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0- A brief introduction to post-genome high-throughput biology

4 Chemical Composition of Living Cells

Table 1-1

Approximate Chemical Composition of a Rapidly Dividing Cell (E. coli)

Different Kinds of
Material % Total Wet Wi. Molecules/Cell
Water 10 1
Nucleic acids
DNA 1 1
RNA 6
Ribosomal 3
Transfer 40
Messenger 1000
Nucleotides and metabolites 0.8 200
Proteins 15 2000-3000
Amino acids and metabolites 0.8 100
Polysaccharides 3 200
(Carbohydrates and metabolites)
Lipids and metabolites 2 50
Inorganic ions 1 20
(Major minerals and trace elements)
Others 0.4 200

100

Data from Watson JO: Molecular Biology of the Gene, 2nd ed., Philadelphia, PA: Saunders, 1972




Proteins: enzymes, cell signaling, structural proteins.
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Protein function depends on 3D/4D structure that remains very difficult to assess. July
2014: 101,948 structures in the Protein Data Bank (vs. 173,353,076 nucleotide

sequences in NCBI-GenBank).
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Flow of genetic information within a biological system
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general transfers; dotted arrows show special transfers. Again, the
absent arrows are the undetected trans specified by the central

Crick and Watson (1953) dogma.

The central dogma of molecular biology :

My mind was, that a dogma was an idea for which there was no reasonable evidence.
You see?! | just didn’t know what dogma meant. And | could just as well have called it
the ‘Central Hypothesis,” or — you know. Which is what | meant to say. Dogma was just
a catch phrase. (Crick as reported by H.F. Judson in The Eighth Day of Creation)
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DNA sequencing - Sanger method (1977-)

The chain termination method initially proposed in 1977 was refined/automated up to
the beginning of the 2000s.
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Recent technological breakthroughs in sequencing

best summarized by sequencing costs...

Cost per Raw Megabase of DNA Sequence

Moore's Law

$100,000,000
Human Genome Project

$5,000 genome

Mational Human Genome
Resaarch Institute

genome J_]Cl'l.'-"ﬁ equencingco sis

2001 2002 2003 2004 2006 2006 2007 2008 2009 2010 2011 2012 2013 2014
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DNA sequencing - High Throughput Sequencing (2007-)

Many different methods exist (available since 2007) and are currently developed. One
of the most popular is the sequencing by synthesis on lllumina platforms. It involves
three steps: library preparation (not shown), cluster generation and sequencing.

>1,000,000 sequences reads are produced simultaneously: the approach is massively
compared to classical (Sanger) sequencing.

HTS-based approaches have a broad range of applications: de novo sequencing
(genomes, metagenomes); resequencing (genetic diversity surveys within species);
transcriptome sequencing; genomic location analyses (ChlP-Seq, chromosome
conformation capture).



Genome-wide transcriptomics

Some major landmarks

m 1987: DNAs in arrays for expression
profiling (Kulesh et al.).

m 1994: Sequencing (Sanger) of cDNA/EST
libraries (Boguski et al.)

m 1995: Miniaturized arrays (microarrays)
(Schena et al.).

m 2004: Genome tiling arrays (Bertone et al.)

m 2008: HTS for expression profiling
(Nagalakshmi et al.)
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The post-genome era

Major research fields in the post-genome era include

m Use DNA data-sets to identify genetic determinants of interesting phenotypes
(e.g. disease gene, personalized medicine).

m Use DNA data-sets for evolutionary/population genetics analyzes.

m Use DNA/RNA/other data sets to investigate microbial ecosystem samples
(meta-genomics, meta-transcriptomics).

m Use DNA/RNA/other data sets in integrative approaches understand/model living
organisms (systems biology).

Statistical methods are essential, illustrated in this session

m Regression with many variables and few independent measurements (i.e.
establishing genotype-phenotype links, regulatory networks) — Jean-Michel Becu

m Probabilistic models for sequences and trees (i.e. evolutionary and population
biology) < Alexis Huet

m Data processing (i.e. normalization in transcriptomics, metagenomics)
— Marine Jeanmougin

m Latent variable models for uncovering underlying structures in data-sets
— Marine Jeanmougin, here
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1- Discovering transcription units

Initial approach for tiling array data'. Here Basysbio microarray with overlapping
probes starting every 25 bp on each strand of the Bacillus subtilis chromosome.

w
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signal level
10

CDSs

moves

1100000 1102000 1104000 1106000 1108000 1110000

position on chromosome (bp)

Upshifts and downshifts indicate the position of transcription start and termination
sites; the smoothed signal comes with a credibility interval and aims at capturing the
underlying local transcription level.

P Nicolas, A. Leduc, S. Robin, S. Rasmussen, H. Jarmer and P. Bessiéres. (2009) Transcriptional landscape
estimation from tiling array data using a model of signal shift and drift. Bioinformatics.
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Discrete-state HMM approximating a continuous state-space

Let x; denote the log-transformed data and u; the underlying signal.

“Emission” model
X |u ~  N(u,o®).

(simplified: the actual emission model ¢ depends on u; and the mean also depends
on covariates)

Transition kernel

U1 | Ur ~  m(Uppt, Up)

Difficulty: (ut) is continuous-valued whereas the HMM machinery works well for
discrete and typically small number of hidden states (Forward-Backward, Viterbi, . ..
have complexity O(TK?) in their general form).

— Use a transition matrix structure that allows algorithms in O( TK) and choose a
discretization-step h small enough.
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A transition kernel accounting for shift and drift

Hidden state space: grid with K points

Umax — Umin

K = 1.
P +
Mixture of 4 types of moves
7T(Ut, Ut—|—1 ) — an]I{Ut+1 :Ut} + aSn(Ut+1 )
Y1 —Ut g

+aUH{UH_1>Ut})\U n (1 o >‘U)
Ut — Ut1

Uiy
+agliy, <urg " (1—Aq),

with 0 < ap,as,ay,ag < 1,ant+ast+ay+ag=1et0 < Ay, \g < 1.

B «p, probability of not moving,
m «g, probability of shift,
m oy and agy, probabilities of upward and downward drifts.

— When h — 0 and h/(1 — A) — ~ the discrete kernel converges towards a
continuous kernel (State Space Model, HMM with continuous-valued underlying
process).
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Aligned reads

RNA-Seq count data
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RNA-Seq count data vs. tiling array data

Count reads starting (i.e. 5’-ends) at each position. Ideally we would expect
independence given the underlying transcription level.

RNA-Seq count data vs. tiling array data
m 1 bp resolution instead of tiling step (=25 bp)
m Count data instead of logarithm of fluorescence intensity
m Observations are discrete N* = {0,1,2, ...} instead of continuous R

m Underlying signal (expression level) lives in R™ with discrete mass at zero instead
of R

We also made different modeling and inference choices
m State Space Model instead of the discrete space HMM approximation

m Particle MCMC algorithm proposed by Andrieu, Doucet and Holenstein (2010) (—
Bayesian estimation) instead of EM (— ML estimation)



Smoothing and break-point detection from RNA-Seq count data
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Main unanticipated issues encountered in this work?

m finding a reasonably good emission model

m finding a solution for smoothing out local heterogeneity inducing short range
autocorrelation of read counts (local scaling term)

1B. Mirauta, P. Nicolas, and H. Richard (2014) Parseq: reconstruction of microbial transcription landscape from

RNA-Seq read counts using state-space models. Bioinformatics.
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Break-point detection from RNA-Seq count data is not easy

Table 1. Detection of transeribed positions and transeript borders on S.eereviviae (SRR121907) and E.cofi (SRRT94838) datasets

Features S.cerevisioe E.eoli
Reference Parseq Cultlinks Relerence Parseg Culflinks Rockhopper

Transcripls

Sensitivity  CD8Ss and UTRs 083 (0.91) (.83 (0.87) Operons 0.56 (0.81) 0.60 (0.75) 021 (0.39)

rrv CDSs and UTRs 0.90 {0.68) 0.90 (0.81) Operons 0.76 (0.57) 0.72 (0.61) 091 (0.56)
3 End

MNumber 6689 (8353) 5484 (13622) 1546 (2193) L577 (7962) 2949 (4401)

Sensilivily TSS5s 0.64 ((L63) .43 (1.45) Promolers .24 ((0.25) 015 (0.23) 012 (0.19)

PPV

¥ End
Number
Sensitivity
PPV

TS5 and SUTRs

pAs

pAs and YUTRs

.48 (0.4)

6287 (7440)
0.60 (0.62)
0.57 (0.51)

1.4 (0.22)

5484 (13622)
0.43 (0.44)
0.51 (0.22)

Promoter and operon 5-ends

Terminators

Terminator and operon 3-cnds

(.49 (0.42)

1327 (1342)
0.12 (0.11)
0.35 (0.32)

0.34 (0.11)

15377 (1962)
0.08 (0.13)
0.24 (D.08)

.24 (0.23)

2949 (4401)
(.03 (0.08)
0.07 (0.11)

Predictions amd reference data were mualched based on o 350 hp distance cutolT (For 0 £25bp distance cutodl] see Supplementary Tuble 53). Quiside parentheses: resulls

abtained after applying a stricter expression cutofl. S.cevevisiae: 0.1 reads/bp for Parseq. 100 fragments per transcript for Culflinks, Escherichia coli: 0.25 reads/bp cotofl for

Parseq, 200 fragments per transcript for Cufflinks, =

z = 001 for Rockhopper.

Our program (Parseq) does better than some others . ..

=02 for Rockhopper. Between parentheses: 07 reads/bp for Parseq, 5 fragments per transcript for Cufflinks and
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Drift and local scaling contribute to improve the results . ..

Table 2. Impact of drift and local scaling

Parseq components Included in the model

Drift” + + o= =
Autocorrelation” + - + -
5'-ends number 6689 13881 15994 31428
TSS sensitivity 64% T0% 14% T9%
TSS PPV 48% 28% 25% 15%
Y-ends number 6,287 11880 16613 32357
pPAs sensitivity 60%% 63% T0% T4%,
pAs and 3UTR PPV 57% 34% 29% 17%
CV* within CDSs 0.37 0.57 0.43 0.59

Results obtained on S.cerevisiae (SRR 1219071 cliromosome 1V (both strands) with

expression cutofl 0.1 reads/bp.
“Drift is removed by setting 3, = yy = 0.

"Short-range autocorrelation is removed by selting o, = 0, overdispersion is pre-
served by writing x, as drawn rom a NB instead of a Poisson-gamma mixture.

“Coeflicient of varation.

counts

counts

local

(reads/op)
oM B o O
|

(reads/bp)

scaling

10

191.5k 192K 192.5k 193k 193.5K 194k

191.5% 192k 192.5k 193k 193.5K 194k

position on chromosome (bp)

... by decreasing the rate of “false positives” in break-point calling (Positive Predictive

Value increases).
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The Negative Binomial distribution, a natural choice?

RNA Read counts

fragmentation
size selection

= — — alignment
on reference

— — — amplification sequencing

m the molecule abundance before sequencing writes as a product u;a; whose
distribution given the amount u; of the RNA species is

utar | iy ~ T (shape = k, scale = u;/k)
where a; (a; ~ I'(shape = k, scale = 1/k), E(a;) = 1 and V(a;) = 1/k) captures

bias and randomness in fragmentation, size selection, amplification — and
sequencing if needed.

m sequencing plays the role of a sampling procedure (Poisson distribution)

Yelu,a ~  P(uta)
vilus ~  NB(mean = u,size = k)
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RNA-Seq counts vs. Negative Binomial distribution

S.cerevisiae E.coli

200 200

Yt | ut ~ NB(mean = u;, size = k)

variance
g
]
=
S i
g
L | 1
o=
= &

0 | 1 by D'?S o 1 T £ I ﬂfzs

V(Yt ‘ Ut) = U; + (1//4;,)[11? 0 2 4 6 8 0 2 4 6 g
1 = 1 =
% _ _

_ _ K
Pyt =01]u)=1/(14 (ut/r)) fors - e
8
B 0.5 1 T T o 05 T T I 1
0 2 4 6 8 0 2 4 6 8
mean (reads /bp) mean (reads /bp)

The variance vs. mean and fraction of zero-counts vs. mean relationships are not
properly captured . .. which impedes correct reconstruction of the underlying
expression level.
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Towards an alternative to the Negative Binomial

At least two obvious “empirical” modifications could be envisioned

m making size parameter a function of u; to capture the correct relationship between
variance and mean,
but such a “plug-in” of an arbitrary link between variance and mean would not fix
the lack of fit of the zero-counts.

m adding mass at zero (zero-inflation),
but the zeros are not always in excess.

Can we think of more ingenious approaches to find an alternative to the Negative
Binomial?

Of note, the choice of the Gamma distribution for a; was mostly done for convenience
but the relationships V(y; | us) = us + V(a;)u? holds as long as we write y; ~ P(uar)
with u; 1 a; and E(a;) = 1 (law of total variance).

Vye [ u) = EV(y: | ar,u)) + V(E(: | a,ur))
= E(arur) + V(arur)

= U —|—V(at)ut2
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Proposed alternative : a more complex/realistic compound distribution

RNA Read counts

fragmentation
Size selection

= — — alignment
on reference

m read sampling
Yt~ P(xiat),

where x; is the number of molecules before “amplification” and a; is the
amplification coefficient.
m “amplification” and secondary variance inflation

a ~ [ (shape = k, scale = 0),

mean 6 corresponds to the average number of reads (y;) per initial molecule (x;)
m molecule sampling and initial variance inflation

Xt | ut, st~ P((ut/k0)st),
St ~ [ (shape = ks, scale =1/ks)

In our SSM context s; is made piecewise constant (to capture short-range
autocorrelation) and the emission density writes

St|si—1 ~ (1 —as)i(si—1) + asl(ks, 1/ks)

P(yr =k |u,st) = > Pt (Ut/r0)sONB(yii 1, X0/ (6 + 1))
x; >0



Fitting emission parameters to empirical observations

m Variance vs. mean

1 1 1
Viilu) = (c+—+—) F+-(1+0+x0) u
K Ks KRgk
m Zero-counts vs. mean
Ut X0
P(y; =0 u) = NB(xt; ks, - N'B(0; &,
(Vi | ut) thgo (Xt; ks Ks&9+ut) ( %Xt0‘|‘1)
m Distribution of counts in regions of low expression level (u; — 0T)
we have lim, .o+ P(x; = 1| y; > 1) =1, and thus
, 0
Yilupyr 21—y o+ NB_oy(mean = k, size = m)

m Short range auto-correlation in a region where the underlying expression level is
constant (U = U;1 = Ug).
2
u 1
J . : oz{s, [ > 1
ks V(¥ | ug)

corg(¥t, Yi+1)



Parameter choice for a real RNA-Seq data-set

200

variance
o
o

0.2 A

0 2 4 6 8

mean (reads /bp) -

density
autocorrelation

-k

counts

fraction of zero—counts
o
o o

0 2 4 6 8
mean (reads /bp)

a crude procedure involving three steps : (i) select ks and 6 based on read-counts in
regions of low expression level (ii) select ~ based on variance vs. mean and
zero-counts vs. mean (iii) select as based on autocorrelation.



A much better model than NB for RNA-Seq count data

S.cerevisiae E.coli
200 — 200
Q
e
@@ 100 — 0.25 100 — 0.25
e | i .a' “ f
-
0 0
0 0.25 0 0.25
0 | T T 1 0 T T T 1
0 2 4 6 8 0 2 4 6 8
1 17
L
=
=0
:
o
Lo7s — 0.75 —
b=
=
o
&
05 I T T 1. 05 T T T 1
0 2 4 6 8 0 2 4 6 8
mean (reads /bp) mean (reads /bp)

25/46



2- Partitioning the promoter space wrt RNAPol binding sites

Systematic exploration of B. subtilis transcriptional landscape based on large data-sets
(Basybio and Basynthec projects)?:

m 1 prototype strain (“wild type”).

m 1 tiling array design providing a strand-specific expression signal with a 22 bp step.
m 269 hybridizations sampling a maximum variety of lifestyles,

m 104 different biological conditions, most with 2-3 biological replicates.

Growth on various media (rich/poor, solid/liquid, aerobic/anaerobic), variety of stresses
(ethanol, salt, temperature, oxidative), landmark adaptations (sporulation, germination,
competence) . ..

Main contributors of experimental data:
m Etienne Dervyn, Philippe Noirot (Biologie des systemes, MICALIS, INRA),
m Ulrike Mader (Univ. Greifswald).




Highly coordinated changes of gene expression levels

>

Sporulation

PC1 (36%)

PC2 (14%)

<
minimal medium
Each point represents an experiment (hybridization) in which the transcriptional activity

of 5875 genome segments are recorded.
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Monitoring promoter activity

signal leve
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moves
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Summarizing correlations between activities of 3243 promoters

Cluster Dendrogram

1

0.5

Height

0.2
|

0.1

0.0
|

A ‘promoter tree’ is built by hierarchical clustering using average linkage on the
dissimilarity matrix d; j; = (1 — r; j)/2 € [0, 1] where r; ; is the correlation between
activities of promoters j and j.



|dentifying Sigma-binding site sequence motifs

Sequence modeling*

m the model expresses P(x; | U; = k), the probability of sequence x; given the
presence of a Sigma-binding site motif of type U; = k.

TSS
-35 box spacer —-10 box |_>
background [CTITTTTT INEEEEEEEEEEEEEE
PWM2 PWM1
< > <€ > <€ > € >
12 S 11 D

m a probability is associated to each motif P(U; = k) = ok, >« a,’f:1 = 1.

Searching for binding sites in a set of n sequences
m motif finding based on parameter estimation

m binding site predictions based on computation of
P(U; = k| x;) < P(x; | Ui = k)« for each sequence i € {1,...,n}.

1Sequence model and transdimensional MCMC algorithm adapted from P. Nicolas, A.-S. Tocquet, V. Miele, F. Muri
(2006) A reversible jump Markov chain Monte Carlo algorithm for bacterial promoter motifs discovery. J Comput Biol.
13. 651-67.
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ldentifying sequence motifs: taking into account the correlation tree

We introduce a joint model where the motif allocations U = (Us, Us, ..., Up) result
from an “evolution” along the tree.

m Change-points follow a Poisson process with rate A\ along the branches of the tree.

m At each change-point the new value of the allocation variable is drawn according
to the proportions a = (aq, ..., ak).

m Allocation is allowed to change at the leaf level with probability e.

P(U1n = U?) = Z |:7Ta(Vroot) H 7T>\,oc(Vaj — Vj) H 7TE,Oé(Vc’:I,' — Uj)

(v) Jj€nodes i€leaves

where v; is the motif allocation variable associated with internal node j of the tree, a; is the ancestor
of node .

—\d; —_\d:
7T>\,a(Vaj — V/) = (1-e A /)H{Vj - Vaj} + € A jan

Te,a(Va, = Ui)) = (1 —¢€)l{ui = va } + ey,

All parameters are estimated jointly with the MCMC algorithm. Only two additional
parameters compared to the classical mixture model A and e.

The approach is very different from the “regression” perspective adopted by others to
identify motifs that explain the expression patterns (REDUCE, FIRE, .. .).
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Behavior of the MCMC algorithm, with K = 20 motifs

allocation of motif types to promoter sequences

Across sweeps

burre-in {25 000 sweags) . riscording (25,000 swaeps)

promoter activity
correlation tree 50,000 sweeps of the MCMG algorithm

v
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Comparison with known Sigma factor binding sites

DBTBS: a database of transcriptional regulation in Bacillus subtilis

DBTBS M19 M14 M4 M3 M7 MS Mi6 M8 M11 M13 M17 M9 M1 M15 M10 M2 M18 M20 M6 M1i2
- 401 369 349 213 218 170 170 134 127 113 80 43 63 72 48 44 16 11 12 4 5
SigA 59 90 49 1 33 1 22 0 1 0 19 0 1 0 1 1 0 0 0o 7 0
SigB 0 0 0 0 0 0 0 0 44 0 0O 0 O 0 0O 0 O 0 0 O 0
SigD 0 0 0 0 1 0 0 0 0 0 1 0 O 0 23 0 O 0 0 O 0
SigE 0 0 1 54 0 4 0 1 0 0 0O O 1 0 0O 0 O 0 0 O 0
SigF 0 0 0 8 0 0 0 10 1 0 0O 0 O 1 0O 0 O 0 0 O 0
SigG 0 0 0 0 0 0 0 42 0 0 0O 0 O 0 0O 0 O 0 0 O 0
SigH 0 0 0 1 0 0 1 1 0 0 0 1 12 0 0O 0 O 0 0O O 0
Sigl 0 0 0 0 0 0 0 0 0 0 0O 0 O 0 0 O 1 0 0 O 0
SigK 1 0 0 1 0 38 0 0 0 0 0O 0 O 1 0O 0 O 0 0O O 0
SigL 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0O 0 O 6 0 0 0
SigM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0O 0 O 0 0 O 0
SigW 0 0 1 0 0 0 0 0 0 0 0 33 O 0 0O 0 O 0 0 0 0
SigX 0 0 0 0 0 0 0 0 0 0 0o 2 0 0 0O 0 O 0 0 O 0
SigY 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0O 0 O 0 0 0 0

Sequence logos to represent motifs

Al

ALKIAT

C
}

ARAA lAA

_Icclc LCC
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Average activity of the promoters for each Sigma binding site motif

Promoter tree

0.0 0.2 0.4 0.6 0.8 1.0

correlation coefficient

Clustering of Sigma
factor binding sites

15

1)

15

7

Activity of promoter clusters

— g(A)19 — s(A)7
— g(A)14 — s(A)16

~conditions (shortest tour)’
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Relating promoter activity to Sigma factor activity

The activity m; ; of promoter / in experiment t is modeled as a linear function of the
mean activity a;,; of all the promoters with the same motif k(/)

2
mit = «aj+ Biadkipy,e + €, €t ~ N(0,07 ;)

)

To be compared with

/ / / 2
miy = a;tey, €~ N(0,05)).

The activity of each promoter / can be summarized with three numbers

m «; and 3; quantify the “strength” of the promoter and its “sensitivity” to the activity
of the Sigma factor.

mi1— 0‘127,-/087,- the fraction of variance that is explained by the activity of the Sigma
factor.



Fraction of variance linked to Sigma factors

100

75 —

50 —
SigK

% of total variance contributed by each promoter cluster

T T T 1
0.00 0.25 0.50 0.75 1.00

Fraction of variance explained

m 66% of the total variance can be linked to direct regulation by Sigma factors.

m Variance of SigA-dependent promoters is poorly explained; due to the activity of
other transcription factors (>150 in B. subtilis), or not.
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3- Assessing a model of transcriptional regulation

What is the actual share of the transcription factors in the regulation of the
SigA-dependent promoters ? Let’s attempt to explain regulations without transcription
factors !

Ongoing joint work with Vincent Fromion. Motivation: explain tuning of transcription
levels wrt growth rate.

Data-set 30 hybridizations assessing transcriptome activity during exponential growth

(Ny = Noert, Ty = log2/p) in 15 growth media; we focus our analysis on 1514
SigA-promoter with TSS known at the 1 bp resolution.
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The hardware hypothesis

Our guess on this level of transcription regulation
m unlikely to rely on specific regulators.

m might be hard-coded in gene-specific kinetic parameters governing the rates of
synthesis and degradation.

Kk
G+pP = (G,P)
(G,P) - M
k9
M = 0

Predictions of the amount of mMRNA / is obtained by solving the “steady-state”
relationships

_ oim o dG.P]
kTGP — k[G.P] — kK°[G.P] = O ( g _o>

(%)

kS[Gi.P] — k9[M;]



The core equation of the hardware model

This yields to the amount of messenger M; for gene i written as a function of the
amount of 'free’ polymerase p

M) = 9P
: k-~ +kl.3 k.d
P S

where
B g = [Giwt] = [Gi] + [Gi-Pl, p = [P]
m k°g; is the maximal rate of synthesis,

,‘kzkf gives the concentration of the polymerase that allows half of the maximal
rate (i.e. Michaelis constant),

O /:7 is proportional to mRNA half-life.




Link between p and expression data

This equation allows a variety of expression profiles and can thus model changes in
relative mRNA concentrations.

amount of messenger [M]

amount of polymerase [P]

Our goal here is to estimate the amount of free polymerase p from (relative) mRNA
concentrations.



Probabilistic model for inference

We make a log transformation (as usual) to stabilize the variance wrt expression level

kS kT

1,71

mit = log, (k_kd) +1092(gi,¢) + logz(pt) + 2t

kS K
—logy (14 %+ =pr) +ei

i i

m where z; is a ‘'normalizing’ constant (we measure relative abundances).

m e~ N(O, a,?) is the “error term” whose variance is gene-specific (accounting for
other levels of regulation and noise). This gives less weight to the genes whose
expression is poorly explained by the model.



A simple model for gene dosage (g; ;)

gene dosage

T ]
i 0.8 0.6 0.4 0.2 0
distance to Ter

gt = 2"

where

m ¢; is the distance of the locus relative to the replication terminus (1 for Ori, O for
Ter).

m i ~ Ic/ T4 reflects the chromosome replication rate, corresponds to number of
replication forks on 1/2 chromosome.
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A simple model for rNTP-dependent abortive initiation

<+ - ATP < CTP
O .
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[ scrunchmg ") E [
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q - N
flexible element in RNAP = T s BT =g T T T
-— G5} = o
(‘inchworming’) [NTP: {PPiln 00 “o05EF 10 18 0 o .
abortive ANA -3 o
<+ GTP@ < uTp
torward-reverse translocations B g
(“transient excursions”) [N'I'PJ (PPin = ~ 2 < ~ 4
E 3 E
-— o 2V
E (=R _8’ o - °
a5 10 41 abortive ANA -3 /@/g’g/g/s/”ﬁ/
4 N 5
From Revyakin et al., 2006 — — T
0.0 05 £ 10 18 0.0 05 £ 10 18
growth rate (1/h) growth rate (1/h)
kmax
kP, = K> || (7x,.t)%
I,t / Xij k at ?

with ¢x € (0, 1) and where x; x is the rNTP needed for elongation at position k of
transcript / and 7y refers to the concentration of NTP x in condition t.

This formula arises as a crude approximation of the rate of success in a multi-step
competition between elongation (whose rate is proportional to 7) and abortion.
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From biological to statistical parameters

the initial probabilistic model

k.Stk.+
m,; = lo 2T ) 4 loga(gi ) + lo +z
it P (ki_ kid) 92(9i,t) 92(Pt) + 2t
k? kT
—log, (1+ L+ —pt) +¢
0 ( = TR pr) + it
IS rewritten
mi;y = «oj+Cipt+ Z a log T ot TGt — log, (1 + Bivr + viv H(Tx,-,k,t)ak) + €t
k k

There are a number of identifiability issues that makes the mapping between the
parameters that we can estimate and their biological counterparts not trivial.



Preliminary inference results on the “hardware model”
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The model captures ~ 50% of the total variance, the fit of the more constrained model
where r; and 1y are written as polynomial functions of the growth-rate is almost as
good.

Results to be extended on larger data sets and analyzed from a biological perspective
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Concluding remarks and acknowledgments

lllustration of
m examples of current research questions in computational biology

m the diversity of uses of latent variable models in this field (from data processing to
biological/mechanistic modeling).
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