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Multiple testing procedures (MTP)

� MT appears in many applications: microarray analysis, signal
detection, astrophysics, . . .

� Controlling the type I error of each test (e.g. nominal level α)
may result in a large number of false positives.

� MTP aim at controlling global quantities, such as
� Family-wise error rate: FWER=P(FP ≥ 1) (too stringent)
� False discovery rate:

FDR = E

(
FP

max(R,1)

)
= E

(
FP
R

∣∣∣R > 0
)
P(R > 0)

� Positive FDR: pFDR=E
(
FP
R |R > 0

)
� . . .

Accept H i Reject H i Total

H i true TN FP n0

H i false FN TP n1

Total W R n

Table : Possible outcomes from testing n hypotheses H1, . . . , Hn



Error control vs error estimation

Two points of view on MTP

� Either estimate the error (FDR or pFDR or . . .) for some fixed
rejection region;

� Or, fix an a priori upper bound on the error and find a
rejection region with controlled error.

Equivalent issues

� In fact these two points of view merge, as most of the MTP
may be viewed as threshold procedures applied to estimates of
FDR, pFDR . . ..

� Thus estimating FDR or pFDR is of major interest in MT.

� These quantities are closely related to the proportion of true
null hypotheses and the density under the alternative
hypothesis.
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Semi-parametric mixture model

Notation

� Consider n identical hypotheses with test statistics T1, . . . , Tn

and p-values P1, . . . , Pn

� Let H i = 0 if the i-th null hypothesis is true, and 1 otherwise.
Assume H i are i.i.d. variables.

� If Ti|H i = 0 has a continuous distribution, then
Pi|H i = 0 ∼ U([0, 1])

� Then the Pi are i.i.d. and follow a mixture distribution
g(x) = θ1[0,1](x) + (1− θ)f(x), x ∈ [0, 1]

� θ ∈ [0, 1] is the unknown proportion of true null hypotheses

� f is the unknown density of Pi under the alternative H i = 1.

The model is parametrized by (θ, f).



Identifiability

Proposition

The parameter (θ, f) is identifiable on a set (0, 1)×F if and only
if for all f ∈ F and for all c ∈ (0, 1), we have c+ (1− c)f /∈ F .

Examples of sets F
� Purity condition [Genovese & Wasserman, 2004]:

infx∈[0,1] f(x) = 0

� [Langaas et al., 2005]: f is non-increasing with f(1) = 0

� [Pounds & Cheng, 2006, Celisse & Robin, 2010]: f vanishes
in a neighborhood of 1 or an open interval in (0, 1).

In the following, we work on the set

Fλ = {f : [0, 1] �→ R
+, continuously non increasing density,

positive on [0, λ) and such that f|[λ,1] = 0}.



Estimation of the proportion θ

Many proposals in the literature.

3 main types of estimators

� Histogram based estimators;

� Monotone density estimators;

� Regular density estimators.



Histogram based estimators I

Underlying assumption

f vanishes on some neighborhood of 1. E.g.
[Schweder & Spjøtvoll, 1982]’s estimator

θ̂n(λ) =
�{Pi > λ, 1 ≤ i ≤ n}

n(1− λ)

Choice of λ

� Fixed value: λ = 1/2 most popular choice;
� Adaptive choices. Many references, among which:

� [Benjamini & Hochberg 2000]: detection of a change of slope;
� [Storey 2002]: bootstrap procedure;
� [Celisse & Robin, 2010]: cross-validation (LpO) procedure;



Histogram based estimators II

Convergence properties

� Very few convergence results have been established;

� [Celisse & Robin, 2010]’s estimator is proved to convergent in
probability;

� Properties of [Schweder & Spjøtvoll, 1982]’s oracle version: if
f|[λ�,1] = 0 and λ = λ� then√
n(θ̂n(λ

�)− θ) →d
n→∞ N (0, θ( 1

1−λ� − θ)).



Monotone density and regular densities estimators

Other estimators

� Grenander’s estimate is proposed by [Langaas et al., 2005];
Converges at nonparametric rate (log n)1/3n−1/3;

� Regular density estimators: [Neuvial, 2013] proposed a kernel
based estimator; Converges at nonparametric rate
n−k/(2k+1)ηn, where ηn → ∞ and k controls regularity of f
near x = 1.

Issues

� When is it possible to construct an estimator converging at
parametric rate?

� What is the optimal asymptotic variance of a parametric
estimator and are there efficient estimators?



Results

Let us recall that we work on

f ∈ Fλ = {f : [0, 1] �→ R
+, continuously non increasing density,

positive on [0, λ) and such that f|[λ,1] = 0}.

2 different cases occur

� When λ = 1: any estimator of θ cannot converge at
parametric rate.

� When λ < 1: we can construct estimators converging at
parametric rate but they are not asymptotically efficient
(except for irregular models).
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Asymptotic efficiency theory in semi-parametric models I
Let P = {Pθ,η : θ ∈ Θ, η ∈ F}, with Θ ⊂ R an open set and F an
infinite dimensional set.
We aim at estimating ψ(θ).

� The ordinary score function: l̇θ,η = ∂
∂θ log dPθ,η.

� A tangent set for η:

Ṗη =
{

∂
∂t

∣∣
t=0

log dPθ,ηt : for suitable paths t �→ ηt in F}
� The efficient score function: l̃θ,η = l̇θ,η −Πθ,η l̇θ,η, where Πθ,η

is the orthogonal projection onto linṖη in L2(Pθ,η).

� The efficient information: Ĩθ,η = Eθ,η l̃
2
θ,η



Asymptotic efficiency theory in semi-parametric models II

Definition. An estimator θ̂n is asymptotically efficient if and only if
it satisfies

√
n(θ̂n − θ) = 1√

n

∑n
i=1 Ĩ

−1
θ,η l̃θ,η(Xi) + oPθ,η

(1).

As a consequence,

� By the central limit theorem and Slutsky’s theorem,
√
n(θ̂n − θ)

Pθ,η� N(0, Ĩ−1
θ,η ).

� By the LAM theorem: the optimal variance is Ĩ−1
θ,η .



Efficient score and information in our case

Pλ∗ =
{
Pθ,f ;

dPθ,f

dμ = θ + (1− θ)f ; (θ, f) ∈ (0, 1)×Fλ∗
}
.

Proposition. The efficient score function l̃θ,f and the efficient
information Ĩθ,f for estimating θ in model Pλ∗ are given by

l̃θ,f (x) =
1
θ − 1

θ[1−θ(1−λ∗)]1[0,λ∗)(x) and Ĩθ,f = 1−λ∗
θ[1−θ(1−λ∗)] .

Corollary.

� When λ∗ = 1, we have Ĩθ,f = 0, then there is no estimator of
θ converging at parametric rate.

� When λ∗ < 1, an estimator θ̂n of θ is asympt. eff. if and only
if it satisfies

θ̂n =
#{Xi > λ∗ : 1 ≤ i ≤ n}

n(1− λ∗)
+ oPθ,f

(n−1/2),

with the optimal variance equal to θ
(

1
1−λ∗ − θ

)
.



Case λ∗ < 1

Let us further investigate what may be obtained in this case:

� Can we exhibit
√
n-consistent estimators?

� If yes, do they asymptotically achieve the optimal variance?
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Case λ∗ < 1: estimators with parametric rate I

A histogram based estimator

f̂I : a histogram estimator of f .
Define an estimator of θ as

θ̂I,n = min
x∈[0,1]

f̂I(x)

Histogram of p−values
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Theorem
Suppose that f ∈ F∗

λ with λ∗ < 1 and I is fine enough, then the

estimator θ̂I,n has the following properties

i) θ̂I,n converges almost surely to θ,

ii) lim sup
n→∞

nE
[
(θ̂I,n − θ)2

]
< +∞.



Case λ∗ < 1: estimators with parametric rate II

Celisse & Robin [2010]’s procedure

θ̂CR
n : estimator proposed by
[Celisse & Robin, 2010]
λ̂: chosen adaptively based on
cross-validation method.

Theorem
Under some assumptions, the estimator θ̂CR

n has the following
properties

i) θ̂CR
n converges almost surely to θ,

ii) θ̂CR
n is

√
n-consistent, i.e.

√
n(θ̂CR

n − θ) = OP(1),

iii) If the parameter p in leave-p-out estimator is fixed then
lim sup
n→∞

nE
[
(θ̂CR

n − θ)2
]
< +∞.



Case λ∗ < 1: estimators with parametric rate III

Additional remarks

� We did not succeed in computing the asymptotic variance of
these estimators;

� In the simulations, we further study this point.

”One-step” estimator

� The one-step procedure is a general method for constructing
an asymptotically efficient estimator starting from a√
n-convergent one.



One step procedure

Construction
Let θ̂n a

√
n-consistent estimator of θ and

l̂n,θ(·) = l̂n,θ(·;X1, . . . , Xn) an estimator of l̃θ,f . Denoting
m = �n/2
, we let

l̂n,θ,i(·) =
{

l̂m,θ(·;X1, . . . , Xm) if i > m,

l̂n−m,θ(·;Xm+1, . . . , Xn) if i ≤ m.

Then, a one-step estimator is constructed as

θ̃n = θ̂n −
( n∑

i=1

l̂2
n,θ̂n,i

(Xi)
)−1

n∑
i=1

l̂n,θ̂n,i(Xi).



Existence of asympt. eff. estimators
For an estimator l̂n,θ(·) = l̂n,θ(·;X1, . . . , Xn) of l̃θ,f and every
sequence θn = θ +O(n−1/2), introduce the following conditions

√
nPθn,f l̂n,θn

Pθ,f−−−→
n→∞ 0, (1)

Pθn,f‖l̂n,θn − l̃θn,f‖2
Pθ,f−−−→
n→∞ 0 (2)

Proposition ( Recall )

� The existence of asympt. eff. estimator of θ ⇐⇒ the
existence of estimator l̂n,θ of l̃θ,f satisfying (1) and (2).

� If l̃θ,f is estimated through a plug-in estimate λ̂n of λ∗, then
this condition is equivalent to

√
n(λ̂n − λ∗) = oP(1).

Existence

� Irregular models: f has a jump point at λ∗, YES
� Regular models: conjecture that NO
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Simulations setup
� Consider the alternative density

f1(x) =
s
λ∗

(
1− x

λ∗

)s−1
1[0,λ∗](x)

� Different parameter values:
s ∈ {1.4; 3}, λ∗ ∈ {0.7; 1}, θ ∈ {0.6; 0.7; 0.8; 0.9}

� Sample size
n ∈ {5000; 7000; 9000; 10000; 12000; 14000; 15000} and
S = 100 repetitions.
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Simulations
λ∗ = 0.7
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Figure : Logarithm of MSE as a function of log(n) and linear regression

for θ̂Ln (black line), θ̂CR
n (blue line) and θ̂I,n (green line). Red line:

y = − log(n) + log[θ((1− λ∗)−1 − θ)] (oracle version).
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Conclusions

Conclusions
Consider a mixture g(x) = θ1[0,1](x) + (1− θ)f(x), where the
density f is non-increasing and its support stops at λ∗.

� λ∗ = 1: there is no estimator of θ converging at parametric
rate

� λ∗ < 1:
� Two estimators of θ converging at parametric rate
� Irregular model: it is possible to construct an asymptotically

efficient estimator of θ.
� Regular models: we conjecture that asymptotically efficient

estimators of θ do not exist.
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