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(X;, Y;)N | iid couples ~ (X,Y) € X xR
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N
- 1
f in (= ) (Yi— (X)) + Alf).
e argmin (5 DY = FX0)* + Al
f e F*and E(f*(X) — F(X))? < ratey(F*)
find the regularization parameter A and ratey(F*)?
No Statistical model!
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4) square of norms (elastic-net)

Does not work for £¢ and rank(-).
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where Pyh = N-1°M . h(X)).
@ Noise/class interaction on F, : Vf € F,

Pu(Y — £)(F = £7) < mumax (s (p)|f = F ||, I = F[12,)
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Working in model F, (such that f* € F,).Consider the Empirical Risk
Minimization procedure :

f € argmin Py(Y — f)?
feF,

so that Hy(f) = Py[(Y — F)2 — (Y — f*)] < 0.

Hy(f) = Pn(f — £*)? = 2Pn(Y — £9)(f — £*).
Under the [small ball] and [noise/class] assumptions :

if [|[f = £*[|, > s(p) = max(s.(p), sq(p)) then

Q Pu(f — )2 > kollf — |2,
Q 2PN(Y — f*)(f — f*) < 2I€1Hf — f*H%Z
= Hp(f) > 0 (when 2k; < ko) so (since Hy(f) < 0),

IF = I, < s(p)-
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Choice of A — main result

Pn(Y — F*)(f — f*
A 2 sup sup w ) )
p>0fcF, P

Theorem (L. & Mendelson)

If the following are true :

Q@ empirical small ball property in F,« for p* ~ ||f*||, with level sq(p*)
@ noise/class interaction of level s;(p*) in F,-
@ )\ satisfies (1).
Then :
IFI S N1 and 17 = (|00 S s

where

s(p) = max (s1(p), sa(p) Vo).

Rem : For many model, max(s;.(p), so(p)) is the minimax rate of
convergence in F,.
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Checking the empirical small ball property

H satisfies an empirical small ball property when Vh € H,
|hll, > sq = Pnh? > koPh?.

This holds with probability at least 1 — e™", when :

@ Small ball property[Mendelson, "learning without concentration’] :
there exists ug, By s.t. Vh € H,

P[IA(X)| = uol|hllL,x)] = Bo-

(holds if [|hl[21e < lAll2)
@ fixed point equation :

E sup N
hEH:HhHLZ <sq@ i=1

Rem. : The control on the linear process is more standard.
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t* € agminE(Y — (X, 1))

teH
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# € argmin (12Nj (i = (X, £)" + Alle] )
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I8 S lle ] and (B(X, = £9)%)” < s(|[e]).
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(BY) ~ log(ed) when 0 < p < 1+ (log(ed))™*
P vant/a when p > 1+ (log(ed)) !

for p =1 we recover the rates of estimation of the Lasso in
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@ wBl, ={t:tf <j7VP} where tj > ... > 17,

. log(ed) when0<p<1
<
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Q(t|©) :meZ( )
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@ BY={teR: |t],<1},0<p<oc,

(BY) ~ log(ed) when 0 < p <1+ (log(ed))™!
P vant/a when p > 1+ (log(ed)) !

for p = 1 we recover the rates of estimation of the Lasso in
[Koltchinksi]

@ wBl, ={t:tf <j7VP} where tj > ... > 17,

. log(ed) when0<p<1
<
¢ (Bpoo) 5 { (log(ed))3/? when p =1

© Michelli, Morales and Pontil norms : © a convex cone in (0, o0)¢

Q(t|©) :meZ( )

is a norm and for £ : extreme points of © N S¢~*

" (Bae)) < €]/ log (IE1[IE]l)-
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*(Bs,) < vm+ T when 0 < p<1
AT S (mA TP m+ T when p > 1

Q [|Allmax = mina—yyt [U][25 00| V200,
0 (Bmax) < A/mT(m+ T).
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Examples of Gaussian mean widths in R™*T

Q@ Bs, ={AcR™T Y 0;(AP <1}, p>0,
*(Bs,) < vm+ T when 0 < p<1
AT S (mA TP m+ T when p > 1
Q [[Allmax = mina—yyr [[Ul[2= 00| V|20,
0 (Bmax) < A/mT(m+ T).

[Srebo, Shraibman]

© Atomic norm regularization ||A|| 4 = inf(t > 0: A € tconv(A)) for
A C R™T (atoms),

C(Ba) = C(A).

[Chandrasekaran, Recht, Parrilo, Willsky]
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Gaussian mean width of the unit ball of a RKHS

K: XxX—R symmetric kernel and the operator
(Tkf) = [ K(-, dpu(x). Denote :

Q (V) elgenvalues of Tk,
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Gaussian mean width of the unit ball of a RKHS

K: XxX—R symmetric kernel and the operator
(Tkf) = [ K(-, dpu(x). Denote :

Q (V) elgenvalues of Tk,

(qu) associated eigenfunctions,
O |flk =X VX(f,0:)°
O Bi = { X Vi85« |IBlle, < 1}.

Then, 2
A~ (N)

14 /17
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Result for the Lasso under the small ball property

Previous results when X is sub-gaussian.We can weaken this assumption
if we assume a statistical model :

Y =(X,t")+¢

where ( independent of X € RY.We assume :
© a small ball property : there exists ug, 5o such that

PI(X, £)] > w(E(X, £)*)"?] > f,

0 X:(X17...,Xd),|
o

xil1, < #y/p for 1 < p < log(d),

ICllon = / " /PIE S Adx < oo
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Result for the Lasso under the small ball property

Then, for the Lasso :

N
R ) 1 oy 2 log d
tearé%;.n(Ngw, (%,6))° + ullClaallellsy/ 5%)
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Result for the Lasso under the small ball property

Then, for the Lasso :

N
~ i 1 log d
t € argmin (NZ(Y/—<Xf7t>)2+u||C||2,1\\f||1 o,g\;, )

teRrd i—1
with probability at least 1 — (1/u) — exp(—N),

Il < [l
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Result for the Lasso under the small ball property

Then, for the Lasso :

N
~ i 1 log d
t € argmin (NZ(Y/—<Xf7t>)2+u||C||2,1\\f||1 o,g\;, )

d
teR i1

with probability at least 1 — (1/u) — exp(—N),
IElls S N1l and [[(X,E = )]0, < sCll£°]]1)

where

log d 2Iogd)

s(p) = max (ul¢ 2.y 5P p
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Thanks for your attention
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