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Motivation

Problem Statement

where / is a smooth log-likelihood function or some other smooth
statistical learning function, and ¢ is a possibly non-smooth convex
penalty term.

This problem has attracted a lot of attention with the growing need to
address high-dimensional statistical problems

This work focuses on the case where the function / and its gradient
are both intractable, and where V/ is given by

for some probability measure
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Network structure

m Problem: Estimate sparse network structures from measurements
on the nodes.

m For discrete measurement: amounts to estimate a Gibbs measure
with pair-wise interactions

i=1 1<j<i<p

for a function 5, : X — R, and a symmetric function
B X x X — R, where X is a finite set.

m The absence of an edge encodes conditional independence.
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Network structure

m Each graph represents a model class of graphical models; learning a
graph then is a model class selection problem.

m Constraint-based approaches: test conditional independence from
the data and then determine a graph that most closely represents
those independencies.

m Score-based approaches combine a metric for the complexity of the
graph with a measure of the goodness of fit of the graph to the
data... but the number of graph structures grows
super-exponentially, and the problem is in general NP-hard.
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Network structure

m For 2 € XP, define B(x) ““ (B (0. 20))1-pey © RIP.

m The /'-penalized maximum likelihood estimate of 6 is obtained by
solving an optimization problem of the form (P) where ¢ and g are
given by

n

0(6) = lz <e), E’(;r“))> —logZe, 9(0) =X > |05l

1=1 1<k<j<p
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Motivation

Fisher identity

m Fact 1: Zyp is the normalization constant is given by

where the sum is over all the possible configurations.

m Fact 2: the gradient Vlog Zy is the expectation of the sufficient
statistics:

m Problem: None of these quantities can be computed explicitly...
Nevertheless, they can be estimated using Monte Carlo integration.
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Motivation

General framework

where

m / is a smooth log-likelihood function or some other smooth
statistical learning function,

® ¢ is a non-smooth convex sparsity-inducing penalty.
re
m the function / and its gradient are intractable,

m The score function is given by

for some probability measure 77y on some measurable space
and some function
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Definition
m Definition: Proximal mapping associated with closed convex function

g and stepsize ~

prox.,(0) = Argmingcg (9(9) + (2v) 7|9 — 0[|3)

m If ¢ = I, where K is a closed convex set (Ix(z) =0, z € K,
I)c(z) = oo otherwise), then prox. is the Euclidean projection on K

prox., (6) = Argming - || — 0||5 = Pk (0)

m if g(0) = > 7, \|0;] then prox, is shrinkage (soft threshold)
operation
0; —v\i 0; >\
[Sry (@), =0 03] < YA
O+ 0; < =\
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Proximal gradient method

Unconstrained problem with cost function split in two components
Minimize [(6) = —/((0) + g(0)

m —( convex, differentiable with dom(g) = R"

m g closed, convex, possibly non differentiable... but prox, is
inexpensive |

Proximal gradient algorithm
0™ = prox,,, (0" + VL0 D))

where {v,.. k& € N} is a sequence stepsizes, which either be constant,
decreasing or determined by line search
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Interpretation

m Denote
6% = prox. (0 +yVL(H))

m from definition of proximal operator:

0 Argming (g(9) + (29) 719 — 6 — vV (0 H:),
= Argmingy(g(9) — £(0) — VLT (9 — ) + )~ H0 - 0)3) .

m (" minimizes ¢(v) plus a simple quadratic local model of —/(1))
around ¢/

m If 4 < 1/, the surrogate function on the RHS majorizes the target
functlon, and the algorithm might be seen as a specific instance of
the Majorization-Minimization algorithm.
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Some specific examples

m if g(0) = O then proximal gradient = gradient method.

ok = o= 4 5 ve(h—1)

m if g(0) = I);c(0), then proximal gradient = projected gradient

0 = P (0%~ 4 4, ve(pk b))

m if g(0) = 5. \,|6;] then proximal gradient = soft-thresholded
gradient
()(At) _ S)\m:(e(kffl) + A’kv((ﬁ(lx*l)»

Eric Moulines ENSL



Proximal Gradient Algorithm

Gradient map

The proximal gradient may be equivalently rewritten as

where the function is given by

The subgradient characterization of the proximal map implies

Therefore, if and only if ¢ minimizes

Eric Moulines ENSL



Proximal Gradient Algorithm

Convergence of the proximal gradient

Assumptions:

m V/ is Lipschitz continuous with constant L > 0

m optimal value f* is finite and attained at 6* (not necessarily unique)

decreases at least as fast as
m /f fixed step size is used

m if backtracking line search is used
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proximal Stochastic Approximation

El Stochastic proximal gradient algorithm
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Stochastic Approximation vs minibatch

Stochastic proximal gradient algorithm proximal Stochastic Approximation

Back to the original problem !

m The score function is given by

Therefore, at each iteration, the score function should be
approximated.
m The case where and and random variables

each marginally distributed according to @ = online learning
(Juditsky, Nemirovski, 2010, Duchi et al, 2011).
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Stochastic Approximation vs minibatch

Stochastic proximal gradient algorithm proximal Stochastic Approximation

Back to the original problems !

[ depends on the unknown parameter

m Sampling directly from 7 is often not directly feasible. But one may
construct a Markov chain, with Markov kernel /7, such that

m The Metropolis-Hastings algorithm or Gibbs sampling provides a
natural framework to handle such problems.
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Stochastic Approximation / Mini-batches ¢ = 0

ellvl — HN + Am+l][n+l

where /7, | approximates V/(0,, ).
m Stochastic Approximation: ~,, | 0 and /1,1 = Hy, (X, 1) and
X1~ Py, (Xy, ).

m Mini-batches setting: 7, = 7 and

Myg1—1

Hopr=myty > H(0n, Xng1j),

j=0

where 1m,, T oc and {X,,H_,}'/.';’l+J is a run of the length 117, of a
Markov chain with transition kernel /7 .
m Beware | For SA, n iterations = n simulations. For minibatches, n

iterations = 7, m; simulations.
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e g v
proximal Stochastic Approximation

Averaging

_ def I{,i 0. B
{)n 1:[ M - (1 o n””) 0717] + #(}n .

k=1 ak k=1 Ok

m Stochastic approximation: take a,, = 1, 7, = C'n~ % with
a e (1/2,1), then

m Mini-batch SA: take a,, = m,, v, =~ < 1/(2L) and m,, — o
sufficiently fast, then

Vi (O, — 0.) =5 N(0,0?)

where /V,, is the number of iterations for . simulations:
Ny, N, +1
YopsimE <n <> my.
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e g v
proximal Stochastic Approximation

Stochastic Approximation

HnJrl — 977 + Yn+1 V((en) + Yn+1Tn+1
Nn+1 = [I(),, (Xn,+l) - V«Z(Q,,) — II()“ <)(Iz,+l> — Ty, (II(),‘) .

m |dea Split the error into a martingale increment + remainder term
m Key tool Poisson equation

Hy — PyHy = Hy — mg(Hy) .
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proximal Stochastic Approximation

Decomposition of the error

Hop, (Xpn41) — mo, (Hy,)
Ho, (Xn+1) — Po, Ho, (Xnt1)

n+1 =

Hy, (X,11) — Po, Ho, (X)) + Pa, Ho,(Xns1) — Pa, Ho, (X,)

We further split the error

P(),, H(),, (XII ! l) 7 Pf),, H(},, (4Y11>
=Py, Hy, ., (Xp11)—Po, Ho, (Xn)+Po, Hp,(Xp11)—Pas, .. Ho, , (Xni1) -

To prove that the remainder term goes to zero, it is required to prove the
regularity of the Poisson solution with respect to 6, to prove that ¢ — H

and 0 > FyHy is smooth in some sense.... this is not always a trivial
issue !
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Minibatch case

Assume that the Markov kernel is nice ...

Bias
Mpt1—1
J -1
E [np41]Fn] = 777,,+1 Z (7/9” Pfj Hy, — g, H(g) =0(m, )
=0
Fluctuation
Myp1—1
7777!+l E ng, (XI) — Ty, (HH/I )
=0
Mpy1—1
=my g Hy,(X;) — Py, Hy, (X;_1) + remainders
j=1

it
<
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Stochastic proximal gradient algorithm

Minibatches case

m Contrary to SA, the noise in the recursion

converges to zero a.s. and the stepsize is kept constant

m Idea: perturbation of a discrete time dynamic system

having a unique fixed point and a Lyapunov function
in presence of vanishingly small perturbation

m a.s convergence of perturbed dynamical system with a Lyapunov
function can be established under very weak assumptions...
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Stochastic proximal gradient algorithm o oxallS tac hes el Ap e oxination

Stochastic proximal gradient

The stochastic proximal gradient sequence {6,,, n € N} can be rewritten
as

where is the approximation error.
Questions:
m Convergence and rate of convergence in the SA and mini-batch
settings 7
m Stochastic Approximation / Minibatch: which one should | prefer ?
m Tuning of the parameters (stepsize for SA, size of minibatches,
averaging weights, etc...)
m Acceleration (4 /a Nesterov) ?
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Stochastic proximal gradient algorithm o oxallS tac hes el Ap e oxination

Main result
Suppose that is decreasing and for alln > 1.
For any 0, € ©, and any nonnegative sequence ,
where is the gradient proximal map,
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Stochastic Approximation vs minibatch
proxi Stochastic Approximation

Stochastic Approximation setting

Take a; = 7, and decompose, using the Poisson equation, 1; = &; + 75,
where ¢; is a martingale term and 7; is a remainder term.

n
ap

Sy [ {F8,) - £0.0)) < e R
—1 I

n n
+ > 75 (T, (85-1) — 6x,&5) + > 7} [n;||* + remainders ,
j=1 Jj=1
The red term is a martingale with a bracket bounded by
> W N05-1 — OPE [11117 | Fi-a]

J=1

If 32727 =00 and 3772, 7f < oo, {On, s N} converges. rate of
convergence In(n)//n by taking 7; = j /7.

Eric Moulines ENSL



Stochastic Approximation vs minibatch

Stochastic proximal gradient algorithm o oxallS tac hes el Ap e oxination

Minibatch setting

Let {0,,, n > 0} be the average estimator. Then for all n > 1,

where
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Stochastic Approximation vs minibatch
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Convergence analysis

Corollary

Suppose that ~y,, € (0,1/L], and there exist constants C7,Cs, B < 00
such that, forn > 1,

Then, setting , and ,

where is the number of iterations for n simulations. This is the same
rate than for the SA (without the logarithmic term).
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Network structure estimation

Potts model

We focus on the particular case where X = {1,..., M}, and
B(x,y) = 1{;—,}, which corresponds to the well known Potts model

m The term is sometimes referred to as the external
field and defines the distribution in the absence of interaction.

m We focus on the case where the interactions terms 6;; for i # j are
nonnegative. This corresponds to networks with there is either no
interaction, or collaborative interactions between the nodes.
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Network structure estimation

Algorithm

At the k-th iteration, and given Fj, = (01, ...,0):

generate the XP-valued Markov sequence {Xj 1 ;}-" with

transition Py, and initial distribution v, , and compute the
approximate gradient

Compute

the operation s, 1 (M) soft-thresholds each entry of the matrix M,
and the operation TIx, (M) projects each entry of M on [0, a].
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MCMC scheme

For j # i, we set b;; = e%i. Notice that bij > 1. For x = (x1,...,xp),

(\\p(ZH”P ) H (b,,l{,,f,}Jrﬂl,#,”).

i=1 1<j<i<p

fo(x) =

Augment the likelihood with auxiliary variables {0,,, | < j < i < p},
0;; € {0, 1} such that the joint distribution of (z,d) is given by

fo ( (x, 0) o< exp <z 0;:Bo(a )
<1 (1{,,.,% iy (1= b)™ g 1“#/}(J<s,/1,|,4,/) |
J<i

The marginal distribution of z in this joint distribution is the same fj
given above.
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Network structure estimation

MCMC scheme

m The auxiliary variables {4;;, 1 < j < i < p} are conditionally
independent given = = (x1,...,xp); if x; # x;, then §;; = 0 with
probability 1. If z; =, then &;; = 1 with probability 1 —b,.', and
d;; = 0 with probability bi_jl.

m The auxiliary variables defines an undirected
graph with nodes where there is an edge between i # j if

, and there is no edge otherwise.

m This graph partitions the nodes into maximal clusters
C1,...,Ck (a set of nodes where there is a path joining any two of
them).

m Notice that §;; = 1 implies 2; = x;. Hence all the nodes in a given
cluster holds the same value of z.
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Network structure estimation

Wolff algorithm

Given

Randomly select a node , and set

Do until €y can no longer grow. For each new addition ;j to (), and
for each such that , starting with , do the
following. If , set with probability Cf

,add 7’ to

If , randomly select , and propose a

new vector , where for and for

. Accept X with probability

Eric Moulines ENSL



Network structure estimation

= 8 — Stoch. Grad. 4 — Stoch. Grad.
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Figure : Simulation results for p = 50, n = 500 observations, 1% of
off-diagonal terms, minibatch, m, = 100 +n

Eric Moulines ENSL



Network structure estimation

e E— 2]
T 3 B gt

Relative error rate
035
L

050
L

085
L

T T T T T T T T T T T T T T T T
o 200 400 600 800 1000 0 200 00 600 800 1000 0 200 00 600 800 1000

Herations Herations Herations

Figure : Simulation results for p = 100, n = 500 observations, 1% of
off-diagonal terms, n = 500 observations, 1% of off-diagonal terms, minibatch,
my, = 100 +n
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Figure : Simulation results for p = 200, n = 500 observations, 1% of
off-diagonal terms, 1% of off-diagonal terms, minibatch, m,, = 100 +n
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Conclusion

Take-home message

m Efficient and globally converging procedure for penalized likelihood
inference in incomplete data models are available if the complete
data likelihood is globally concave with convex sparsity-inducing
penalty (provided that computing the proximal operator is easy)

m Stochastic Approximation and Minibatch algorithms achieve the
same rate, which is where n is the number of simulations.
Minibatch algorithms are in general preferable if the computation of
the proximal operator is complex.

m Thanks for your attention... and patience !
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