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Classical Bandits

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters 6 = (01, ...,0x) such
that for any possible choice of arm a; € {1,..., K}
at time t, one receives the reward

Xt = X(L/,,t

where, forany 1 <a< K and s >1, X, s ~ v, and
the (X, 5)q,s are independent.
Reward distributions v, € F, parametric family, or not.

Examples: canonical exponential family, general
bounded rewards

Example Bernoulli rewards: 6 € [0,1]%, v, = B(6,)

Strategy The agent’s actions follow a dynamical strategy
m = (m1,m2,...) such that

At = T('t(Xl, Ce ,Xt_l)

] =5 =



Classical Bandits

m Randomized clinical trials

m original motivation since the 1930’s
m dynamic strategies can save resources

m Recommender systems:

m advertisement

m website optimization

B news, blog posts, ...

ORELLY

m Computer experiments
m large systems can be simulated in order to optimize some
criterion over a set of parameters
m but the simulation cost may be high, so that only few
choices are possible for the parameters

m Games and planning (tree-structured options)



Classical Bandits
Performance Evaluation, Regret

Cumulated Reward Sr = Y1, X;
Our goal Choose 7 so as to maximize

g [E[X1{4 = a}|X1,.. Xea] ]

E [N (T)]

where N (T) = ¥,.r 1{A; = a} is the number of
draws of arm a up to time T, and pu, = E(v,).
Regret Minimization equivalent to minimizing
Rp=Tp" -E[Sr]= ., (1" - pa)E[N;(T)]
b <p*
where p* e max{p,:1<a< K}

=} F



Asymptotically Optimal Strategies

m A strategy 7 is said to be consistent if, for any (v,)q € FX

1
—E[St] > u*
TELST] = p

3

m The strategy is efficient if for all ¢ [0, 1] and all a > 0,

Ry = o(T%)

m There are efficient strategies and we consider the best
achievable asymptotic performance among efficient
strategies



Classical Bandits

One-parameter reward distribution v, = vy,,0, € © cR .

Theorem [Lai and Robbins, ’85]

If 7 is an efficient strategy, then, for any 6 ¢ ©F,

B = P

li — —
imin RL(va, ")

R >
T—oo log(T) G

where KL(v, ') denotes the Kullback-Leibler divergence

For example, in the Bernoulli case:

KL(B(). () = dus(p.0) = plog + (1= p) g =



Classical Bandits

More general reward distributions v, € F,

Theorem [Burnetas and Katehakis, '96]

N|

If 7 is an efficient strategy, then, for any 0 € [0,1]

Ry 5 B = P
g <p* Kinf(ytlmu*)

lim inf
T—o0 log(T)

where

King(va, 1) = inf {K (va, ') :
Ve F, E(V) > '}




Classical Bandits

UCB [Lai&Robins '85; Agrawal '95; Auer&al '02]

m Construct an upper confidence bound for the expected
reward of each arm:

Sa(t) | log(t)
Ny (t) 2N, (1)
——

estimated reward  cyploration bonus

m Choose the arm with the highest UCB

m |t is an index strategy [Gittins '79]
m |ts behavior is easily interpretable and intuitively appealing



Classical Bandits

For rewards in [0, 1], the regret of UCB is upper-bounded as
E[Rr] = O(log(T))
(finite-time regret bound) and

lim sup E[fr] < _
T—o0 log(T) - Qg <p* 2(M* - :U’a)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate
of the variance in the exploration bonus (e.g., [Audibert&al '07])



Classical Bandits

The KL-UCB Algorithm, Annals of Statistics 2013
joint work with O. Cappé, O-A. Maillard, R. Munos, G. Stoltz

Parameters: An operator I+ : 91;(S) — F; a non-decreasing
function f: N - R

Initialization: Pull each arm of {1,..., K} once

fort=KtoT-1do
compute for each arm a the quantity

Ua(t):sup{E(u): veF and KL(Ix(7a(1)),v)< f(t)}

pick anarm A € argmax U,(t)
ae{l,...,K}
end for



Classical Bandits

m Assume that F, = F = canonical exponential family, i.e.
such that the pdf of the rewards is given by

o, (z) = exp (20, — b(0,) + c(z)), 1<a<K

for a parameter # ¢ RX, expectation 1, = b(6,)
]

0.0 =supu e T+ (i), ) s 0}

m For instance,
m for Bernoulli rewards:

1-
doa(p,4) = plog . + (1-p)log 1—

m for exponential rewards pg, () = f,e7%%:
u
dexp(u,v) = u—v+ulog —
(%

m The analysis is generic and yields a non-asymptotic regret
bound optimal in the sense of Lai and Robbins.



Classical Bandits

Theorem: Assume that all arms belong to a canonical, regular,
exponential family F = {1y : 6 € ©} of probability distributions
indexed by its natural parameter space © ¢ R. Then, with the
choice f(t) =log(t) + 3loglog(t) for t > 3, the number of draws
of any suboptimal arm « is upper bounded for any horizon T' > 3
as

log(T 2102, (d'(pa, p* 2
E[NQ(T)]Sd(Hg;M)*)Q\I (d(im(:*);;)) V1og(T) + 3log(log(T))

4 * 2
+ (4e + log(log(T)) + 807, (d(,ua,,u)) +6,

rowa)
d(fta, p1*) d(pias 1)

where o2 , = max{ Var(vp) : p1q < E(vp) < p*} and where
d'(-,u*) denotes the derivative of d( -, u*).



Classical Bandits

Results: Two-Arm Scenario
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Figure: Performance of various algorithms when 6 = (0.9,0.8). Left:
average number of draws of the sub-optimal arm as a function of
time. Right: box-and-whiskers plot for the number of draws of the
sub-optimal arm at time 7" = 5,000. Results based on 50,000
independent replications
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Classical Bandits
Non-parametric setting

m Rewards are only assumed to be bounded (say in [0, 1])
m Need for an estimation procedure

m with non-asymptotic guarantees

m efficient in the sense of Stein / Bahadur

— |dea 1: use dg, (Hoeffding)

— |dea 2: Empirical Likelihood [Owen '01]

m Bad idea: use Bernstein / Bennett



Classical Bandits

ldea: rescale to [0, 1], and take the divergence dg.

—> because Bernoulli distributions maximize deviations
among bounded variables with given expectation:

Lemma (Hoeffding '63)

Let X denote a random variable such that 0 < X < 1 and denote
by = E[X] its mean. Then, for any X € R,

Elexp(AX)] <1-p+pexp(N).

This fact is well-known for the variance, but also true for all
exponential moments and thus for Cramer-type deviation
bounds



Classical Bandits

With the divergence dy., for all T > 3,

log(r) _, V2mlog(5)

I—La(lf'u*)
doen(Has 1) (dgn(pta, p1*)) ™"

o(melt)

(dsen(fta; M*))2

E[N,(T)] < \/log(T) +31log(log(T))

+ (4e + o o) ) log(log(T)) +

m kl-UCB satisfies an improved logarithmic finite-time regret
bound

m Besides, it is asymptotically optimal in the Bernoulli case



Classical Bandits

Comparison to UCB

KL-UCB addresses exactly the same problem as UCB, with the
same generality, but it has always a smaller regret as can be
seen from Pinsker’s inequality

dBEH(,u].HuQ) 2 2(“1 - /'L2)2

09F ¢ \
v ——K(07,9)

sk N —— 207
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ldea 2: Empirical Likelihood

U (im, ) =sup{ E(v') : v/ € M1 (Supp(i,)) and KL (i, 1) < e
or, rather, modified Empirical Likelihood:.

U(Dp,€) = sup{E(l/) :v" e My (Supp(2,) U {1}) and KL(,, ') < (—:}
T 1t ! I

An

Tttt

11!

DA



Classical Bandits

Proposition: Let vy € M ([0, 1]) with E () € (0,1) and let
X1,..., X, be independent random variables with common
distribution 1 € 9% ([0,1]), not necessarily with finite support.
Then, for all € > 0,

P{U (6, €) < E(v)} < ]P’{Kmf(ﬁn, E(w)) > e}

<e(n+2)exp(—-ne) .

Remark: For {0, 1}—valued observations, it is readily seen that
U (¥, €) boils down to the upper-confidence bound above.

== This proposition is at least not always optimal: the
presence of the factor n in front of the exponential exp(—ne)
term is questionable.



Classical Bandits

Theorem: Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that p, > 0 for all arms a
and that ©* < 1. There exists a constant M (v, ™) > 0 only
depending on v, and p* such that, with the choice

f(t) =log(t) + log(log(t)) fort>2, forall T > 3:

E[N(T)] <

log(T') 36 45
Kot (e p”) (M*)4(10g(T)) log (log(T))
I 2w o 4/5
’ ( ()" ' (1-pr) Kmf(va,ﬂ*)Q) (log(T)
(1= ") M (v, 1) 2/5
gy (@)
. log(log(T)) . 20" N

Kinf(Vaa,U*) (1-p*) Kmf(ya,u*)Q



Classical Bandits
Example: truncated Poisson rewards

m for each arm 1 < a < 6 is associated with v,, a Poisson
distribution with expectation (2 + a)/4, truncated at 10.

m N =10,000 Monte-Carlo replications on an horizon of
T = 20,000 steps.

S
Time (log scale)




Classical Bandits

Use kI-UCB rather than UCB-1 or UCB-2
Use KL-UCB if speed is not a problem

todo: improve on the deviation bounds, address general
non-parametric families of distributions

Alternative: Bayesian-flavored methods:
m Bayes-UCB [Kaufmann, Cappé, G.]

m Thompson sampling [Kaufmann & al.]



Best arm identification in two-armed bandits
Roadmap

Best arm identification in two-armed bandits
m Lower bounds on the complexities
m The complexity of A/B Testing with Gaussian feedback
m The complexity of A/B Testing with binary feedback
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Best arm identification in two-armed bandits
Motivation

On the Complexity of Best Arm Identification in Multi-Armed
Bandit Models, ArXiv (COLT 2014)

joint work with O. Cappé and E. Kaufmann

' 'A'/ Visitor for testing 8 8 8
Website version A

T~

Website version B

e
E
[ ]
| |

10 Conversions

5 Conversions

DA



Best arm identification in two-armed bandits
Our goal

Improve performance:

=» fixed number of test users — > smaller probability of error
=» fixed probability of error — > fewer test users

Tools: sequential allocation and stopping



Best arm identification in two-armed bandits

A two-armed bandit model is
m asetv = (11, 1,) of two probability distributions ('arms’)
with respective means 1 and po
B o = argmax, u, is the (unknown) best am

To find the best arm, an agent interacts with the bandit model
with
m a sampling rule (A¢)«n Where A, € {1,2} is the arm chosen
at time ¢ (based on past observations) — > a sample
Zy ~ vy, is observed
m a stopping rule T indicating when he stops sampling the
arms
m a recommendation rule a, € {1,2} indicating which arm he
thinks is best (at the end of the interaction)

In classical A/B Testing, the sampling rule A; is uniform on
{1,2} and the stopping rule 7 =t is fixed in advance.



Best arm identification in two-armed bandits

The agent’s goal is to design a strategy A = ((A4;),7,a;)

satisfying

Fixed-budget setting

Fixed-confidence setting

T=t1

pe(v) =P, (a; # a*) as small
as possible

P,(ar #a*) <o

E,[7] as small
as possible

An algorithm using uniform sampling is

Fixed-budget setting

Fixed-confidence setting

a classical test of

(i1 > p2) against (1 < p2)
based on ¢ samples

a sequential test of
(1 > p2) against (1 < p2)
with probability of error
uniformly bounded by §

[Siegmund 85]: sequential tests can save samples !




Best arm identification in two-armed bandits

The complexities of best-arm identification

For a class M bandit models, algorithm A = ((A;),7,a.) is...

Fixed-budget setting

Fixed-confidence setting

consistent on M if
VveM, p(v) =P, (as #a™) = 0

0-PAC on M if
VveM, P,(ar #a*)<§

From the literature

t
) = exp (=7t )
[Audibert et al. 10],[Bubeck et al. 11]
[Bubeck et al. 13],...

E,[7]~C'"H'(v)log %
[Mannor Tsitsilis 04],[Even-Dar al. 06]
[Kalanakrishnan et al.12],...

Two complexities

-1
kg(v) =inf (limsup - %logpt(y))
t—o0

A cons.

for a probability of error < 6,
budget t ~ kp(v) log%

kc(v) = inf hmsup1 (E/};)

A §-PAC

for a probability of error < ¢
E 7]z rc(@)logs . |-




Best arm identification in two-armed bandits Lower bounds on the complexities

Changes of distribution

New formulation for a change of distribution

Let v and v be two bandit models. Let N; (resp. N>) denote
the total number of draws of arm 1 (resp. arm 2) by algorithm
A). Forany Ae F. suchthat0<P,(A)<1

Ey [N1]KL(v1,v1) + Ey [N JKL(v2, 1) > deen(Py(A), Pur (A)),

where doeq (2, y) = zlog(z/y) + (1 - z)log ((1-2)/(1-y)).
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Best arm identification in two-armed bandits

Theorem 1

Let M be a class of two armed bandit models that are
continuously parametrized by their means. Let v = (v1,15) € M.

Fixed-budget setting

Fixed-confidence setting

any consistent algorithm satisfies
limsup,_, o —% log pt(v) < K*(v1,19)

with K*(Ul, 1/2)
~KL(v*,11) = KL(v", )

any 6-PAC algorithm satisfies

Ev[7]2 ggrmy 108 (25)

with K*(Ul, 1/2)
= KL(v1,v.) = KL(vg, v4)

Thus, kp(v) > —K )

ThUS HC(V) 2 W

V2)




Best arm identification in two-armed bandits

Fixed-budget setting

The complexity of A/B Testing with Gaussian feedback

models

For fixed (known) values o1, 02, we consider Gaussian bandit

M={v=(N

(Mh‘fl) N(M,Uz)) (p1, p12) eR? y 11 ¢M2}
m Theorem 1

/ﬂZB(l/) S 2(0’1 + 0'2)

" (-

p12)?
m A strategy allocating t; = [

e ] samples to arm 1 and
ta =t -t samples to arm 1, and recommending the
empirical best satisfies

)2
11m1nf—%logpt(y)> (= p2)

2(0‘1 +O’2)2
HB(I/) _ 2(01 + 02)

(1 = p2)?




Best arm identification in two-armed bandits The complexity of A/B Testing with Gaussian feedback

Fixed-confidence setting: Algorithm

The a-Elimination algorithm with exploration rate 5(¢, )

=» chooses A; in order to keep a proportion Ny (¢)/t ~ «
=» if i, () is the empirical mean of rewards obtained from « up
totime ¢, 0?(a) = o} /[at] + 03/(t - [at]),

r=int {t €N [ (0) - ia(0)] > \/207(2)5(1.0) )

0.5 1.0
I I

0.0
I

-1.0 -05
I I

=» recommends the empirical best arm a, = argmax,, /i, (7)
[m] = = =

it
N)
pe)
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Best arm identification in two-armed bandits

Fixed-confidence setting: Results

The complexity of A/B Testing with Gaussian feedback

m From Theorem 1:

EV[T] S 2(0’1 +0’2)2

lo ( ! )
= (- )2 2\
u 0'10-;-10'2
and

-Elimination with 3(¢,6) = log £ + 2loglog(6t) is 5-PAC

2
Ves0, By[r]<(1+e)2loLto2)

| (i)+ 0 (10 1)
(i -m2)? 2\26) " 2\ %5

6—0

_ 2(0‘1 +O'2)2
") =




Best arm identification in two-armed bandits

Gaussian distributions: Conclusions

The complexity of A/B Testing with Gaussian feedback

For any two fixed values of o1 and o9,

kp(v) = ko(v) =

2(0’1 + 0'2)2

(p1 = p2)?
If the variances are equal, o1 = 09 = 0,

802
kp(v) =rc(v) =
(1 = pi2)?
m uniform sampling is optimal only when o; = o9

m 1/2-Elimination is 9-PAC for a smaller exploration rate
B(t,6) ~log(log(t)/0)



Best arm identification in two-armed bandits

The complexity of A/B Testing with binary feedback

Lower bounds for Bernoulli bandit models

M ={v=(B(u1),B(p2)) : (1, p2) €]0; 1[%, p1 # pa},
shorthand: K(u, 1) = KL (B(u), B(1')).

Fixed-budget setting

any consistent algorithm satisfies

Fixed-confidence setting

any 6-PAC algorithm satisfies
lim sup,_, o, —3 log p; (v) < K* (1, pi2)

(Chernoff information)

1
(7] 2 gy 108 (25)

K* (1, p2) > K (1, p12)




Best arm identification in two-armed bandits

Algorithms using uniform sampling

The complexity of A/B Testing with binary feedback

For any consistent... For any §-PAC..
| th > —K* (p1,p2)t E,[7] > 1
- aigorithm p(v)ze log(1/8) ~ Ki(u1,p2)
_ _ K(7moin1) +K(E.12) -
... algorithm using | p;(v) 2 e~ . 101?(&/}5) >
uniform sampling with @ = f(u1, p2)

2
K(Mlvﬂ):K(szﬁ)
1 _ 2
with p = #1552
Remark: Quantities in the same column appear to be close
from one another

= Binary rewards: uniform sampling close to optimal



Best arm identification in two-armed bandits

Algorithms using uniform sampling

The complexity of A/B Testing with binary feedback

For any consistent... For any §-PAC..
... algorithm pr(v) = e Lt IO]Eg”(%) 2 K*(,}hm)
_ _ K(71 ) +K (. 112) -
... algorithm using | p:(v) ~ e~ 7t 101?(&/}5) 2
uniform sampling with @ = f(u1, p2)

2
K(Mlvﬂ):K(szﬁ)
1 _ 2
with p = #1552
Remark: Quantities in the same column appear to be close
from one another

= Binary rewards: uniform sampling close to optimal



Best arm identification in two-armed bandits

Fixed-budget setting

The complexity of A/B Testing with binary feedback

We show that

P P

K*(p1, p2)
(matching algorithm not implementable in practice)

The algorithm using uniform sampling and recommending the
empirical best arm is preferable (and very close to optimal)



Best arm identification in two-armed bandits

Fixed-confidence setting

The complexity of A/B Testing with binary feedback

E,[7] S 1
log(1/6) ~ L.(v)

0-PAC algorithms using uniform sampling satisfy

with 7.(v) = (p1, 2512 ) + K (g, L1h22)

2

The algorithm using uniform sampling and

1 1
= inf {t € 2N™ 1 |11 (t) — f12(t)| > log %}
is 0-PAC but not optimal: log([l/]d) G >
means

1
L.(v)~
A better stopping rule NOT based on the difference of empirical

= inf {t € 2N" : t1,.(f11(t), f12(t)) > log %}

=



Best arm identification in two-armed bandits

Bernoulli distributions: Conclusion

The complexity of A/B Testing with binary feedback

Regarding the complexities:
m kp(v)=

1
K*(p1,p42)

1 1
m ro(v) > K (pe1,12) > K* (p1,m2)
Thus

ke(v) > kp(v)
Regarding the algorithms

m There is not much to gain by departing from uniform
sampling

m In the fixed-confidence setting, a sequential test based on
the difference of the empirical means is no longer optimal



Best arm identification in two-armed bandits

m the complexities k() and k¢ (v) are not always equal
(and feature some different informational quantities)
m for Bernoulli distributions and Gaussian with similar

variances, strategies using uniform sampling are (almost)
optimal

m strategies using random stopping do not necessarily lead
to a saving in terms of the number of sample used

m Generalization to m best arms identification among K
arms



Optimal Exploration with Probabilistic Expert Advice
Roadmap

Optimal Exploration with Probabilistic Expert Advice
m Missing mass and Good-UCB

m Analysis: Classical and Macroscopic Optimality



Optimal Exploration with Probabilistic Expert Advice

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

m Subset A c X of
important items

m X > 1, [A] < |X]

m Access to X only
by probabilistic
experts (P;)1<i<k:
sequential
independent
draws

Goal: discover rapidly the elements of A



Optimal Exploration with Probabilistic Expert Advice

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

m Subset A c X of
important items

m X > 1, [A] < |X]

m Access to X only
by probabilistic
experts (P;)1<i<k:
sequential
independent
draws

Expert 1

Goal: discover rapidly the elements of A



Optimal Exploration with Probabilistic Expert Advice

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

m Subset A c X of
important items

m X > 1, Al < | X

m Access to X only
by probabilistic
experts (P;)i<i<k:
sequential
independent
draws

Goal: discover rapidly the elements of A



Optimal Exploration with Probabilistic Expert Advice

Optimal Discovery with Probabilistic Expert Advice: Finite Time
Analysis and Macroscopic Optimality, JMLR 2013
joint work with S. Bubeck and D. Ernst

m Subset A c X of
important items

m X > 1, Al < | X

m Access to X only
by probabilistic
experts (P;)i<i<k:
sequential
independent
draws

Goal: discover rapidly the elements of A



Optimal Exploration with Probabilistic Expert Advice

Optimal Exploration with Probabilistic Expert Advice

Search space : A c Q) discrete set
Probabilistic experts : P; e M;(Q2) forie {1,..., K}

Requests : at time ¢, calling expert I; yields a realization of
X = X1,+ independent with law P,

Goal : find as many distinct elements of A as possible
with few requests :

F,=Card (An{X1,...,Xn})



Optimal Exploration with Probabilistic Expert Advice
Goal
Ateachtimestept=1,2,...:
m pick an index I, = m([1, Y1, ..., Is-1, Y1) € {1,
according to past observations

., K}
m observe Y, = XINLIM ~ Pr,, where

nig =y 1{I, =i}

s<t

Goal: design the strategy 7 = () S0 as to maximize the
number of important items found after ¢ requests

Fr(t) = [An{vi.... V)]

Assumption: non-intersecting supports
A nsupp(P;) nsupp(P;) =@ fori # j

=} F



Optimal Exploration with Probabilistic Expert Advice

Is it a Bandit Problem ?

It looks like a bandit problem. . .

m sequential choices among K options

m want to maximize cumulative rewards

m exploration vs exploitation dilemma

... but it is not a bandit problem !
m rewards are not i.i.d.

m destructive rewards: no interest to observe twice the same
important item

m all strategies eventually equivalent



Optimal Exploration with Probabilistic Expert Advice

Proposition: Under the non-intersecting support hypothesis,
the greedy oracle strategy selecting the expert with highest
‘missing mass’

I} eargmax P; (A~ {Y1,...,Y;})
1<i<K

is optimal: for every possible strategy =, E[F™(t)]| < E[F*(¢)].

Remark: the proposition if false if the supports may intersect

— estimate the “missing mass of important items”!



Optimal Exploration with Probabilistic Expert Advice

Missing mass estimation

Missing mass and Good-UCB

Let us first focus on one experti: P = P;, X,, = X ,

X1,..., X, independent draws of P

On () = i_l 1{X, = 2}

ASSUDN
How to ’estimate’ the total mass of the unseen important items

Ry = %P(w)]l{On(a:) =0} 7



Optimal Exploration with Probabilistic Expert Advice

Idea: use the hapaxes = items seen only once (linguistic)

R, = %, where U, = Y 1{0,(z) = 1}
n TeA

Lemma [Good °53]: For every distribution P,

<E[R,]-E[R,] <

SRS

Proposition: With probability at least 1 - ¢ for every P,

ot evan B 1y RO

See [McAllester and Schapire '00, McAllester and Ortiz '03]:
m deviations of R,,: McDiarmid’s inequality
m deviations of R,,: negative association



Optimal Exploration with Probabilistic Expert Advice

The Good-UCB algorithm [Bubeck, Ernst & G.]

Optimistic algorithm based on Good-Turing’s estimator :

H;(t) log (¢)
I;41 = argmax +c
o ie{%,...,K} {Ni(t)

Ni(t)
m N;(t) = number of draws of P; up to time ¢
to P;

m H,(t) = number of elements of A seen exactly once thanks
m ¢ = tuning parameter



Optimal Exploration with Probabilistic Expert Advice

Classical analysis

Analysis: Classical and Macroscopic Optimality

Theorem: For any ¢ > 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 ++/2)v/3)
satisfies

E[F*(t) - FUB(t)] < 17\/Ktlog(t) + 20V Kt + K + K log(t/K)

Remark: Usual result for bandit problem, but not-so-simple
analysis
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A Typical Run of Good-UCB
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The macroscopic limit

m Restricted framework: P, =U{1,...,N}
m N —> oo

B [Ansupp(P)|/N - q¢i€(0,1),qg=Y,;q
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Analysis: Classical and Macroscopic Optimality
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The macroscopic limit

Analysis: Classical and Macroscopic Optimality

m Restricted framework: P, =U{1,...,N}
m N —> oo

B [Ansupp(P)|/N - q¢i€(0,1),qg=Y,;q
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The macroscopic limit

Analysis: Classical and Macroscopic Optimality

m Restricted framework: P, =U{1,...,N}
m N —> oo

B [Ansupp(P)|/N - q¢i€(0,1),qg=Y,;q
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The Oracle behaviour

Analysis: Classical and Macroscopic Optimality

The limiting discovery process of the Oracle strategy is
deterministic

Proposition: For every ) € (0, ¢y ), for every sequence (A\Y)x
converging to A as N goes to infinity, almost surely

N (\N
lim TX— (A ) —

q;
Nooo N 223 (log _)+

A
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Oracle vs. uniform sampling

Oracle: The proportion of important items not found after
Nt draws tends to

q-F*(t) = I(t)gl(t) exp (—t/1(t)) < Kq, exp(-t/K)

with ¢, = (ME, ) YK the geometric mean of the

(¢i)i-

Uniform: The proportion of important items not found after
Nt draws tends to K g exp(-t/K)

== Asymptotic ratio of efficiency

1 k
Ik T 2i-1Gi
p(q) = —_— = % > 1
4y (Hizl Qi)

larger if the (¢;); are unbalanced
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Macroscopic optimality

Analysis: Classical and Macroscopic Optimality

Theorem: Take C = (1 ++/2)Vc + 2 with ¢ > 3/2 in the
Good-UCB algorithm

m For every sequence (\V)y converging to A as N goes to
infinity, almost surely

TN (AN
hmsup UCB( )

N—+o00

30 5).

m The proportion of items found after Nt steps FEUCB
converges uniformly to F* as N goes to infinity
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Simulation

Analysis: Classical and Macroscopic Optimality

1000 1500 2000 2500

2000 4000 6000

8000 10000

12000

Number of items found by Good-UCB (line), the oracle (bold dashed), and by uniform
sampling (light dotted) as a function of time, for sample sizes N = 128, N = 500,

N =1000 et N = 10000, in an environment with 7 experts.
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