Regularization methods under the small ball property

Guillaume Lecué

CNRS, centre de mathématiques appliquées, Ecole Polytechnique.

28 août 2014 - Toulouse

joint work with Shahar Mendelson

Regularization methods in learning theory

$$\mathsf{Data}:\, (X_i,Y_i)_{i=1}^N \;\mathsf{iid}\; \mathsf{couples} \sim (X,Y) \in \mathcal{X} \times \mathbb{R}$$

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \emph{F} convex class of functions from $\mathcal X$ to $\mathbb R$

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : $\emph{\textbf{F}}$ convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle : $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \emph{F} convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle: $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \mathrm{rate}_N(F)$ is small.

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : $\emph{\textbf{F}}$ convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle: $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \text{rate}_N(F)$ is small.

Problem : F "large" \Rightarrow rate_N(F) big.

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : $\emph{\textbf{F}}$ convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle: $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_N(F)$ is small.

Problem : F "large" $\Rightarrow \text{rate}_N(F)$ big.

a priori : there exists $\|\cdot\|$ (not necessarily a norm) such that $\|f^*\|$ is small

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \emph{F} convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle : $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_N(F)$ is small.

Problem : F "large" $\Rightarrow \text{rate}_N(F)$ big.

a priori : there exists $\|\cdot\|$ (not necessarily a norm) such that $\|f^*\|$ is small

"Truth": $F^* = \{ f \in F : ||f|| \le ||f^*|| \} \Rightarrow \text{rate}_N(F^*)$

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \emph{F} convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle : $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_N(F)$ is small.

Problem : F "large" $\Rightarrow \text{rate}_N(F)$ big.

a priori : there exists $\|\cdot\|$ (not necessarily a norm) such that $\|f^*\|$ is small

"Truth": $F^* = \{ f \in F : ||f|| \le ||f^*|| \} \Rightarrow \text{rate}_N(F^*)$

 ${\sf RERM}: \ {\sf Regularized} \ {\sf empirical} \ {\sf risk} \ {\sf minimization}:$

$$\hat{f} \in \operatorname*{argmin}_{f \in F} \Big(\frac{1}{N} \sum_{i=1}^{N} (Y_i - f(X_i))^2 + \lambda \|f\| \Big).$$

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \digamma convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle: $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_N(F)$ is small.

Problem : F "large" $\Rightarrow \text{rate}_N(F)$ big.

a priori : there exists $\|\cdot\|$ (not necessarily a norm) such that $\|f^*\|$ is small

"Truth": $F^* = \{ f \in F : ||f|| \le ||f^*|| \} \Rightarrow \text{rate}_N(F^*)$

 ${\sf RERM}: \ {\sf Regularized} \ {\sf empirical} \ {\sf risk} \ {\sf minimization}:$

$$\hat{f} \in \underset{f \in F}{\operatorname{argmin}} \left(\frac{1}{N} \sum_{i=1}^{N} (Y_i - f(X_i))^2 + \lambda \|f\| \right).$$

Aim: $\hat{f} \in F^*$ and $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_{N}(F^*)$

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \emph{F} convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle : $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_N(F)$ is small.

Problem : F "large" $\Rightarrow \text{rate}_N(F)$ big.

a priori : there exists $\|\cdot\|$ (not necessarily a norm) such that $\|f^*\|$ is small

"Truth": $F^* = \{ f \in F : ||f|| \le ||f^*|| \} \Rightarrow \text{rate}_N(F^*)$

 ${\sf RERM}: \ {\sf Regularized} \ {\sf empirical} \ {\sf risk} \ {\sf minimization}:$

$$\hat{f} \in \underset{f \in F}{\operatorname{argmin}} \left(\frac{1}{N} \sum_{i=1}^{N} (Y_i - f(X_i))^2 + \lambda ||f|| \right).$$

Aim: $\hat{f} \in F^*$ and $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_{N}(F^*)$

Problem : find the regularization parameter λ and ${\rm rate}_N(F^*)$?

Data : $(X_i, Y_i)_{i=1}^N$ iid couples $\sim (X, Y) \in \mathcal{X} \times \mathbb{R}$

Model : \emph{F} convex class of functions from $\mathcal X$ to $\mathbb R$

Oracle: $f^* \in \operatorname{argmin}_{f \in F} \mathbb{E}(Y - f(X))^2$

Aim : Construct \hat{f} such that $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_N(F)$ is small.

Problem : F "large" $\Rightarrow \text{rate}_N(F)$ big.

a priori : there exists $\|\cdot\|$ (not necessarily a norm) such that $\|f^*\|$ is small

"Truth": $F^* = \{ f \in F : ||f|| \le ||f^*|| \} \Rightarrow \text{rate}_N(F^*)$

 ${\sf RERM}: \ {\sf Regularized} \ {\sf empirical} \ {\sf risk} \ {\sf minimization}:$

$$\hat{f} \in \operatorname{argmin}_{f \in F} \left(\frac{1}{N} \sum_{i=1}^{N} (Y_i - f(X_i))^2 + \lambda \|f\| \right).$$

Aim: $\hat{f} \in F^*$ and $\mathbb{E}(f^*(X) - \hat{f}(X))^2 \leq \operatorname{rate}_{N}(F^*)$

Problem : find the regularization parameter λ and rate_N(F^*)?

Remark: No Statistical model!

$$\begin{cases} \|f+g\|, \|f-g\| \leq \eta_1 \big(\|f\| + \|g\| \big) \\ \\ \{ \begin{bmatrix} [0,1] & \to & [0,\|f\|] \\ \mu & \mapsto & \|\mu f\| \end{cases} \text{ is continuous and } \leq \mu \|f\|.$$

Examples:

1) Norms : ℓ_p^d , $w\ell_p^d$, S_p , RKHS-norms, sum of norms

Examples:

- 1) Norms : ℓ_p^d , $w\ell_p^d$, S_p , RKHS-norms, sum of norms
- 2) Quasi-norms : $\ell_p^d, S_p, w\ell_p^d, \ 0$

Examples:

- 1) Norms : ℓ_p^d , $w\ell_p^d$, S_p , RKHS-norms, sum of norms
- 2) Quasi-norms : ℓ_p^d , S_p , $w\ell_p^d$, 0
- 3) semi-norms : $||A \cdot ||_1$ (TV)

Examples:

- 1) Norms : ℓ_p^d , $w\ell_p^d$, S_p , RKHS-norms, sum of norms
- 2) Quasi-norms : ℓ_p^d , S_p , $w\ell_p^d$, 0
- 3) semi-norms : $||A \cdot ||_1$ (TV)
- 4) square of norms (elastic-net)

Examples:

- 1) Norms : ℓ_p^d , $w\ell_p^d$, S_p , RKHS-norms, sum of norms
- 2) Quasi-norms : ℓ_p^d , S_p , $w\ell_p^d$, 0
- 3) semi-norms : $||A \cdot ||_1$ (TV)
- 4) square of norms (elastic-net)

Does not work for ℓ_0^d and rank(·).

quadratic/linear decomposition of the excess loss

$$(y-f)^2 - (y-f^*)^2 = (f-f^*)^2 - 2(y-f^*)(f-f^*).$$

quadratic/linear decomposition of the excess loss

$$(y-f)^2-(y-f^*)^2=(f-f^*)^2-2(y-f^*)(f-f^*).$$

① Empirical small ball condition on $F_{\rho} = \{f \in F : ||f|| \leq \rho\}$:

quadratic/linear decomposition of the excess loss

$$(y-f)^2-(y-f^*)^2=(f-f^*)^2-2(y-f^*)(f-f^*).$$

• Empirical small ball condition on $F_{\rho} = \{f \in F : ||f|| \le \rho\} : \forall f \in F_{\rho}$

$$\|f - f^*\|_{L_2} \ge s_Q(\rho) \Rightarrow P_N(f - f^*)^2 \ge \kappa_0 \|f - f^*\|_{L_2}^2$$

where $P_N h = N^{-1} \sum_{i=1}^{N} h(X_i)$.

quadratic/linear decomposition of the excess loss

$$(y-f)^2-(y-f^*)^2=(f-f^*)^2-2(y-f^*)(f-f^*).$$

• Empirical small ball condition on $F_{\rho} = \{f \in F : ||f|| \le \rho\} : \forall f \in F_{\rho}$

$$\|f - f^*\|_{L_2} \ge s_Q(\rho) \Rightarrow P_N(f - f^*)^2 \ge \kappa_0 \|f - f^*\|_{L_2}^2$$

where $P_N h = N^{-1} \sum_{i=1}^{N} h(X_i)$.

2 Noise/class interaction on F_{ρ} : $\forall f \in F_{\rho}$

$$P_N(Y - f^*)(f - f^*) \le \kappa_1 \max \left(\frac{s_L(\rho)}{\rho} \|f - f^*\|_{L_2}, \|f - f^*\|_{L_2}^2 \right)$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$).

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$ilde{f} \in \operatorname*{argmin}_{f \in F_{
ho}} P_{N}(Y - f)^{2}$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$ilde{f} \in \operatorname*{argmin}_{f \in F_{
ho}} P_{N}(Y - f)^{2}$$

so that
$$H_N(\tilde{f}) = P_N[(Y - \tilde{f})^2 - (Y - f^*)] \le 0.$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$\tilde{f} \in \operatorname*{argmin}_{f \in F_{\rho}} P_{N}(Y - f)^{2}$$

so that
$$H_N(\tilde{f}) = P_N \big[(Y - \tilde{f})^2 - (Y - f^*) \big] \le 0.$$

$$H_N(f) = P_N(f - f^*)^2 - 2P_N(Y - f^*)(f - f^*).$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$\tilde{f} \in \operatorname*{argmin}_{f \in F_{\rho}} P_N(Y - f)^2$$

so that
$$H_N(\tilde{f}) = P_N [(Y - \tilde{f})^2 - (Y - f^*)] \le 0.$$

$$H_N(f) = P_N(f - f^*)^2 - 2P_N(Y - f^*)(f - f^*).$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$\tilde{f} \in \operatorname*{argmin}_{f \in F_{\rho}} P_N(Y - f)^2$$

so that
$$H_N(\tilde{f}) = P_N[(Y - \tilde{f})^2 - (Y - f^*)] \le 0.$$

$$H_N(f) = P_N(f - f^*)^2 - 2P_N(Y - f^*)(f - f^*).$$

if
$$\|f-f^*\|_{L_2} \geq s(
ho) = \max(s_L(
ho), s_Q(
ho))$$
 then

$$P_N(f-f^*)^2 > \kappa_0 \|f-f^*\|_{L_2}^2$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$\tilde{f} \in \operatorname*{argmin}_{f \in F_{\rho}} P_N(Y - f)^2$$

so that
$$H_N(\tilde{f}) = P_N[(Y - \tilde{f})^2 - (Y - f^*)] \le 0.$$

$$H_N(f) = P_N(f - f^*)^2 - 2P_N(Y - f^*)(f - f^*).$$

if
$$\|f-f^*\|_{L_2} \geq s(
ho) = \max(s_L(
ho), s_Q(
ho))$$
 then

$$P_N(f-f^*)^2 > \kappa_0 \|f-f^*\|_{L_2}^2$$

$$2P_N(Y-f^*)(f-f^*) < 2\kappa_1 ||f-f^*||_{L_2}^2$$

Working in model F_{ρ} (such that $f^* \in F_{\rho}$). Consider the Empirical Risk Minimization procedure :

$$\tilde{f} \in \operatorname*{argmin}_{f \in F_{\rho}} P_{N}(Y - f)^{2}$$

so that
$$H_N(\tilde{f}) = P_N[(Y - \tilde{f})^2 - (Y - f^*)] \le 0.$$

$$H_N(f) = P_N(f - f^*)^2 - 2P_N(Y - f^*)(f - f^*).$$

if
$$\|f - f^*\|_{L_2} \ge s(\rho) = \max(s_L(\rho), s_Q(\rho))$$
 then

$$P_N(f-f^*)^2 > \kappa_0 \|f-f^*\|_{L_2}^2$$

$$2P_N(Y-f^*)(f-f^*) < 2\kappa_1 ||f-f^*||_{L_2}^2$$

$$\Rightarrow H_N(f) > 0$$
 (when $2\kappa_1 < \kappa_0$) so (since $H_N(\tilde{f}) \le 0$),

$$\|\tilde{f}-f^*\|_{L_2}\leq s(\rho).$$

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in F_{\rho}} \frac{P_{N}(Y - f^{*})(f - f^{*})}{\rho}. \tag{1}$$

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in \mathcal{F}_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true:

• empirical small ball property in F_{ρ^*} for $\rho^* \sim \|f^*\|$, with level $s_Q(\rho^*)$

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in F_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true:

- empirical small ball property in F_{ρ^*} for $\rho^* \sim \|f^*\|$, with level $s_Q(\rho^*)$
- **2** noise/class interaction of level $s_L(\rho^*)$ in F_{ρ^*}

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in \mathcal{F}_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true:

- empirical small ball property in F_{ρ^*} for $\rho^* \sim \|f^*\|$, with level $s_Q(\rho^*)$
- **2** noise/class interaction of level $s_L(\rho^*)$ in F_{ρ^*}
- **3** λ satisfies (1).

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in \mathcal{F}_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true:

- empirical small ball property in F_{ρ^*} for $\rho^* \sim ||f^*||$, with level $s_Q(\rho^*)$
- 2 noise/class interaction of level $s_L(\rho^*)$ in F_{ρ^*}
- \bullet λ satisfies (1).

Then:

$$\|\hat{f}\| \lesssim \|f^*\|$$

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in \mathcal{F}_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true:

- empirical small ball property in F_{ρ^*} for $\rho^* \sim ||f^*||$, with level $s_Q(\rho^*)$
- 2 noise/class interaction of level $s_L(\rho^*)$ in F_{ρ^*}
- **3** λ satisfies (1).

Then:

$$\|\hat{f}\| \lesssim \|f^*\|$$
 and $\|\hat{f} - f^*\|_{L_2(X)} \lesssim s(\|f^*\|)$

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in \mathcal{F}_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true:

- empirical small ball property in F_{ρ^*} for $\rho^* \sim ||f^*||$, with level $s_Q(\rho^*)$
- **2** noise/class interaction of level $s_L(\rho^*)$ in F_{ρ^*}
- **3** λ satisfies (1).

Then:

$$\|\hat{f}\| \lesssim \|f^*\|$$
 and $\|\hat{f} - f^*\|_{L_2(X)} \lesssim s(\|f^*\|)$

where

$$s(\rho) = \max \left(s_L(\rho), s_Q(\rho), \lambda \rho \right).$$

$$\lambda \gtrsim \sup_{\rho > 0} \sup_{f \in \mathcal{F}_{\rho}} \frac{P_{\mathcal{N}}(Y - f^*)(f - f^*)}{\rho}.$$
 (1)

Theorem (L. & Mendelson)

If the following are true :

- empirical small ball property in F_{ρ^*} for $\rho^* \sim ||f^*||$, with level $s_Q(\rho^*)$
- **2** noise/class interaction of level $s_L(\rho^*)$ in F_{ρ^*}
- \bullet λ satisfies (1).

Then:

$$\|\hat{f}\| \lesssim \|f^*\|$$
 and $\|\hat{f} - f^*\|_{L_2(X)} \lesssim s(\|f^*\|)$

where

$$s(\rho) = \max (s_L(\rho), s_Q(\rho), \lambda \rho).$$

Rem : For many model, $\max(s_L(\rho), s_Q(\rho))$ is the minimax rate of convergence in F_ρ .

H satisfies an empirical small ball property when $\forall h \in H$,

$$||h||_{L_2} \geq s_Q \Rightarrow P_N h^2 \geq \kappa_0 P h^2.$$

H satisfies an empirical small ball property when $\forall h \in H$,

$$||h||_{L_2} \geq s_Q \Rightarrow P_N h^2 \geq \kappa_0 P h^2.$$

This holds with probability at least $1 - e^{-N}$, when :

H satisfies an empirical small ball property when $\forall h \in H$,

$$||h||_{L_2} \geq s_Q \Rightarrow P_N h^2 \geq \kappa_0 P h^2.$$

This holds with probability at least $1 - e^{-N}$, when :

• Small ball property[Mendelson, "learning without concentration"] : there exists u_0, β_0 s.t. $\forall h \in H$,

$$P[|h(X)| \geq u_0 ||h||_{L_2(X)}] \geq \beta_0.$$

H satisfies an empirical small ball property when $\forall h \in H$,

$$||h||_{L_2} \geq s_Q \Rightarrow P_N h^2 \geq \kappa_0 P h^2.$$

This holds with probability at least $1 - e^{-N}$, when :

• Small ball property[Mendelson, "learning without concentration"]: there exists u_0, β_0 s.t. $\forall h \in H$,

$$P[|h(X)| \geq u_0 ||h||_{L_2(X)}] \geq \beta_0.$$

(holds if
$$||h||_{2+\epsilon} \lesssim ||h||_2$$
)

H satisfies an empirical small ball property when $\forall h \in H$,

$$||h||_{L_2} \geq s_Q \Rightarrow P_N h^2 \geq \kappa_0 P h^2.$$

This holds with probability at least $1 - e^{-N}$, when :

• Small ball property[Mendelson, "learning without concentration"]: there exists u_0, β_0 s.t. $\forall h \in H$,

$$P[|h(X)| \geq u_0 ||h||_{L_2(X)}] \geq \beta_0.$$

(holds if
$$||h||_{2+\epsilon} \lesssim ||h||_2$$
)

fixed point equation :

$$\mathbb{E}\sup_{h\in H:\|h\|_{L_2}\leq s_Q}\left|\frac{1}{N}\sum_{i=1}^N\epsilon_ih(X_i)\right|\lesssim s_Q.$$

H satisfies an empirical small ball property when $\forall h \in H$,

$$||h||_{L_2} \geq s_Q \Rightarrow P_N h^2 \geq \kappa_0 P h^2$$
.

This holds with probability at least $1 - e^{-N}$, when :

• Small ball property[Mendelson, "learning without concentration"]: there exists u_0, β_0 s.t. $\forall h \in H$,

$$P[|h(X)| \geq u_0 ||h||_{L_2(X)}] \geq \beta_0.$$

(holds if
$$||h||_{2+\epsilon} \lesssim ||h||_2$$
)

fixed point equation :

$$\mathbb{E}\sup_{h\in H:\|h\|_{L_2}\leq s_Q}\left|\frac{1}{N}\sum_{i=1}^N\epsilon_ih(X_i)\right|\lesssim s_Q.$$

Rem.: The control on the linear process is more standard.

Learning linear functional by regularization methods

$$\begin{split} F &= \{\left\langle \cdot, t \right\rangle \colon t \in \mathcal{H}\} \text{ where } (\mathcal{H}, \left\langle \cdot, \cdot \right\rangle) \text{ is a Hilbert space like } \\ \mathcal{H} &\in \{\mathbb{R}^d, \mathbb{R}^{m \times T}, \mathit{RKHS}\}. \end{split}$$

$$F = \{\langle \cdot, t \rangle : t \in \mathcal{H}\}$$
 where $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space like $\mathcal{H} \in \{\mathbb{R}^d, \mathbb{R}^{m \times T}, RKHS\}$. We want to estimate

$$t^* \in \operatorname*{argmin}_{t \in \mathcal{H}} \mathbb{E}ig(Y - ig\langle X, t ig
angleig)^2$$

 $F = \{\langle \cdot, t \rangle : t \in \mathcal{H}\}$ where $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space like $\mathcal{H} \in \{\mathbb{R}^d, \mathbb{R}^{m \times T}, RKHS\}$. We want to estimate

$$t^* \in \underset{t \in \mathcal{H}}{\operatorname{argmin}} \mathbb{E}(Y - \langle X, t \rangle)^2$$

by the RERM

$$\hat{t} \in \underset{t \in \mathcal{H}}{\operatorname{argmin}} \left(\frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + \lambda ||t|| \right).$$

 $F = \{\langle \cdot, t \rangle : t \in \mathcal{H}\}$ where $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space like $\mathcal{H} \in \{\mathbb{R}^d, \mathbb{R}^{m \times T}, RKHS\}$. We want to estimate

$$t^* \in \underset{t \in \mathcal{H}}{\operatorname{argmin}} \mathbb{E}(Y - \langle X, t \rangle)^2$$

by the RERM

$$\hat{t} \in \underset{t \in \mathcal{H}}{\operatorname{argmin}} \left(\frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + \lambda \|t\| \right).$$

Aim:

$$\|\hat{t}\| \lesssim \|t^*\|$$

 $F = \{\langle \cdot, t \rangle : t \in \mathcal{H}\}$ where $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space like $\mathcal{H} \in \{\mathbb{R}^d, \mathbb{R}^{m \times T}, RKHS\}$. We want to estimate

$$t^* \in \underset{t \in \mathcal{H}}{\operatorname{argmin}} \mathbb{E}(Y - \langle X, t \rangle)^2$$

by the RERM

$$\hat{t} \in \underset{t \in \mathcal{H}}{\operatorname{argmin}} \left(\frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + \lambda \|t\| \right).$$

Aim:

$$\|\hat{t}\|\lesssim \|t^*\|$$
 and $\left(\mathbb{E}ig\langle X,\hat{t}-t^*ig
angle^2
ight)^2\lesssim s(\|t^*\|).$

Assume that:

Assume that:

- **1** X is L-sub-gaussian : $P[|\langle X, t \rangle| \ge Lu \|\langle X, t \rangle\|_{L_2}] \le 2 \exp(-u^2)$,
- $oldsymbol{Q}$ "noise" in $oldsymbol{L_q}$ (q>2), $\sigma_q = \|Y \langle X, t^* \rangle\|_{L_q} < \infty$.

Assume that :

- **1** X is L-sub-gaussian : $P[|\langle X, t \rangle| \ge Lu ||\langle X, t \rangle||_{L_2}] \le 2 \exp(-u^2)$,
- \bullet "noise" in L_q (q>2), $\sigma_q = \|Y \langle X, t^* \rangle\|_{L_q} < \infty$.

Denote
$$B_{\|\cdot\|}=\{t\in\mathcal{H}:\|t\|\leq 1\}$$
 and $\ell^*(B_{\|\cdot\|})=\mathbb{E}\sup_{t\in B_{\|\cdot\|}}\left\langle G,t\right\rangle$.

Assume that :

1 X is L-sub-gaussian :
$$P[|\langle X, t \rangle| \ge Lu \|\langle X, t \rangle\|_{L_2}] \le 2 \exp(-u^2)$$
,

② "noise" in
$$L_q$$
 (q>2), $\sigma_q = \|Y - \langle X, t^* \rangle\|_{L_q} < \infty$.

Denote
$$B_{\|\cdot\|}=\{t\in\mathcal{H}:\|t\|\leq 1\}$$
 and $\ell^*(B_{\|\cdot\|})=\mathbb{E}\sup_{t\in B_{\|\cdot\|}}\langle G,t\rangle$. Then, with probability larger than $1-2\exp(-N)-(c/u)^q$,

$$\hat{t} \in \operatorname*{argmin}_{t \in \mathcal{H}} \Big(\frac{1}{N} \sum_{i=1}^{N} \big(Y_i - \big\langle X_i, t \big\rangle \big)^2 + u \sigma_q \|t\| \frac{\ell^*(B_{\|\cdot\|})}{\sqrt{N}} \Big)$$

Assume that :

- **1** X is L-sub-gaussian : $P[|\langle X, t \rangle| \ge Lu ||\langle X, t \rangle||_{L_2}] \le 2 \exp(-u^2)$,
- ② "noise" in L_q (q>2), $\sigma_q = \|Y \langle X, t^* \rangle\|_{L_q} < \infty$.

Denote $B_{\|\cdot\|} = \{t \in \mathcal{H} : \|t\| \le 1\}$ and $\ell^*(B_{\|\cdot\|}) = \mathbb{E} \sup_{t \in B_{\|\cdot\|}} \langle G, t \rangle$. Then, with probability larger than $1 - 2\exp(-N) - (c/u)^q$,

$$\hat{t} \in \operatorname{argmin}\left(\frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \left\langle X_i, t \right\rangle\right)^2 + u\sigma_q \|t\| \frac{\ell^*(B_{\|\cdot\|})}{\sqrt{N}}\right)$$

is such that

$$\|\hat{t}\| \lesssim \|t^*\|$$

Assume that :

- **1** X is L-sub-gaussian : $P[|\langle X, t \rangle| \ge Lu \|\langle X, t \rangle\|_{L_2}] \le 2 \exp(-u^2)$,
- $oldsymbol{Q}$ "noise" in $oldsymbol{L_q}$ (q>2), $\sigma_q = \|Y \langle X, t^* \rangle\|_{L_q} < \infty$.

Denote $B_{\|\cdot\|}=\{t\in\mathcal{H}:\|t\|\leq 1\}$ and $\ell^*(B_{\|\cdot\|})=\mathbb{E}\sup_{t\in B_{\|\cdot\|}}\langle G,t\rangle$. Then, with probability larger than $1-2\exp(-N)-(c/u)^q$,

$$\hat{t} \in \operatorname{argmin}_{t \in \mathcal{H}} \left(\frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + u \sigma_q \|t\| \frac{\ell^*(B_{\|\cdot\|})}{\sqrt{N}} \right)$$

is such that

$$\|\hat{t}\|\lesssim \|t^*\|$$
 and $\|\langle X,\hat{t}-t^*
angle\|_{L_2}\lesssim s(\|t^*\|)$

where

Assume that :

- **1** X is L-sub-gaussian : $P[|\langle X, t \rangle| \ge Lu \|\langle X, t \rangle\|_{L_2}] \le 2 \exp(-u^2)$,
- ② "noise" in L_q (q>2), $\sigma_q = ||Y \langle X, t^* \rangle||_{L_q} < \infty$.

Denote $B_{\|\cdot\|} = \{t \in \mathcal{H} : \|t\| \le 1\}$ and $\ell^*(B_{\|\cdot\|}) = \mathbb{E} \sup_{t \in B_{\|\cdot\|}} \langle G, t \rangle$. Then, with probability larger than $1 - 2\exp(-N) - (c/u)^q$,

$$\hat{t} \in \operatorname{argmin}_{t \in \mathcal{H}} \left(\frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + u \sigma_q \|t\| \frac{\ell^*(B_{\|\cdot\|})}{\sqrt{N}} \right)$$

is such that

$$\|\hat{t}\|\lesssim \|t^*\|$$
 and $\|\langle X,\hat{t}-t^*
angle\|_{L_2}\lesssim s(\|t^*\|)$

where

$$s^{2}(\rho) = \max\left(u\sigma_{q}\rho\frac{\ell^{*}(B_{\|\cdot\|})}{\sqrt{N}}, \rho^{2}\frac{\ell^{*}(B_{\|\cdot\|})^{2}}{N}\right)$$

$$\begin{aligned} \bullet \ \, B_p^d &= \{t \in \mathbb{R}^d : \|t\|_p \le 1\}, \, 0$$

for p=1 we recover the rates of estimation of the Lasso in [Koltchinksi]

$$\ell^*(B^d_p) \sim \left\{ \begin{array}{ll} \sqrt{\log(ed)} & \text{ when } 0$$

for p = 1 we recover the rates of estimation of the Lasso in [Koltchinksi]

$$\mathbf{W}B_{p\infty}^d = \{t : t_j^* \le j^{-1/p}\}, \text{ where } t_1^* \ge \dots \ge t_d^*,$$

$$\ell^*(B_{p\infty}) \lesssim \left\{ egin{array}{ll} \sqrt{\log(ed)} & ext{when } 0$$

$$\ell^*(B_p^d) \sim \left\{ \begin{array}{ll} \sqrt{\log(ed)} & \text{ when } 0$$

for p=1 we recover the rates of estimation of the Lasso in [Koltchinksi]

2 $wB_{p\infty}^d = \{t : t_j^* \le j^{-1/p}\}, \text{ where } t_1^* \ge \dots \ge t_d^*,$

$$\ell^*(B_{p\infty}) \lesssim \left\{ egin{array}{ll} \sqrt{\log(ed)} & ext{when } 0$$

1 Michelli, Morales and Pontil norms : Θ a convex cone in $(0,\infty)^d$,

$$\Omega(t|\Theta) = \inf_{\theta \in \Theta} \frac{1}{2} \sum_{j=1}^{d} \left(\frac{t_j^2}{\theta_j} + \theta_j \right)$$

is a norm

$$\ell^*(B_p^d) \sim \left\{ \begin{array}{ll} \sqrt{\log(ed)} & \text{ when } 0$$

for p=1 we recover the rates of estimation of the Lasso in [Koltchinksi]

②
$$wB_{p\infty}^d = \{t : t_j^* \le j^{-1/p}\}, \text{ where } t_1^* \ge \cdots \ge t_d^*,$$

$$\ell^*(B_{p\infty}) \lesssim \left\{ \begin{array}{ll} \sqrt{\log(ed)} & \text{ when } 0$$

1 Michelli, Morales and Pontil norms : Θ a convex cone in $(0,\infty)^d$,

$$\Omega(t|\Theta) = \inf_{\theta \in \Theta} \frac{1}{2} \sum_{i=1}^{d} \left(\frac{t_j^2}{\theta_j} + \theta_j \right)$$

is a norm and for ${\mathcal E}$: extreme points of $\Theta\cap S^{d-1}_1$

$$\ell^*(B_{\Omega(\cdot|\Theta)})\lesssim \|\mathcal{E}\|_{\infty}\sqrt{\log\left(|\mathcal{E}|\|\mathcal{E}\|_{\infty}
ight)}.$$

Examples of Gaussian mean widths in $\mathbb{R}^{m \times T}$

$$\textbf{0} \ \ B_{S_p} = \{A \in \mathbb{R}^{m \times T} : \sum \sigma_j(A)^p \le 1\}, \ p > 0,$$

$$\ell^*(B_{S_p}) \lesssim \left\{ \begin{array}{c} \sqrt{m+T} & \text{when } 0$$

Examples of Gaussian mean widths in $\mathbb{R}^{m \times T}$

- $\textbf{0} \quad B_{S_p} = \{A \in \mathbb{R}^{m \times T} : \sum \sigma_j(A)^p \le 1\}, \ p > 0,$ $\ell^*(B_{S_p}) \lesssim \left\{ \begin{array}{c} \sqrt{m+T} & \text{when } 0$

$$\ell^*(B_{max}) \leq \sqrt{mT(m+T)}.$$

[Srebo, Shraibman]

Examples of Gaussian mean widths in $\mathbb{R}^{m \times T}$

$$\ell^*(\mathcal{B}_{\mathcal{S}_p}) \lesssim \left\{ egin{array}{ll} \sqrt{m+T} & \text{when } 0$$

$$\ell^*(B_{max}) \leq \sqrt{mT(m+T)}.$$

[Srebo, Shraibman]

3 Atomic norm regularization $||A||_{\mathcal{A}} = \inf(t > 0 : A \in tconv(\mathcal{A}))$ for $\mathcal{A} \subset \mathbb{R}^{m \times T}$ (atoms),

$$\ell^*(B_{\|\cdot\|_{\mathcal{A}}}) = \ell^*(\mathcal{A}).$$

[Chandrasekaran, Recht, Parrilo, Willsky]

 $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ symmetric kernel and the operator $(T_K f) = \int K(\cdot, x) f(x) d\mu(x)$. Denote :

• $(\lambda_j)_j$ eigenvalues of T_K ,

 $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ symmetric kernel and the operator $(\mathcal{T}_K f) = \int K(\cdot, x) f(x) d\mu(x)$. Denote :

- $(\lambda_j)_j$ eigenvalues of T_K ,
- **2** $(\phi_j)_j$ associated eigenfunctions,

 $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ symmetric kernel and the operator $(\mathcal{T}_K f) = \int K(\cdot, x) f(x) d\mu(x)$. Denote :

- $(\lambda_j)_j$ eigenvalues of T_K ,
- $(\phi_j)_j$ associated eigenfunctions,

 $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ symmetric kernel and the operator $(T_K f) = \int K(\cdot, x) f(x) d\mu(x)$. Denote :

- \bullet $(\lambda_j)_j$ eigenvalues of T_K ,
- $(\phi_j)_j$ associated eigenfunctions,

$$\bullet B_{\mathcal{K}} = \big\{ \sum \sqrt{\lambda_j} \beta_j \phi_j : \|\beta\|_{\ell_2} \le 1 \big\}.$$

Then,

$$\ell^*(\mathcal{B}_K) \sim \Big(\sum \lambda_j\Big)^{1/2}.$$

Previous results when X is sub-gaussian.

Previous results when X is sub-gaussian. We can weaken this assumption if we assume a statistical model :

$$Y = \langle X, t^* \rangle + \zeta$$

where ζ independent of $X \in \mathbb{R}^d$.

Previous results when X is sub-gaussian. We can weaken this assumption if we assume a statistical model :

$$Y = \langle X, t^* \rangle + \zeta$$

where ζ independent of $X \in \mathbb{R}^d$. We assume :

lacktriangle a small ball property : there exists u_0, eta_0 such that

$$P[|\langle X, t \rangle| \geq u_0(\mathbb{E}\langle X, t \rangle^2)^{1/2}] \geq \beta_0,$$

Previous results when X is sub-gaussian. We can weaken this assumption if we assume a statistical model :

$$Y = \langle X, t^* \rangle + \zeta$$

where ζ independent of $X \in \mathbb{R}^d$. We assume :

lacktriangledown a small ball property : there exists u_0, eta_0 such that

$$P[|\langle X, t \rangle| \geq u_0(\mathbb{E}\langle X, t \rangle^2)^{1/2}] \geq \beta_0,$$

2
$$X = (x_1, ..., x_d), ||x_j||_{L_p} \le \kappa \sqrt{p} \text{ for } 1 \le p \le \log(d),$$

Previous results when X is sub-gaussian. We can weaken this assumption if we assume a statistical model :

$$Y = \langle X, t^* \rangle + \zeta$$

where ζ independent of $X \in \mathbb{R}^d$. We assume :

① a small ball property : there exists u_0, β_0 such that

$$P[|\langle X, t \rangle| \geq u_0(\mathbb{E}\langle X, t \rangle^2)^{1/2}] \geq \beta_0,$$

$$X = (x_1, \dots, x_d), \|x_i\|_{L_p} \le \kappa \sqrt{p} \text{ for } 1 \le p \le \log(d),$$

6

$$\|\zeta\|_{2,1} = \int_0^\infty \sqrt{P[|\zeta| > x]} dx < \infty$$

Then, for the Lasso:

$$\hat{t} \in \operatorname*{argmin}_{t \in \mathbb{R}^d} \left(\frac{1}{N} \sum_{i=1}^N \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + u \|\zeta\|_{2,1} \|t\|_1 \sqrt{\frac{\log d}{N}} \right)$$

Then, for the Lasso:

$$\hat{t} \in \operatorname*{argmin}_{t \in \mathbb{R}^d} \left(\frac{1}{N} \sum_{i=1}^N \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + u \|\zeta\|_{2,1} \|t\|_1 \sqrt{\frac{\log d}{N}} \right)$$

with probability at least $1 - (1/u) - \exp(-N)$,

$$\|\hat{t}\|_1\lesssim \|t^*\|_1$$

Then, for the Lasso:

$$\hat{t} \in \operatorname*{argmin}_{t \in \mathbb{R}^d} \left(\frac{1}{N} \sum_{i=1}^N \left(Y_i - \left\langle X_i, t \right\rangle \right)^2 + u \|\zeta\|_{2,1} \|t\|_1 \sqrt{\frac{\log d}{N}} \right)$$

with probability at least $1 - (1/u) - \exp(-N)$,

$$\|\hat{t}\|_1 \lesssim \|t^*\|_1$$
 and $\|\langle X, \hat{t} - t^* \rangle\|_{L_2} \lesssim s(\|t^*\|_1)$

where

$$s(\rho) = \max\left(u\|\zeta\|_{2,1}\rho\sqrt{\frac{\log d}{N}}, \rho^2\frac{\log d}{N}\right).$$

Thanks for your attention