooses proportions of arm draws $\mathbf{w} = (w_a)_a$
- the opponent chooses an arm $a \in \{2, ..., K\}$ and

$$\lambda_a = \operatorname{arg\,min}_{\lambda} w_1 \, d(\mu_1, \lambda) + w_a \, d(\mu_a, \lambda)$$

• the payoff is the minimal number $T = T(\mathbf{w}, a, \delta)$ of draws necessary to ensure that

$$Tw_1 d(\mu_1, \lambda_a - \epsilon) + Tw_a d(\mu_a, \lambda_a + \epsilon) \ge kl(\delta, 1 - \delta)$$

that is
$$T(\mathbf{w}, \mathbf{a}, \delta) = \frac{\mathrm{kl}(\delta, 1 - \delta)}{w_1 d(\mu_1, \lambda_a - \epsilon) + w_a d(\mu_a, \lambda_a + \epsilon)}$$

• $T^*(\mu) \operatorname{kl}(\delta, 1 - \delta)$ = value of the game \mathbf{w}^* = optimal action for the statistician

Properties of $T^*(\mu)$ and $\mathbf{w}^*(\mu)$

- 1. Unique solution, solution of scalar equations only
- 2. For all $\mu \in \mathcal{S}$, for all a, $w_a^*(\mu) > 0$
- 3. \mathbf{w}^* is continuous in every $\boldsymbol{\mu} \in \mathcal{S}$
- 4. If $\mu_1 > \mu_2 \ge \cdots \ge \mu_K$, one has $w_2^*(\mu) \ge \cdots \ge w_K^*(\mu)$ (one may have $w_1^*(\mu) < w_2^*(\mu)$)
- 5. Case of two arms [Kaufmann, Cappé, G. '14]:

$$\mathbb{E}_{oldsymbol{\mu}}[au_{\delta}] \geq rac{\mathrm{kl}(\delta, 1 - \delta)}{d_*(\mu_1, \mu_2)} \; .$$

where d_* is the 'reversed' Chernoff information

$$d_*(\mu_1,\mu_2) := d(\mu_1,\mu_*) = d(\mu_2,\mu_*)$$
.

6. Gaussian arms : algebraic equation but no simple formula for $K \geq 3$.

$$\sum_{a=1}^K \frac{2\sigma^2}{\Delta_a^2} \leq T^*(\mu) \leq \frac{2}{2} \sum_{a=1}^K \frac{2\sigma^2}{\Delta_a^2} .$$

The Track-and-Stop Strategy

Sampling rule: Tracking the optimal proportions

$$\hat{\mu}(t) = (\hat{\mu}_1(t), \dots, \hat{\mu}_K(t))$$
: vector of empirical means

Introducing

$$U_t = \Big\{a: N_a(t) < \sqrt{t}\Big\},$$

the arm sampled at round t+1 is

$$A_{t+1} \in \left\{ egin{array}{ll} \operatorname{argmin} \ N_a(t) & ext{if} \ U_t
eq \emptyset & ext{(forced exploration)} \ \operatorname{argmax} \ t \ w_a^*(\hat{m{\mu}}(t)) - N_a(t) & ext{(tracking)} \ 1 \leq a \leq K & \end{array}
ight.$$

Lemma

Under the Tracking sampling rule,

$$\mathbb{P}_{\mu}\left(\lim_{t\to\infty}\frac{N_{a}(t)}{t}=w_{a}^{*}(\mu)\right)=1.$$

Sequential Generalized Likelihood Test

High values of the Generalized Likelihood Ratio

$$\begin{split} Z_{a,b}(t) := \log & \frac{\max_{\{\boldsymbol{\lambda}: \lambda_a \geq \lambda_b\}} dP_{\boldsymbol{\lambda}}(X_1, \dots, X_t)}{\max_{\{\boldsymbol{\lambda}: \lambda_a \leq \lambda_b\}} dP_{\boldsymbol{\lambda}}(X_1, \dots, X_t)} \\ &= N_a(t) \, d\big(\hat{\mu}_a(t), \hat{\mu}_{a,b}(t)\big) + N_b(t) \, d\big(\hat{\mu}_b(t), \hat{\mu}_{a,b}(t)\big) & \text{if } \hat{\mu}_a(t) > \hat{\mu}_b(t) \\ & -Z_{b,a}(t) \text{ otherwise} \end{split}$$

reject the hypothesis that $(\mu_a \leq \mu_b)$.

We stop when one arm is assessed to be significantly larger than all other arms, according to a GLR test:

$$\tau_{\delta} = \inf \left\{ t \in \mathbb{N} : \exists a \in \{1, \dots, K\}, \forall b \neq a, Z_{a,b}(t) > \beta(t, \delta) \right\}$$
$$= \inf \left\{ t \in \mathbb{N} : \quad Z(t) := \max_{a \in \{1, \dots, K\}} \min_{b \neq a} Z_{a,b}(t) > \beta(t, \delta) \right\}$$

Chernoff stopping rule [Chernoff '59]

Two other possible interpretations of the stopping rule:

→ MDL:

$$Z_{a,b}(t) = (N_a(t) + N_b(t))H(\hat{\mu}_{a,b}(t)) - [N_a(t)H(\hat{\mu}_a(t)) + N_b(t)H(\hat{\mu}_b(t))]$$

Sequential Generalized Likelihood Test

High values of the Generalized Likelihood Ratio

$$Z_{a,b}(t) := \log \frac{\max_{\{\boldsymbol{\lambda}: \lambda_a \geq \lambda_b\}} dP_{\boldsymbol{\lambda}}(X_1, \dots, X_t)}{\max_{\{\boldsymbol{\lambda}: \lambda_a \leq \lambda_b\}} dP_{\boldsymbol{\lambda}}(X_1, \dots, X_t)}$$

reject the hypothesis that $(\mu_a \leq \mu_b)$.

We stop when one arm is assessed to be significantly larger than all other arms, according to a GLR test:

$$au_\delta = \inf \left\{ t \in \mathbb{N} : \ \ Z(t) := \max_{a \in \{1, \dots, K\}} \min_{b \neq a} Z_{a,b}(t) > eta(t, \delta)
ight\}$$

Chernoff stopping rule [Chernoff '59]

Two other possible interpretations of the stopping rule:

Calibration

Theorem

The Chernoff rule is δ -PAC for $\beta(t, \delta) = \log\left(\frac{2(K-1)t}{\delta}\right)$

Lemma

If $\mu_a < \mu_b$, whatever the sampling rule,

$$\mathbb{P}_{\mu}\left(\exists t \in \mathbb{N}: Z_{a,b}(t) > \log\left(rac{2t}{\delta}
ight)
ight) \leq \delta$$

The proof uses:

- → Barron's lemma (change of distribution)
- → and Krichevsky-Trofimov's universal distribution

(very information-theoretic ideas)

Asymptotic Optimality of the T&S strategy

Theorem

The Track-and-Stop strategy, that uses

- the Tracking sampling rule
- the Chernoff stopping rule with $eta(t,\delta) = \log\left(rac{2(K-1)t}{\delta}
 ight)$
- and recommends $\hat{a}_{ au_{\delta}} = \mathop{\mathrm{argmax}}_{a=1...K} \hat{\mu}_{a}(au_{\delta})$

is δ -PAC for every $\delta \in (0,1)$ and satisfies

$$\limsup_{\delta o 0} rac{\mathbb{E}_{m{\mu}}[au_{\delta}]}{\log(1/\delta)} = T^*(m{\mu}).$$

Why is the T&S Strategy asymptotically Optimal?

Why is the T&S Strategy asymptotically Optimal?

Sketch of proof (almost-sure convergence only)

- forced exploration $\implies N_a(t) \to \infty$ a.s. for all $a \in \{1, \dots, K\}$
- $ightharpoonup \mu(t)
 ightharpoonup \mu$ a.s.
- $ightarrow \mathbf{w}^* (\hat{oldsymbol{\mu}}(t))
 ightarrow \mathbf{w}^*$ a.s.
- ightharpoonup tracking rule: $\frac{N_a(t)}{t} \underset{t \to \infty}{\rightarrow} w_a^*$ a.s.
 - but the mapping $F: (\mu', w) \mapsto \inf_{\lambda \in Alt(\mu')} \sum_{a=1}^{\kappa} w_a d(\mu'_a, \lambda_a)$ is continuous at $(\mu, w^*(\mu))$:
- → $Z(t) = t \times F\left(\hat{\mu}(t), (N_a(t)/t)_{a=1}^K\right) \sim t \times F(\mu, \mathbf{w}^*) = t \times T^*(\mu)^{-1}$ and for every $\epsilon > 0$ there exists t_0 such that

$$t \geq t_0 \; \Rightarrow \; Z(t) \geq t imes (1+\epsilon)^{-1} T^*(\mu)^{-1}$$

$$\implies \text{ Thus } \tau_\delta \leq t_0 \wedge \inf \left\{ t \in \mathbb{N} : (1+\epsilon)^{-1} T^*(\mu)^{-1} t \geq \log(2(K-1)t/\delta) \right\} \\ \text{ and } \lim_{\delta \to 0} \frac{\tau_\delta}{\log(1/\delta)} \leq (1+\epsilon) T^*(\mu) \quad \textit{a.s.}$$

Numerical Experiments

- $\mu_1 = [0.5 \ 0.45 \ 0.43 \ 0.4]$ \rightarrow $w^*(\mu_1) = [0.42 \ 0.39 \ 0.14 \ 0.06]$
- $\mu_2 = [0.3 \ 0.21 \ 0.2 \ 0.19 \ 0.18] \rightarrow w^*(\mu_2) = [0.34 \ 0.25 \ 0.18 \ 0.13 \ 0.10]$

In practice, set the threshold to $\beta(t,\delta) = \log\left(\frac{\log(t)+1}{\delta}\right)$ (δ -PAC OK)

	Track-and-Stop	Chernoff-Racing	KL-LUCB	KL-Racing
μ_1	4052	4516	8437	9590
μ_2	1406	3078	2716	3334

Table 1: Expected number of draws $\mathbb{E}_{\mu}[\tau_{\delta}]$ for $\delta = 0.1$, averaged over N = 3000 experiments.

- ightharpoonup Empirically good even for 'large' values of the risk δ
- \rightarrow Racing is sub-optimal in general, because it plays $w_1 = w_2$
- \rightarrow LUCB is sub-optimal in general, because it plays $w_1 = 1/2$

Perspectives

For best arm identification, we showed that

$$\inf_{\mathsf{PAC \ algorithm}} \limsup_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\log(1/\delta)} = \sup_{\boldsymbol{w} \in \Sigma_{K}} \inf_{\boldsymbol{\lambda} \in \mathrm{Alt}(\boldsymbol{\mu})} \left(\sum_{a=1}^{K} w_{a} d(\mu_{a}, \lambda_{a}) \right)$$

and provided an efficient strategy asymptotically matching this bound.

Future work:

- ∗ anytime stopping → gives a confidence level
- ∗∗ find an ϵ-optimal arm
- * find the *m*-best arms
- *** design and analyze more stable algorithm (hint: optimism)
- ••• give a simple algorithm with a finite-time analysis candidate: play action maximizing the expected increase of Z(t)
- *** extend to structured and continuous settings

References

- O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz. Kullback-Leibler upper confidence bounds for optimal sequential allocation. *Annals of Statistics*, 2013.
- H. Chernoff. Sequential design of Experiments. The Annals of Mathematical Statistics, 1959.
- E. Even-Dar, S. Mannor, Y. Mansour, Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. JMLR, 2006.
- T.L. Graves and T.L. Lai. Asymptotically Efficient adaptive choice of control laws in controlled markov chains. SIAM Journal on Control and Optimization, 35(3):715743, 1997.
- S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC subset selection in stochastic multi- armed bandits. ICML, 2012.
- E. Kaufmann, O. Cappé, A. Garivier. On the Complexity of Best Arm Identification in Multi-Armed Bandit Models. JMLR, 2015
- A. Garivier, E. Kaufmann. Optimal Best Arm Identification with Fixed Confidence, COLT'16, New York, arXiv:1602.04589
- A. Garivier, P. Ménard, G. Stoltz. Explore First, Exploit Next: The True Shape of Regret in Bandit Problems.
- E. Kaufmann, S. Kalyanakrishnan. The information complexity of best arm identification, COLT 2013
- T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 1985.
- D. Russo. Simple Bayesian Algorithms for Best Arm Identification, COLT 2016
- N.K. Vaidhyan and R. Sundaresan. Learning to detect an oddball target. arXiv:1508.05572, 2015.