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Convex functions in R¢



Convex functions and subgradients

Convex function

Let X c RY be a convex set. The function f : X — R is convex if

Vx,y € X,VA € [0,1], F((1—=A)x+Ay) < (1= N)Ff(x)+ M(y) .

Subgradients
A vector g € R" is a subgradient of f at x € X if for any y € X,

fly) > f(x) + (g:y = x) -
The set of subgradients of f at x is denoted Of(x).
Proposition

o If Of(x) # 0 for all x € X, then f is convex.
e If f is convex, then Vx € X, f (x) # 0.
e If f is convex and differentiable at x, then 9f(x) = {Vf(x)}.



Convex functions and optimization

Proposition

Let f be convex. Then

e x is local minimum of f iff 0 € 9f(x),
e and in that case, x is a global minimum of f;
e if X is closed and if f is differentiable on X, then

x =argminf(x) iff Vy e X, (Vf(x),y—x)>0.

xXEX
Black-box optimization model
The set X is known, f : X — R is unknown but accessible thru:

e a zeroth-order oracle: given x € X, yields f(x),

e and possibly a first-order oracle: given x € X, yields g € 9f(x).



Gradient Descent



Gradient Descent algorithms

A memoryless algorithm for first-order black-box optimization:

Algorithm: Gradient Descent

Input: convex function f, step size ¢,
initial point xg
1 fort=0...T —1do
Compute g¢ € 9f(x¢)
L Xt+1 < Xe — Yt 8t

N

XO+...+XT71

4 return x or
T

Questions:

def . ?
o X7 T_} x* % arg min £7 at what speed?
— 00

o . oo
o f(xr) T_> F(x*) = min £? works in high dimension?
—00

g o do some properties help?
e under which conditions? .
X0+ xro1, can other algorithms do

T better?

e what about



Monotonicity of gradient

Property
Let f be a convex function on X, and let x,y € X. For every
gx € 0f(x) and every g, € Of(y),

(&« —gx—y)>0.

In fact, a differentiable mapping f is convex iff

Vx,y € X,<Vf(x) —Vf(y),x—y> >0.

In particular, (g, x — x*) > 0.
— the negative gradient does not point the the wrong direction.

Under some assumptions (to come), this inequality can be strenghtened,
making gradient descent more relevant.



Convergence of GD for Convex-Lipschitz functions

Lipschitz Assumption

For every x € X and every g € 9f(x), ||g|| < L.

This implies |f(y) — f(x)| < |(g,y —x)| < L|ly —x]|.

Theorem

Under the Lipschitz assumption, GD with v, = v = % satisfies

1 .. _RL
f(Tgx,-)—f(x)gﬁ.

e Of course, can return argmin; ;7 f(x;) instead (not always better).
It requires T, = R:2L2 steps to ensure precision e.

e Online version v; = LL\;E: bound in 3RL/+/T (see Hazan).

Works just as well for constrained optimization with

Xe41 < M (xe —7:VF(x)) thanks to Pythagore projection theorem.




Intuition: what can happen?

The step must be large enough to

reach the region of the minimum,
but not too large too avoid skip- .
ping over it.

Let X = B(0,R) C R? and

7"(><1 X2) |X1| + L\Xz\

\f T
which is L-Lipschitz for v > Tl

1_ R cl > R .
o X; == — ——and X; £ —~=;
B \[3L\[Tad T = 2,2 aL .
2 w 2 3Ly 22 > Ly
® X5, = yL=—, x5, = ,and X7 £ o

Hence

R R ~vL 1/ R?
1 2
f(XT’XT) % \[y 1 2\/7 Li 74' (’Y * L ) ’

which is minimal for v = W where f (X}, 5x3) ~ %.



Cosinus theorem = generalized Pythagore theorem = Alkashi’s theorem:
2(a, b) = ||al* + [[b]* — [la - b]|*.
Hence for every 0 < t < T:

f(xe) — F(x7) < (g, xe — x¥)

= — (Xt — Xp41, Xt — X*)

2 (e = 1P e = e = s =)

1 *|2 « 2) Vi, 112
= 5o (I =X 1P = xesa =x"I?) + Sl

and hence
T—1
1 VT VTR [2RT
f(x:)—f(x xo—x* 12— ||x7—x +

Y F)=F ) < 7 (o Pl I+ 5= < “p—+7 =
=

and by convexity ( x) < 7 z; f(xt) .
t=



Smoothness




Definition
A continuously differentiable function f is S-smooth if the gradient Vf
is B-Lipschitz, that is if for all x,y € X,

IVE(y) = VI < Blly — || -

Property
If f is B-smooth, then for any x,y € X:

|F(y) = f(x) = (VF(x),y = x)| <

N

ly = x|I* .

B

e f is convex and -smooth iff x §|\x||2 — f(x) is convex iff Vx,y € X

f(x) +(VF(x),y —x) < f(y) < F(x) +(VF(x),y —x) + g\ly—XH2 :

e If f is twice differentiable, then f is a-strongly convex iff all the
eigenvalues of the Hessian of f are at most equal to 3. 9



Convergence of GD for smooth convex functions

Theorem

Let f be a convex and B-smooth function on R?. Then GD with
Ve =y = satlsfles

_ 2Bl =X
T+4

Thus it requires T, = steps to ensure precision €.

10



Majoration/minoration

Taking v = % is a "safe” choice ensuring progress:

e s %Vf(x) = argmin f(x) + (Vf(x),y — x) + gHy —x|?

y

is such that f(x") < £(x) Hw )| - Indeed,

f(xT) - f(x) < <Vf(><),x+ — X> + g

1 2 1 21 M
= VI + Z5lIVFE" = 5 VA

Ix* = x||?

= Descent method.

Moreover, x* is "on the same side of x* as x” (no overshooting): since
[VFO)I = [[VF(x) = V()] < Blix — x
(VE(x),x —x*) < [|[VF)|I1x = x* || <6Hx—x > and thus

(x* =xT,x* =x) = ||x* = x|+ (= VF(x),x* —x) > 0.

</3

11



Lemma: the i in the right direction

Lemma

For every x € X,
<Vf(x),x 7x*> > %HVf(X)HZ .

We already now that f(x*) < f(x - 7Vf(x)) < f(x) — %”Vf(x)”z. In addition, taking
z=x"+ [%Vf(x):

F(x") = F(2) + F(x") — f(2)
x) + (VF(x),z — x) — guz — X712
x) + (VF(x),x" —x) + (VFf(x),z — x~ >——Hfo)||

= f(x) + ({VF(x),x" —x) + %HW(X)HZ

1 1
Thus f(x +<Vf X" —><>+—HVf(><)H2 < f(x") < f(x) — —”Vf(x)”Z.
23 253
In fact, this lemma is a corrolary of the co-coercivity of the gradient: Vx,y € X,
1
(V) = VW) x = y) 2 5[V = VEW)|?

which holds iff the convex, differentiable function f is S-smooth.
12



Proof step 1: the it

Applying the preceeding lemma to x = x;, we get

) 2
lIxe+1 — x*|I° =

1 *
X EVf(Xt) — 5%

2 1
= th — X*HZ — E(Vf(xt),xt —x") + EHV'((XY)Hz

. 1
< e =x")1* - EHV"(XJH2
< e =x"1%

— it's good, but it can be slow...

START

13



Proof step 2: the values of the iterates converge

1
We have seen that f(x¢11) — f(x¢) < —QHVf(Xt)HZA Hence, if §; = f(x¢) — f(x™), then
- LB e
b0 = f(x0) — f(x7) < SHXO — x|

1
and 841 < 8¢ — ﬁ||W(xt)||2. But

5 < <Vf(xt),xr —X*> < HVf(xt)”th — X*H .

52
Therefore, since §; is decreasing with t, ;11 < 6y — 7’2 Thinking to the
2B]1x0 — x* ||
coresponding ODE, one sets u; = 1/4;, which yields:
> > <1+ ! ) 4 !
Ugy1 =2 T Z Ut w2 = Ut 2
1-— Blrg=r* % 2B||x0 — x*||? ue 2B||x0 — x*||
T 2 T T+ 4

Hence, ur > up + > + = .
2BIx0 — x*[|2 7 Bllxo — x* (12~ 2Bllx0 — x*[2 2Blx0 — x*|?

14



Strong convexity



Strong convexity

Definition
f: X — Ris a-strongly convex if for all x,y € X, for any gx € 9f(x),

Fy) = f(x) + {8y — x)

e f is a-strongly convex iff f(x) — %[|x||? is convex.
e « measures the curvature of f.

e If f is twice differentiable, then f is a-strongly convex iff all the
eigenvalues of the Hessian of f are larger than a.

15



Faster rates for Lipschitz functions through strong convexity

Theorem
Let f be a a-strongly convex and L-Lipschitz. Under the Lipschitz
assumption, GD with ~; = ﬁ satisfies:

1= . L2log(T)
f(T;x,)—f(x)gaT.

Note : returning another weighted average with v; = yields:

2
a(t+1)
2(i+1) 2[2
X; flx") < —— .
( T(T+1) ) (X)_a(T+1)

Thus it requires T, = ? steps to ensure precision €.

16



Cosinus theorem = generalized Pythagore theorem = Alkashi’s theorem:
2(a, b) = [|all* + |[b]|* — [la — b]1* -
Hence for every 0 < t < T, by a-strong convexity:

Q 5
f(xe) — F(x™) < (g, xe — x*) — EHXr — x|

1 « « o
= ¥<Xt — Xep1, Xe — X)) — §||Xt —x*|?
1 i . a .
= 5 (e =12+ I = el = e = x°IR) = G e =7
ta ape (t+1a (|2 1 2
since y; = ﬁ and hence
T-1 T-1
0Xxa Ta L2 1 L2log(T)
f _f *) < o*2_ T _u*|2 <
I R e e e D s e

t=0

and by convexity f (% Z,-T:B:LX;) <z tT;ol f(xe). L



Strong convexity

Smooth and Strongly Convex Functions

18



Smoothness and strong convexity: sandwiching f by squares

Let x € X.

For every y € X,

X- Xx* X+ X
(B-smoothness implies:

B
F(y) < () + (T, y = x) + 5y = P
def = = B 2
= FO) =)+ Slly =™
Moreoever, a-strong convexity implies, with x~ = x — éVf(x),

F(y) 2 F(0) +(VF(x),y = x) + Sy = I

‘ﬁff(x)zf(x_)—i—%‘!y—x_”z. .



Convergence of GD for smooth and strongly convex functions

Theorem
Let f be a S-smooth and a-strongly convex function. Then GD with
the choice 7; = = § satisfies

Flxr) — f(x*) < €77 (F(x) — F(x7))
where xk = g > 1 is the condition number of f.

osc(f)

Linear convergence: it requires T, = /@Iog( ) steps to ensure

precision €.

20



Proof: every step fills a constant part of the gap

In particular, with the choice v = %

flxer1) = F(57) < FOGT) = Fxe) — —HVf Xt H ,

and
) 2 £ 2 £0¢7) = Flx) = 5 VA

Hence, every step fills at least a part % of the gap:

f(xe) — F(xer1) > (f(xt) — f(x*)) .

e e}

It follows that

fxr) - F(x7) < <1 B ) (Flxr-2) = £(x)
.

21



Using coercivity

Lemma

If f is a-strongly convex then for all x,y € X,
2
(VF() — VF()x—y) > allx— I
Proof: monotonicity of the gradient of the convex function x — f(x) — a|x||?/2.

Lemma

If f is c-strongly convex and (-smooth, then for all x,y € X,

(VF() = V() x =) 2 22l =y + 5 [ 9F60 - VAP

of
a+p
Proof: co-coercivity of the (8 — a)-smooth and convex function x — f(x) — a|x||?/2.

22



Stronger result by coercivity

Theorem

Let f be a S-smooth and a-strongly convex function. Then GD with
the choice v, = v = satisfies

Ier = X2 < 757 [xo — x*|I?
where x = g > 1 is the condition number of f.

Corollary: since by 3-smoothness f(x7) — f(x*) < 2 this

Ix7 — x*

N

bound implies

f(xr)—f(x*) < gexp </@+1) l|lxo — x H2

=il
NB: Bolder jumps: v = (a;—ﬁ) > 7L,

23



Using the coercivity inequality,

e = 12 = Jxe-1 = YV F(xe1) — ||

= ||xe—1 — X*H2 — 29(VF(xe—1), Xxe—1 — x*) + '\/2||Vf(xt_1)H2

2
< <1 _p 05 ) e — P+ | 72— —= | |VF(xe) |

a+p 7a—|—ﬂ
=0
2
2
—(1-27) hea—x'PP
At .
<o (~57 ) o= x°IP

24



Lower bounds lower bound for
Lipschitz convex optimization




General first-order black-box optimization algorithm = sequence of maps
(X07g07 cee 7Xt7gt) = Xt41- We assume:

® Xp — 0
® Xti1 S Span(gOa oo 7gf>v
Theorem

For every T > 1, L, R > 0 there exists a convex and L-Lipschitz
function f on R7*! such that for any black-box procedure as above,
RL
min_f(x) — min f(x) > ——————

0<t<T lIxll<R () = 21+VT+1)

Minimax lower bound: f and even d depend on T...
e ... but not limited to gradient descent algorithms.

For a fixed dimension, exponential rates are always possible by other

means (e.g. center of gravity method).
25

= the above GD algorithm is minimax rate-optimal!



Proof

and let

_ _ LVd — L
Letd_T+1’p_1+\/Eanda_;;(1+\/3)'

Y
f(x)=p max x' + —||x||*.
() = p max x + S|

Then

Of (x) = ax + p Conv ({e,- List xp = 1r<nja<xdxj}>

If ||x|| < R, then Vg € 8f(x), ||g]| < aR + p which means that f is R + p = L-Lipschitz. For
simplicity of notation, we assume that the first-order oracle returns ax + pe; where i is the first
coordinate such that x; = max;<j<g x’.

e Thus x; € Span(er), and by induction x; € Span(er, ..., e:).
o Hence for every j € {t+1,...,d}, x) =0, and f(x;) > Oforall t < T =d — 1.
. .. P g . * * 2
e f reaches its minimum at x* = (— £, ..., —£) since 0 € 9f(x*), ||x*|* = L= R?
and ) ) )
. « RL
[T R A — —
ad 2 a%d 2ad 2(1+ VT +1)

26



Other lower bounds

2
For a-strongly convex and Lipschitz functions, lower bound in o
@

= GD is order-optimal.

Blixo — x|
—.

2BIx0 — x*|?
T+4

For 8-smooth convex functions, the lower bound is in

= room for improvement over GD with reaches

For a-strongly convex and $-smooth functions, lower bound in
o

X0 — x*||2e” 7.

. . s
— room for improvement over GD which reaches ||xy — x*||?e ™ .

For proofs, see [Bubeck].

27



What more?




Need more?

e Constrained optimization
e projected gradient descent

Ve = Xt — Yt8t, Xer1 = M (ves1) -
e Frank-Wolfe

Yt+1 = argmin <Vf(xt),y>, Xt41 = (1 - ’Yt)Xt + Yeyetr -
yex
e Nesterov acceleration

1 VE—1 VE—1
Yer1 = Xt ﬂv (xt), Xt+1 < + Y/ 1) Y41 Y/ lyt

Second-order methods, Newton and quasi-Newton

Xe4l = Xp — [sz(x)]&Vf(x) :

e Mirror descent: for a given convex potention @,

V&(yry1) = VO(xt) — 8¢, Xe4+1 € ng}()’tﬂ) .

Structured optimization, proximal methods
e Example: f(x) = L(x) + Al|x||1 28



Nesterov Momentum acceleration for 5-smooth convex functions

Ta ke n fro M https://blogs.princeton.edu/imabandit

Algorithm: Nesterov Accelerated Gradient Descent

Input: convex function f, initial point xg
1 C/o — O, )\0 —1 y
2 fort=0...T —1do
3 Yi < X¢ + dy;
4 Xe41 £ Yt — %Vf()/t);
5 Arp1 Iargest solution of A2, — Aey1 = AZ;
6 dri1 < >\+ (Xt+1 );

7 return xr

e di = momentum term ("heavy ball”), well-known practical trick to

~

accelerate convergence, intensity A)ft—: <1

® A\ T t/2+1: let 6 = Ac — Ae—1 > 0 and observe that A2 — A\2_, = §,(2\; — 8;) = Ar,
from which one deduces that 1/2 < §; = ﬁ <1, thus1+t/2 < XA <1+t hence
6 < m <1/241/(t+1)and1+t/2 < X < t/2+ log(t+1)+1.

29


https://blogs.princeton.edu/imabandit

Nesterov Acceleration

Theorem

Let f be a convex and B-smooth function on R?. Then Nesterov
Accelerated Gradient descent algorithm satisfies:

< Blo=xIP

f(xt) — f(x*) 2

e Thus it requires T, ~ % steps to ensure precision €.

e Nesterov acceleration also works for S-smooth, a-strongly convex

T

functions and permits to reach the minimax rate ||xo — x*[|%e” v :
see for example [Bubeck].

30



Proof

Let §; = f(x;) — f(x*). Denoting g = —3 'V F(x + d;), one has:
Ot41 — 0t = F(xey1) — F(xe + de) + F(xe + dt) — f(xt)

< —% IV F(xe + dt)Hz +(VF(xt +di), dr) = —g (HgtHz + 2{gt, dt>) :
and 8ey1 = f(xe1) — F(xe + de) + F(xe + de) — F(xT)

2 . .
< —BHW(xﬁdt)Hz+<w(x,+dr),xr+dt—x Y= —g (llgell® +2(ge, xe + e — x7)) -

Hence, (k: — 1) (5t+1 - 5:) +0e41 < —g (>\r|‘gr|\2 + 2<gta Xt + Aedy — X*>>

B o o
= _27)\,3 <H>\tgt + Xt + Aedy — x Hz - HX): + Aedy — x HZ)

= —% (er+1 + Atr1dey1 — X*”2 — ||Xr + Aedy — X*H2) s

since the choice of the momentum intensity is precisely ensuring that x; + A\¢gr + A¢de =

Ae — 1
Xer1 + (Ae — 1)(ge + di) = xe1 + (At — 1)(Xe41 — %) = Xes1 + Aes1 7;\ (Xe41 — Xt)-
t+1
—_—

dti1

>\§5r+1*>\3_15r = >\25t+1*()\f*)\r)5t < *g (”Xrﬂ + App1deyr — x* ||2 — || 4 Aede — X" HZ)

It follows from the choice of \; that

and hence, since A_; =0 and \; > (t+1)/2:

T\? B . Bllxo — x* 2
(F) o7 <t < Gl soa - = B2 .



Research article 4

INTAL MAJORIZATION TION OPTIMIZATION
WITH APPLICATION TO LARGE-SCALE MACHINE LEARNING*

Incremental Majorization-
Minimization Optimization
with Application to Large-
Scale Machine Learning

by Julien Mairal
SIAM Journal on Optimization

Vol. 25 lIssue 2, 2015 Pages 829-
855
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Stochastic Gradient Descent




Big data: an evaluation of f can be very expensive, and useless!
(especially at the begining).

Wi« 1

w, —1

Src: https://arxiv.org/pdf/1606.04838.pdf

— often faster and cheaper for the required precision.

33
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Research article 5

The Tradeoffs of Large Scale Learning

The Tradeoffs of Large Scale R e

Learning

Abstract

by Léon Bottou and Olivier Bousquet I L e ot S e
1 Motivation
Advances in Neural Information Pro- i;“m:“%:':‘;z;r.f;:n,n‘gtm,m“;t:.,zﬁ‘;k:::,:;,:f:”*"’,:\.,W";c,':f;:;;&.:;f;z'::‘m:s:\

cessing Systems, NIPS Foundation : .

data. Two important examples come (0 mind

( htt p: / / books.ni ps.cc ) ( 2008 ) . o o 5‘;;?'; e of o ot sy S ?."&.’H\'”i‘yi‘lf

e e aming ot thit sl roghly Hnearly wih th 1o ofome

. perc

eptal data
encrated by oursix senscs using mitd amounts of sugar s  soure o pover This

S oughy Racay wih e ol et ot

This convioution fnds s source i the e tht spprosimte optimization lgorits might b
ncon Tor e piposesThe et ot prapeces <o of e oo ahers

. n H " an additional term represents the impact of approximate optimization. In the casc of small-scale

eur award: test of time euming problems. s Gecomposti educes . e well Enimn Hodeolf bemsasn sppvenimtion
o o oo e T I i of g Sl eming e the el e com.

P e e oyt oopkedy o e o Te o

operiesof e deolor ieim

Igorithms under va g o st cman ed with
Thi that

h are not
necessarly te ot s. Maybe more surprisingly. certin algorithms perform well
Tegwiicss of te s e ot tistnl SOmoR oY
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Stochastic Gradient Descent Algorithms

Algorithm: Stochastic Gradient Descent

We consider a function to miminize f(x

3\'—‘

Input: convex function f, step size v,
initial point xg
fort=0...T —1do
Pick I, ~U({1,..., m})
Compute g € Of;,(x¢)
Xt41 < Xt — Yt 8t
Xo+ -+ X7
.

AW N =

5 return xr or

def . ?
o X7 T_} x* % arg min £7 e at what speed”
— 00

ks in high di ion?
F(x7) Tjoo F(x*) = min £7 e works in high dimension

do some properties help?
under which conditions? .
X0+ + XT_1 e can other algorithms do
what about 7
better?

35



Noisy Gradient Descent

Let F; = o(ly,...,It), where F_1 = {Q,0}. Note that x; is
Fi_1-measurable, i.e. x; depends only on Iy, ..., l;_1.
Lemma

For all t > 0,
E[gt|]:t,1} € Of (xt) .

Proof: let y € X. Since g € Ofi,(xt), fi,(y) > fi.(xe) + (g, y — x¢). Taking
expectation conditionnal on F:_1 (i.e. integrating on /;), and using that x; is
F¢_i-measurable, one obtains:

f(y) > f(x) + E[(ge,y — xe| Fem1)] = F(xe) + <E[gt|}'tf1} Y= Xt> .

More generally, SGD for the optimization of functions f that are
accessible by a noisy first-order example, i.e. for which it is possible to
obtain at every point an independent, unbiased estimate of the gradient.
Two distinct objective functions:

Ls(0) = %Zﬁi(hg(x,-),y;) and Lp(6) = ]E[é(hg(X), Y)} . y



Convergence for Lipschitz convex functions

Theorem
Assume that for all /, all x € X and all g € 9fi(x), ||gt|| < L. Then
SGD with 7, = v = L\Lﬁ satisfies

1 .. _RL
f(T§X;>]—f(X)<T.

E

Exactly the same bound as for GD in the Lipschitz convex case.

. . 22 .
As before, it requires T, ~ REZL steps to ensure precision e.

Bound only in expectation.

e In contrast to the deterministic case, smoothness does not improve
the speed of convergence in general.

37



Proof: exactly the same as for GD

Cosinus theorem = generalized Pythagore theorem = Alkashi’s theorem:
2(a, b) = [|all* + |[b]|* — [la — b]1* -
Hence for every 0 < t < T, since E[gt|}"t_ﬂ € Of (x¢),

E[f(xe) — F(x*)|Fea] < <E[gt|ft_1},xt . x*>

E[Xt — Xt+1‘ft_1],xt — X*>

1 N .
3 (e = X2+ = sl = s = x°[) [ Fica

1 2 2 gl 2‘
_ o _ Uk A F._ )
5= (b =12 = s = x°1P) + Jleel?|Feca ]|

and hence, taking expectation:

E

IN

T-1 1 ) L27T
> ) = F6)| < 5 (Ibo = x| ~ Elber—=TPT) + =
t=0

LV T R? N [2RT e
2R 2T




A lot more to know

e Faster rate for the strongly convex case:
same proof as before.

e No improvement in general by using smoothness only.

e Ruppert-Polyak averaging.

e Improvement for sums of smooth and strongly convex functions, etc.
e Analysis in expectation only is rather weak.

e Mini-batch SGD: the best of the two worlds.

e Beyond SGD methods: momentum, simulated annealing, etc.

39



Convergence in quadratic mean

Theorem

Let (F¢): be an increasing family of o-fields. For every t > 0, let f; be
a convex, differentiable, 8-smooth, square-integrable, F;-measurable
function on X. Further, assume that for every x € X and every t > 1,
E[Vf(x)|Fi—1] = VF(x), where f is an a-strongly convex function
reaching its minimum at x* € X. Also assume that for all ¢t > 0,
E[[|[Vf(x*)||?|Fe-1] < o2 Then, denoting x = 2 the SGD with

(e
Ve = ) satisfies:

a (t+1+2n2

26210 — x*[I? + 25 log (55 + 1)
T + 2K2 ’

E[llxr - x*|12] <
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Proof 1/2: induction formula for the quadratic r

We observe that
E[[[Vfi G| [ Femr] < 2B[[| Vi em) = i (I [ Femn] + 2E[[| Vi ()| | Fer]
< 28°||xe—1 — x7||> + 207 .
Hence,
E[th - x"|? |fr71] = [[xe—1 = x"||* = 23e—1{xe—1 = X, VF(xe-1)) +7571E[||Vﬁf()<:—1)“2 |fffl}
< s = x| = 2vcaaflxecs = x4+ B[V G| 7o
< (1 —-20yi-1+ 252’7371) [|xe—1 — x" Hz +20%97
< (1= ayem1) |[xe—1 — x*|)? + 20777,

thanks to the fact that for all t > 0, ary; > 2,627? <~ 7 < a/(262) =~_1, and 7; is
decreasing in t. Hence, denoting 6; = E[||x; — x* ”2} by taking expectation we obtain that

5 < (1 — a'yt,l)ét,l +2o’2'yt271 .

Note that unfolding the induction formula leads to an explicit upper-bound for ¢;:

=1
6t<H(17:u"Yk)+20' ka [T @y
k=0 i=k+1
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Proof 2/2: solving the induction

One may either use the closed form for §;, or (with the hint of the corresponding ODE) set
ue = (t+ 2»42)& and note that

ue = (t + 2K2)5;

Ui—1 2 2
<(t+2:)((1—ayey) ————— 42
_(+-h)<( ave O“_1+2#)+ U%,J
t— 1422 _ 202(t + 2k
S(f+2’€2) + 2K U1 o(t + 2K°%)
t+2x2  (t—1+42k2)  o?(t+ 2K2)?
202 1
=u—1+

a? (t+ 2r2)

IN

262 ¢ 1
wt S s
a? = (s +2xr?)

t + 2K2
262

IA

2 202
2k°80 + = log
a

Hence for every t
2 2
262||x0 — x* || + 202 |og ti2s

< a

212
t + 2K2

Remark: with some more technical work, the analysis works for all 7;, possibly of the form
v=t P forB<1: see [Bach&Moulines '11].
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