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Classical Bandits

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such
that for any possible choice of arm at ∈ {1, . . . ,K}

at time t, one receives the reward

Xt =Xat,t

where, for any 1 ≤ a ≤K and s ≥ 1, Xa,s ∼ νa, and
the (Xa,s)a,s are independent.

Reward distributions νa ∈ Fa parametric family, or not.
Examples: canonical exponential family, general
bounded rewards

Example Bernoulli rewards: θ ∈ [0,1]K , νa = B(θa)
Strategy The agent’s actions follow a dynamical strategy

π = (π1, π2, . . . ) such that

At = πt(X1, . . . ,Xt−1)



Classical Bandits

Real challenges

Randomized clinical trials
original motivation since the 1930’s
dynamic strategies can save resources

Recommender systems:

advertisement

website optimization

news, blog posts, . . .

Computer experiments
large systems can be simulated in order to optimize some
criterion over a set of parameters
but the simulation cost may be high, so that only few
choices are possible for the parameters

Games and planning (tree-structured options)



Classical Bandits

Performance Evaluation, Regret

Cumulated Reward ST = ∑
T
t=1Xt

Our goal Choose π so as to maximize

E [ST ] =
T

∑
t=1

K

∑
a=1

E[E [Xt1{At = a}∣X1, . . . ,Xt−1] ]

=
K

∑
a=1

µaE [Nπ
a (T )]

where Nπ
a (T ) = ∑t≤T 1{At = a} is the number of

draws of arm a up to time T , and µa = E(νa).
Regret Minimization equivalent to minimizing

RT = Tµ∗ −E [ST ] = ∑
a∶µa<µ∗

(µ∗ − µa)E [Nπ
a (T )]

where µ∗ ∈ max{µa ∶ 1 ≤ a ≤K}



Classical Bandits

Asymptotically Optimal Strategies

A strategy π is said to be consistent if, for any (νa)a ∈ F
K ,

1

T
E[ST ]→ µ∗

The strategy is efficient if for all θ ∈ [0,1]K and all α > 0,

RT = o(Tα)

There are efficient strategies and we consider the best
achievable asymptotic performance among efficient
strategies



Classical Bandits

The Bound of Lai and Robbins

One-parameter reward distribution νa = νθa , θa ∈ Θ ⊂ R .

Theorem [Lai and Robbins, ’85]

If π is an efficient strategy, then, for any θ ∈ ΘK ,

lim inf
T→∞

RT
log(T )

≥ ∑
a∶µa<µ∗

µ∗ − µa
KL(νa, ν∗)

where KL(ν, ν′) denotes the Kullback-Leibler divergence

For example, in the Bernoulli case:

KL(B̃(p), B̃(q)) = dBER(p, q) = p log
p

q
+ (1 − p) log

1 − p

1 − q



Classical Bandits

The Bound of Burnetas and Katehakis

More general reward distributions νa ∈ Fa

Theorem [Burnetas and Katehakis, ’96]

If π is an efficient strategy, then, for any θ ∈ [0,1]K ,

lim inf
T→∞

RT
log(T )

≥ ∑
a∶µa<µ∗

µ∗ − µa
Kinf(νa, µ∗)

where

Kinf(νa, µ
∗
) = inf {K(νa, ν

′
) ∶

ν′ ∈ Fa,E(ν′) ≥ µ∗}
ν∗

δ1

δ 1
2

δ0

Kinf (νa,µ⋆)

νa

µ∗



Classical Bandits

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85; Agrawal ’95; Auer&al ’02]

Construct an upper confidence bound for the expected
reward of each arm:

Sa(t)

Na(t)
´¹¹¹¹¹¸¹¹¹¹¹¹¶

estimated reward

+

¿
Á
ÁÀ log(t)

2Na(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79]
Its behavior is easily interpretable and intuitively appealing



Classical Bandits

Performance of UCB

For rewards in [0,1], the regret of UCB is upper-bounded as

E[RT ] = O(log(T ))

(finite-time regret bound) and

lim sup
T→∞

E[RT ]

log(T )
≤ ∑
a∶µa<µ∗

1

2(µ∗ − µa)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate
of the variance in the exploration bonus (e.g., [Audibert&al ’07])



Classical Bandits

The KL-UCB algorithm

The KL-UCB Algorithm, Annals of Statistics 2013
joint work with O. Cappé, O-A. Maillard, R. Munos, G. Stoltz

Parameters: An operator ΠF ∶M1(S)→ F ; a non-decreasing
function f ∶ N→ R
Initialization: Pull each arm of {1, . . . ,K} once

for t =K to T − 1 do
compute for each arm a the quantity

Ua(t) = sup{E(ν) ∶ ν ∈ F and KL(ΠF(ν̂a(t)), ν) ≤
f(t)

Na(t)
}

pick an arm At+1 ∈ arg max
a∈{1,...,K}

Ua(t)

end for



Classical Bandits

Exponential Family Rewards

Assume that Fa = F = canonical exponential family, i.e.
such that the pdf of the rewards is given by

pθa(x) = exp (xθa − b(θa) + c(x)), 1 ≤ a ≤K

for a parameter θ ∈ RK , expectation µa = ḃ(θa)

Ua(t) = sup{µ ∈ I ∶ d(µ̂a(t), µ) ≤
f(t)

Na(t)
}

For instance,
for Bernoulli rewards:

dBER(p, q) = p log
p

q
+ (1 − p) log

1 − p

1 − q

for exponential rewards pθa(x) = θae−θax:

dexp(u, v) = u − v + u log
u

v

The analysis is generic and yields a non-asymptotic regret
bound optimal in the sense of Lai and Robbins.



Classical Bandits

Regret bound

Theorem: Assume that all arms belong to a canonical, regular,
exponential family F = {νθ ∶ θ ∈ Θ} of probability distributions
indexed by its natural parameter space Θ ⊆ R. Then, with the
choice f(t) = log(t) + 3 log log(t) for t ≥ 3, the number of draws
of any suboptimal arm a is upper bounded for any horizon T ≥ 3
as

E [Na(T )] ≤
log(T )

d (µa, µ⋆)
+2

¿
Á
Á
ÁÀ

2πσ2
a,⋆ (d′(µa, µ⋆))

2

(d(µa, µ⋆))
3

√
log(T ) + 3 log(log(T ))

+ (4e +
3

d(µa, µ⋆)
) log(log(T )) + 8σ2

a,⋆ (
d′(µa, µ⋆)
d(µa, µ⋆)

)

2

+ 6 ,

where σ2a,⋆ = max{Var(νθ) ∶ µa ≤ E(νθ) ≤ µ
⋆} and where

d′( ⋅ , µ⋆) denotes the derivative of d( ⋅ , µ⋆).
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Results: Two-Arm Scenario
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Figure: Performance of various algorithms when θ = (0.9,0.8). Left:
average number of draws of the sub-optimal arm as a function of
time. Right: box-and-whiskers plot for the number of draws of the
sub-optimal arm at time T = 5,000. Results based on 50,000
independent replications



Classical Bandits

Non-parametric setting

Rewards are only assumed to be bounded (say in [0,1])

Need for an estimation procedure
with non-asymptotic guarantees
efficient in the sense of Stein / Bahadur

Ô⇒ Idea 1: use dBER (Hoeffding)

Ô⇒ Idea 2: Empirical Likelihood [Owen ’01]

Bad idea: use Bernstein / Bennett



Classical Bandits

First idea: use dBER

Idea: rescale to [0,1], and take the divergence dBER.

Ð→ because Bernoulli distributions maximize deviations
among bounded variables with given expectation:

Lemma (Hoeffding ’63)

Let X denote a random variable such that 0 ≤X ≤ 1 and denote
by µ = E[X] its mean. Then, for any λ ∈ R,

E [exp(λX)] ≤ 1 − µ + µ exp(λ) .

This fact is well-known for the variance, but also true for all
exponential moments and thus for Cramer-type deviation
bounds



Classical Bandits

Regret Bound for kl-UCB

Theorem
With the divergence dBER, for all T > 3,

E[Na(T )] ≤
log(T )

dBER(µa, µ⋆)
+

√
2π log(µ

⋆(1−µa)
µa(1−µ⋆))

(dBER(µa, µ⋆))
3/2

√

log(T ) + 3 log(log(T ))

+ (4e +
3

dBER(µa, µ⋆)
) log(log(T )) +

2(log(µ
⋆(1−µa)
µa(1−µ⋆)))

2

(dBER(µa, µ⋆))
2

+ 6 .

kl-UCB satisfies an improved logarithmic finite-time regret
bound
Besides, it is asymptotically optimal in the Bernoulli case



Classical Bandits

Comparison to UCB

KL-UCB addresses exactly the same problem as UCB, with the
same generality, but it has always a smaller regret as can be
seen from Pinsker’s inequality

dBER(µ1, µ2) ≥ 2(µ1 − µ2)
2
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Classical Bandits

Idea 2: Empirical Likelihood

U(ν̂n, ε) = sup{E(ν′) ∶ ν′ ∈M1(Supp(ν̂n)) and KL(ν̂n, ν
′
) ≤ ε}

or, rather, modified Empirical Likelihood:

U(ν̂n, ε) = sup{E(ν′) ∶ ν′ ∈M1(Supp(ν̂n) ∪ {1}) and KL(ν̂n, ν
′
) ≤ ε}

µ̂n

Un



Classical Bandits

Coverage properties of the modified EL confidence
bound

Proposition: Let ν0 ∈M1([0,1]) with E(ν0) ∈ (0,1) and let
X1, . . . ,Xn be independent random variables with common
distribution ν0 ∈M1([0,1]), not necessarily with finite support.
Then, for all ε > 0,

P{U(ν̂n, ε) ≤ E(ν0)} ≤ P{Kinf(ν̂n, E(ν0)) ≥ ε}

≤ e(n + 2) exp(−nε) .

Remark: For {0,1}–valued observations, it is readily seen that
U(ν̂n, ε) boils down to the upper-confidence bound above.
Ô⇒ This proposition is at least not always optimal: the
presence of the factor n in front of the exponential exp(−nε)
term is questionable.



Classical Bandits

Regret bound

Theorem: Assume that F is the set of finitely supported
probability distributions over S = [0,1], that µa > 0 for all arms a
and that µ⋆ < 1. There exists a constant M(νa, µ

⋆) > 0 only
depending on νa and µ⋆ such that, with the choice
f(t) = log(t) + log(log(t)) for t ≥ 2, for all T ≥ 3:

E[Na(T )] ≤
log(T )

Kinf(νa, µ⋆)
+

36

(µ⋆)4
(log(T ))

4/5
log ( log(T ))

+
⎛

⎝

72

(µ⋆)4
+

2µ⋆

(1 − µ⋆)Kinf(νa, µ⋆)
2

⎞

⎠
(log(T ))

4/5

+
(1 − µ⋆)2M(νa, µ

⋆)
2(µ⋆)2

(log(T ))
2/5

+
log(log(T ))

Kinf(νa, µ⋆)
+

2µ⋆

(1 − µ⋆)Kinf(νa, µ⋆)
2
+ 4 .
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Example: truncated Poisson rewards

for each arm 1 ≤ a ≤ 6 is associated with νa, a Poisson
distribution with expectation (2 + a)/4, truncated at 10.
N = 10,000 Monte-Carlo replications on an horizon of
T = 20,000 steps.
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Classical Bandits

Take-home message on classical bandit algorithms

1 Use kl-UCB rather than UCB-1 or UCB-2

2 Use KL-UCB if speed is not a problem

3 todo: improve on the deviation bounds, address general
non-parametric families of distributions

4 Alternative: Bayesian-flavored methods:
Bayes-UCB [Kaufmann, Cappé, G.]

Thompson sampling [Kaufmann & al.]
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Best arm identification in two-armed bandits

Motivation

On the Complexity of Best Arm Identification in Multi-Armed
Bandit Models, ArXiv (COLT 2014)
joint work with O. Cappé and E. Kaufmann



Best arm identification in two-armed bandits

Our goal

Improve performance:

Ü fixed number of test users − > smaller probability of error
Ü fixed probability of error − > fewer test users

Tools: sequential allocation and stopping



Best arm identification in two-armed bandits

The model

A two-armed bandit model is
a set ν = (ν1, ν2) of two probability distributions (’arms’)
with respective means µ1 and µ2
a∗ = argmaxa µa is the (unknown) best am

To find the best arm, an agent interacts with the bandit model
with

a sampling rule (At)t∈N where At ∈ {1,2} is the arm chosen
at time t (based on past observations) − > a sample
Zt ∼ νAt is observed
a stopping rule τ indicating when he stops sampling the
arms
a recommendation rule âτ ∈ {1,2} indicating which arm he
thinks is best (at the end of the interaction)

In classical A/B Testing, the sampling rule At is uniform on
{1,2} and the stopping rule τ = t is fixed in advance.



Best arm identification in two-armed bandits

Two possible goals

The agent’s goal is to design a strategy A = ((At), τ, âτ)
satisfying

Fixed-budget setting Fixed-confidence setting

τ = t Pν(âτ ≠ a∗) ≤ δ

pt(ν) ∶= Pν(ât ≠ a∗) as small Eν[τ] as small
as possible as possible

An algorithm using uniform sampling is

Fixed-budget setting Fixed-confidence setting

a classical test of a sequential test of
(µ1 > µ2) against (µ1 < µ2) (µ1 > µ2) against (µ1 < µ2)

based on t samples with probability of error
uniformly bounded by δ

[Siegmund 85]: sequential tests can save samples !



Best arm identification in two-armed bandits

The complexities of best-arm identification

For a classM bandit models, algorithm A = ((At), τ, âτ) is...

Fixed-budget setting Fixed-confidence setting
consistent onM if δ-PAC onM if

∀ν ∈M, pt(ν) = Pν(ât ≠ a∗) Ð→
t→∞ 0 ∀ν ∈M, Pν(âτ ≠ a∗) ≤ δ

From the literature
pt(ν) ≃ exp (− t

CH(ν)) Eν[τ] ≃ C ′H ′(ν) log 1
δ

[Audibert et al. 10],[Bubeck et al. 11] [Mannor Tsitsilis 04],[Even-Dar al. 06]
[Bubeck et al. 13],... [Kalanakrishnan et al.12],...

Two complexities

κB(ν) = inf
A cons.

(lim sup
t→∞

− 1
t log pt(ν))

−1
κC(ν) = inf

A δ−PAC
lim sup
δ→0

Eν[τ]
log(1/δ)

for a probability of error ≤ δ, for a probability of error ≤ δ
budget t ≃ κB(ν) log 1

δ Eν[τ] ≃ κC(ν) log 1
δ



Best arm identification in two-armed bandits Lower bounds on the complexities

Changes of distribution

New formulation for a change of distribution

Let ν and ν′ be two bandit models. Let N1 (resp. N2) denote
the total number of draws of arm 1 (resp. arm 2) by algorithm
A). For any A ∈ Fτ such that 0 < Pν(A) < 1

Eν[N1]KL(ν1, ν′1) +Eν[N2]KL(ν2, ν′2) ≥ dBER(Pν(A),Pν′(A)),

where dBER(x, y) = x log(x/y) + (1 − x) log ((1 − x)/(1 − y)).



Best arm identification in two-armed bandits Lower bounds on the complexities

General lower bounds

Theorem 1

LetM be a class of two armed bandit models that are
continuously parametrized by their means. Let ν = (ν1, ν2) ∈M.

Fixed-budget setting Fixed-confidence setting

any consistent algorithm satisfies any δ-PAC algorithm satisfies

lim supt→∞ −1
t log pt(ν) ≤ K∗

(ν1, ν2) Eν[τ] ≥ 1
K∗(ν1,ν2) log ( 1

2δ
)

with K∗
(ν1, ν2) with K∗(ν1, ν2)

= KL(ν∗, ν1) = KL(ν∗, ν2) = KL(ν1, ν∗) = KL(ν2, ν∗)

Thus, κB(ν) ≥ 1
K∗(ν1,ν2) Thus, κC(ν) ≥ 1

K∗(ν1,ν2)



Best arm identification in two-armed bandits The complexity of A/B Testing with Gaussian feedback

Fixed-budget setting

For fixed (known) values σ1, σ2, we consider Gaussian bandit
models

M = {ν = (N (µ1, σ
2
1) ,N (µ2, σ

2
2)) ∶ (µ1, µ2) ∈ R

2, µ1 ≠ µ2}

Theorem 1:

κB(ν) ≥
2(σ1 + σ2)

2

(µ1 − µ2)2

A strategy allocating t1 = ⌈ σ1
σ1+σ2 t⌉ samples to arm 1 and

t2 = t − t1 samples to arm 1, and recommending the
empirical best satisfies

lim inf
t→∞ −

1

t
log pt(ν) ≥

(µ1 − µ2)
2

2(σ1 + σ2)2

κB(ν) =
2(σ1 + σ2)

2

(µ1 − µ2)2



Best arm identification in two-armed bandits The complexity of A/B Testing with Gaussian feedback

Fixed-confidence setting: Algorithm

The α-Elimination algorithm with exploration rate β(t, δ)

Ü chooses At in order to keep a proportion N1(t)/t ≃ α
Ü if µ̂a(t) is the empirical mean of rewards obtained from a up

to time t, σ2
t (α) = σ

2
1/⌈αt⌉ + σ

2
2/(t − ⌈αt⌉),

τ = inf {t ∈ N ∶ ∣µ̂1(t) − µ̂2(t)∣ >
√

2σ2
t (α)β(t, δ)}
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Ü recommends the empirical best arm âτ = argmaxaµ̂a(τ)



Best arm identification in two-armed bandits The complexity of A/B Testing with Gaussian feedback

Fixed-confidence setting: Results

From Theorem 1:

Eν[τ] ≥
2(σ1 + σ2)

2

(µ1 − µ2)2
log (

1

2δ
)

σ1
σ1+σ2 -Elimination with β(t, δ) = log t

δ + 2 log log(6t) is δ-PAC
and

∀ε > 0, Eν[τ] ≤ (1 + ε)
2(σ1 + σ2)

2

(µ1 − µ2)2
log (

1

2δ
) + oε

δ→0
(log

1

δ
)

κC(ν) =
2(σ1 + σ2)

2

(µ1 − µ2)2



Best arm identification in two-armed bandits The complexity of A/B Testing with Gaussian feedback

Gaussian distributions: Conclusions

For any two fixed values of σ1 and σ2,

κB(ν) = κC(ν) =
2(σ1 + σ2)

2

(µ1 − µ2)2

If the variances are equal, σ1 = σ2 = σ,

κB(ν) = κC(ν) =
8σ2

(µ1 − µ2)2

uniform sampling is optimal only when σ1 = σ2
1/2-Elimination is δ-PAC for a smaller exploration rate
β(t, δ) ≃ log(log(t)/δ)



Best arm identification in two-armed bandits The complexity of A/B Testing with binary feedback

Lower bounds for Bernoulli bandit models

M = {ν = (B(µ1),B(µ2)) ∶ (µ1, µ2) ∈]0; 1[2, µ1 ≠ µ2},

shorthand: K(µ,µ′) = KL (B(µ),B(µ′)).

Fixed-budget setting Fixed-confidence setting

any consistent algorithm satisfies any δ-PAC algorithm satisfies

lim supt→∞ −1
t log pt(ν) ≤ K∗

(µ1, µ2) Eν[τ] ≥ 1
K∗(µ1,µ2) log ( 1

2δ
)

(Chernoff information)

K∗
(µ1, µ2) > K∗(µ1, µ2)



Best arm identification in two-armed bandits The complexity of A/B Testing with binary feedback

Algorithms using uniform sampling

For any consistent... For any δ-PAC...

... algorithm pt(ν) ≳ e
−K∗(µ1,µ2)t Eν[τ]

log(1/δ) ≳
1

K∗(µ1,µ2)

... algorithm using pt(ν) ≳ e
−K(µ,µ1)+K(µ,µ2)

2
t Eν[τ]

log(1/δ) ≳
2

K(µ1,µ)+K(µ2,µ)
uniform sampling with µ = f(µ1, µ2) with µ =

µ1+µ2
2

Remark: Quantities in the same column appear to be close
from one another

⇒ Binary rewards: uniform sampling close to optimal
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Algorithms using uniform sampling

For any consistent... For any δ-PAC...

... algorithm pt(ν) ≃ e
−K∗(µ1,µ2)t Eν[τ]

log(1/δ) ≳
1

K∗(µ1,µ2)

... algorithm using pt(ν) ≃ e
−K(µ,µ1)+K(µ,µ2)

2
t Eν[τ]

log(1/δ) ≳
2

K(µ1,µ)+K(µ2,µ)
uniform sampling with µ = f(µ1, µ2) with µ =

µ1+µ2
2

Remark: Quantities in the same column appear to be close
from one another

⇒ Binary rewards: uniform sampling close to optimal
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Fixed-budget setting

We show that

κB(ν) =
1

K∗
(µ1, µ2)

(matching algorithm not implementable in practice)

The algorithm using uniform sampling and recommending the
empirical best arm is preferable (and very close to optimal)
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Fixed-confidence setting

δ-PAC algorithms using uniform sampling satisfy

Eν[τ]
log(1/δ)

≥
1

I∗(ν)
with I∗(ν) =

K (µ1,
µ1+µ2

2
) +K (µ2,

µ1+µ2
2

)

2
.

The algorithm using uniform sampling and

τ = inf {t ∈ 2N∗
∶ ∣µ̂1(t) − µ̂2(t)∣ > log

log(t) + 1

δ
}

is δ-PAC but not optimal: E[τ]
log(1/δ) ≃

2
(µ1−µ2)2 > 1

I∗(ν) .

A better stopping rule NOT based on the difference of empirical
means

τ = inf {t ∈ 2N∗
∶ tI∗(µ̂1(t), µ̂2(t)) > log

log(t) + 1

δ
}



Best arm identification in two-armed bandits The complexity of A/B Testing with binary feedback

Bernoulli distributions: Conclusion

Regarding the complexities:
κB(ν) = 1

K∗(µ1,µ2)
κC(ν) ≥

1
K∗(µ1,µ2) >

1
K∗(µ1,µ2)

Thus
κC(ν) > κB(ν)

Regarding the algorithms
There is not much to gain by departing from uniform
sampling
In the fixed-confidence setting, a sequential test based on
the difference of the empirical means is no longer optimal



Best arm identification in two-armed bandits The complexity of A/B Testing with binary feedback

Conclusion on Best Arm Identification

the complexities κB(ν) and κC(ν) are not always equal
(and feature some different informational quantities)
for Bernoulli distributions and Gaussian with similar
variances, strategies using uniform sampling are (almost)
optimal
strategies using random stopping do not necessarily lead
to a saving in terms of the number of sample used

Generalization to m best arms identification among K
arms
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Optimal Exploration with Probabilistic Expert Advice

The model

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

Subset A ⊂ X of
important items
∣X ∣ ≫ 1, ∣A∣ ≪ ∣X ∣

Access to X only
by probabilistic
experts (Pi)1≤i≤K :
sequential
independent
draws

Goal: discover rapidly the elements of A
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Optimal Exploration with Probabilistic Expert Advice

Search space : A ⊂ Ω discrete set
Probabilistic experts : Pi ∈M1(Ω) for i ∈ {1, . . . ,K}

Requests : at time t, calling expert It yields a realization of
Xt =XIt,t independent with law Pa

Goal : find as many distinct elements of A as possible
with few requests :

Fn = Card (A ∩ {X1, . . . ,Xn})
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Goal

At each time step t = 1,2, . . . :
pick an index It = πt(I1, Y1, . . . , Is−1, Ys−1) ∈ {1, . . . ,K}

according to past observations
observe Yt =XIt,nIt,t

∼ PIt , where

ni,t =∑
s≤t

1{Is = i}

Goal: design the strategy π = (πt)t so as to maximize the
number of important items found after t requests

F π(t) = ∣A ∩ {Y1, . . . , Yt}∣

Assumption: non-intersecting supports

A ∩ supp(Pi) ∩ supp(Pj) = ∅ for i ≠ j
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Is it a Bandit Problem ?

It looks like a bandit problem. . .
sequential choices among K options
want to maximize cumulative rewards
exploration vs exploitation dilemma

. . . but it is not a bandit problem !
rewards are not i.i.d.
destructive rewards: no interest to observe twice the same
important item
all strategies eventually equivalent
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The oracle strategy

Proposition: Under the non-intersecting support hypothesis,
the greedy oracle strategy selecting the expert with highest
‘missing mass’

I∗t ∈ arg max
1≤i≤K

Pi (A ∖ {Y1, . . . , Yt})

is optimal: for every possible strategy π, E[F π(t)] ≤ E[F ∗(t)].

Remark: the proposition if false if the supports may intersect

Ô⇒ estimate the “missing mass of important items”!
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Missing mass estimation

Let us first focus on one expert i: P = Pi,Xn =Xi,n

X1, . . . ,Xn independent draws of P

On(x) =
n

∑
m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen important items

Rn = ∑
x∈A

P (x)1{On(x) = 0} ?
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The Good-Turing Estimator

Idea: use the hapaxes = items seen only once (linguistic)

R̂n =
Un
n
, where Un = ∑

x∈A
1{On(x) = 1}

Lemma [Good ’53]: For every distribution P ,

0 ≤ E[R̂n] −E[Rn] ≤
1

n

Proposition: With probability at least 1 − δ for every P ,

R̂n −
1

n
− (1 +

√
2)

√
log(4/δ)

n
≤ Rn ≤ R̂n + (1 +

√
2)

√
log(4/δ)

n

See [McAllester and Schapire ’00, McAllester and Ortiz ’03]:
deviations of R̂n: McDiarmid’s inequality
deviations of Rn: negative association
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The Good-UCB algorithm [Bubeck, Ernst & G.]

Optimistic algorithm based on Good-Turing’s estimator :

It+1 = arg max
i∈{1,...,K}

⎧⎪⎪
⎨
⎪⎪⎩

Hi(t)

Ni(t)
+ c

¿
Á
ÁÀ log (t)

Ni(t)

⎫⎪⎪
⎬
⎪⎪⎭

Ni(t) = number of draws of Pi up to time t
Hi(t) = number of elements of A seen exactly once thanks
to Pi
c = tuning parameter
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Classical analysis

Theorem: For any t ≥ 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 +

√
2)

√
3)

satisfies

E [F ∗
(t) − FUCB(t)] ≤ 17

√
Kt log(t) + 20

√
Kt +K +K log(t/K)

Remark: Usual result for bandit problem, but not-so-simple
analysis
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A Typical Run of Good-UCB
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The macroscopic limit

Restricted framework: Pi = U{1, . . . ,N}

N →∞

∣A ∩ supp(Pi)∣/N → qi ∈ (0,1), q = ∑i qi
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The Oracle behaviour

The limiting discovery process of the Oracle strategy is
deterministic

Proposition: For every λ ∈ (0, q1), for every sequence (λN)N

converging to λ as N goes to infinity, almost surely

lim
N→∞

TN∗ (λN)

N
=∑

i

(log
qi
λ
)
+
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Oracle vs. uniform sampling

Oracle: The proportion of important items not found after
Nt draws tends to

q−F ∗
(t) = I(t)q

I(t) exp (−t/I(t)) ≤Kq
K

exp(−t/K)

with q
K
= (∏

K
i=1 qi)

1/K
the geometric mean of the

(qi)i.
Uniform: The proportion of important items not found after

Nt draws tends to Kq̄K exp(−t/K)

Ô⇒ Asymptotic ratio of efficiency

ρ(q) =
q̄K
q
K

=

1
K ∑

k
i=1 qi

(∏
k
i=1 qi)

1/K ≥ 1

larger if the (qi)i are unbalanced
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Macroscopic optimality

Theorem: Take C = (1 +
√

2)
√
c + 2 with c > 3/2 in the

Good-UCB algorithm.
For every sequence (λN)N converging to λ as N goes to
infinity, almost surely

lim sup
N→+∞

TNUCB(λN)

N
≤∑

i

(log
qi
λ
)
+

The proportion of items found after Nt steps FGUCB

converges uniformly to F ∗ as N goes to infinity
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Simulation

Number of items found by Good-UCB (line), the oracle (bold dashed), and by uniform

sampling (light dotted) as a function of time, for sample sizes N = 128,N = 500,

N = 1000 et N = 10000, in an environment with 7 experts.
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