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Context: multiple testing procedures



Multiple testing procedures (MTP)

» MT appears in many applications: microarray analysis, signal
detection, astrophysics, ...

» Controlling the type | error of each test (e.g. nominal level o)
may result in a large number of false positives.
» MTP aim at controlling global quantities, such as
» Family-wise error rate: FWER=P(FP > 1) (too stringent)
» False discovery rate:
FDR = E(ﬁ) :E(F—RP|R> o) P(R > 0)
» Positive FDR: pFDR=E (%|R > 0)

Accept H* Reject H* Total

H" true TN FP no
H" false FN TP n1
Total W R n

Table : Possible outcomes from testing n hypotheses H*, ... K H"



Error control vs error estimation

Two points of view on MTP

» Either estimate the error (FDR or pFDR or ...) for some fixed
rejection region;

» Or, fix an a priori upper bound on the error and find a
rejection region with controlled error.

Equivalent issues

» |n fact these two points of view merge, as most of the MTP

may be viewed as threshold procedures applied to estimates of
FDR, pFDR ....

» Thus estimating FDR or pFDR is of major interest in MT.

» These quantities are closely related to the proportion of true
null hypotheses and the density under the alternative
hypothesis.
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Semiparametric mixture model



Semi-parametric mixture model

Notation

>

>

>

Consider n identical hypotheses with test statistics 17,...,1},
and p-values Pi,..., P,

Let H* = 0 if the i-th null hypothesis is true, and 1 otherwise.
Assume H* are i.i.d. variables.

If T;|H* = 0 has a continuous distribution, then

PIH' =0~ U(]0,1]

Then the P; are i.i.d. and follow a mixture distribution

g(x) = 01 1y(z) + (1 =0)f(x), v €[0,1]

¢ € |0, 1] is the unknown proportion of true null hypotheses
f is the unknown density of P; under the alternative H* = 1.

The model is parametrized by (6, f).



|dentifiability

Proposition

The parameter (0, f) is identifiable on a set (0,1) x F if and only
if for all f € F and for all c € (0,1), we havec+ (1 —c¢)f ¢ F.

Examples of sets F

» Purity condition [Genovese & Wasserman, 2004]:
infzepo,1) f(z) =0
» [Langaas et al., 2005]: f is non-increasing with f(1) =0

» [Pounds & Cheng, 2006, Celisse & Robin, 2010]: f vanishes
in a neighborhood of 1 or an open interval in (0, 1).

In the following, we work on the set

Fy=1{f:]0,1] = R™, continuously non increasing density,
positive on [0, A) and such that f qj = 0}.



Estimation of the proportion 6

Many proposals in the literature.
3 main types of estimators
» Histogram based estimators;

» Monotone density estimators;

» Regular density estimators.



Histogram based estimators |

Underlying assumption

f vanishes on some neighborhood of 1. E.g.
[Schweder & Spjgtvoll, 1982]'s estimator

Himtograre of p—onluss

] _I | i () — t{P > A\1<i<n}

Choice of A

» Fixed value: A = 1/2 most popular choice;

» Adaptive choices. Many references, among which:

» [Benjamini & Hochberg 2000]: detection of a change of slope;
> [Storey 2002]: bootstrap procedure;
» [Celisse & Robin, 2010]: cross-validation (LpO) procedure;




Histogram based estimators ||

Convergence properties

» Very few convergence results have been established:;

> [Celisse & Robin, 2010]'s estimator is proved to convergent in
probability;

» Properties of [Schweder & Spjgtvoll, 1982]'s oracle version: if
f|[>\*>1] = 0 and A = \* then

V(O (X)) = 0) =700 N(0,0(1=55 — 0)).



Monotone density and regular densities estimators

Other estimators

» Grenander's estimate is proposed by [Langaas et al., 2005];
Converges at nonparametric rate (logn)Y/3n=1/3;

» Regular density estimators: [Neuvial, 2013] proposed a kernel
based estimator; Converges at nonparametric rate
n~k/ 2kt where 1, — oo and k controls regularity of f
near x = 1.

Issues
» When is it possible to construct an estimator converging at
parametric rate?

» What is the optimal asymptotic variance of a parametric
estimator and are there efficient estimators?



Results

Let us recall that we work on

feFn={f:]0,1] = R", continuously non increasing density,
positive on [0, A) and such that f, qj = 0}.

2 different cases occur

» When A\ = 1: any estimator of # cannot converge at
parametric rate.

» When \ < 1: we can construct estimators converging at

parametric rate but they are not asymptotically efficient
(except for irregular models).
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Asymptotic efficiency theory [van der Vaart, 1998]



Asymptotic efficiency theory in semi-parametric models |

Let P = {Py,, : 0 € ©,n € F}, with © C R an open set and F an

Infinite dimensional set.
We aim at estimating ¢(6).

» The ordinary score function: l.gm = 35 9 1og dPy -
» A tangent set for n:
75 = {%‘t o log dPy p, = for suitable paths ¢ — 7 in .7-"}

» The efficient score function: lg n= l@ n— g nl@ n Where Il ,,

is the orthogonal projection onto linP, in La(P.,).
[2

» The efficient information: ig,n = Ko 5l n




Asymptotic efficiency theory in semi-parametric models |l

Definition. An estimator 6,, is asymptotically efficient if and only if
it satisfies

As a consequence,

» By the central limit theorem and Slutsky's theorem,
~ P ~
Vi(bn —0) = N0, I, 1)

» By the LAM theorem: the optimal variance is ie_%



Efficient score and information in our case

Prx = {P@)f; dIZZ’f =0+ (1-0)f;(0,f) €(0,1) x ‘FA*}

Proposition. The efficient score function fg,f and the efficient
information Iy s for estimating 6 in model P,« are given by

~ ~ _\*
lo.f(x) = § — 9[1—9(11—>\*)] Lo (2) and Iy f = 9[1—19(1—A*)]'

Corollary.

» When \* = 1, we have ig,f = (0, then there is no estimator of
6 converging at parametric rate.

» When \* < 1, an estimator 6,, of 6 is asympt. eff. if and only
if it satisfies
A #{XZ>)\*1§Z§TL}
0, =
n(l — \*)

+ OPyg ¢ (n—1/2)’

with the optimal variance equal to 9(1_1)\* — )



Case \* < 1

Let us further investigate what may be obtained in this case:
» Can we exhibit y/n-consistent estimators?

» |f yes, do they asymptotically achieve the optimal variance?
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Parametric rate estimators



Case \* < 1: estimators with parametric rate |

A histogram based estimator

Histogram of p-values

N
A . . et
fr: a histogram estimator of f. .y
Define an estimator of 8 as 7 T
0rn, = min fr(x)
x€(0,1]

Theorem
Suppose that f € Fy with \* <1 and I is fine enough, then the

estimator 01 ,, has the following properties
1) 0 I.n converges almost surely to 0,

i) lim sup nE[(éln —0)?] < +o0.

n—oo



Case \* < 1: estimators with parametric rate ||
Celisse & Robin [2010]'s procedure

—_
.'|‘|
|

égR: estimator proposed by
LCeIisse & Robin, 2010] g -

A:  chosen adaptively based on ‘ """"""" H]W ]
cross-validation method. ‘ e

Theorem
Under some assumptions, the estimator ¢!t has the following
properties

) 0 converges almost surely to 0,
i) 0 js \/n-consistent, i.e. \/n(0SE —0) = Op(1),

iii) If the parameter p in leave-p-out estimator is fixed then
limsup nE[(05% — 6)?] < +oo.

n—oo



Case \* < 1: estimators with parametric rate |l

Additional remarks

» We did not succeed in computing the asymptotic variance of
these estimators;

» In the simulations, we further study this point.

"One-step” estimator

» The one-step procedure is a general method for constructing
an asymptotically efficient estimator starting from a
\/n-convergent one.



One step procedure

Construction
Let 6,, a \/ﬁ consistent estimator of 6 and
ln,g( ) = ln,g( X1,...,X,) an estimator of l@f Denoting

m = |n/2]|, we let

= { el X Xon) if i>m,
0 Z (5 Xmsts - Xn) if i<m.

Then, a one-step estimator is constructed as

(Zznem (X)) Y0
1=1



Existence of asympt. eff. estimators
For an estimator lAn,g(-) = lAn,g(-;Xl, ..., Xp) of ng,f and every
sequence 6, = 6 + O(n~/?), introduce the following conditions

VP, tlne, —>0 (1)

~ P
In 6, = lo I —= 0 (2)

]P)enaf

Proposition ( )

> The existence of asympt. eff. estimator of 0 <= the
existence of estimator I, 0 of Iy . satisfying (1) and (2).

> If lg, £ Is estimated through a plug-in estimate A\, of \*, then
this condition is equivalent to \/n(\, — \*) = op(1).

Existence

» Irregular models: f has a jump point at \*, YES

» Regular models: conjecture that NO
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Simulations



Simulations setup

» Consider the alternative density

s—1
fie) == (1- %) 1pa(@)
» Different parameter values:
s e {1.4;3},\* € {0.7;1},6 € {0.6;0.7;0.8; 0.9}
» Sample size
n € {5000; 7000; 9000; 10000; 12000; 14000; 15000} and
S = 100 repetitions.

density of p—values density of p—values
S
< - ——  mixt N
ffffff Il
alter o
™ ~
o ]
0 )
o 7| —— mixt
—————— 1l
o alternati
o - > _|
T < T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
pv pv
density of p—values density of p—values

00 04 08 12

T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10



Simulations
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. Logarithm of MSE as a function of log(n) and linear regression

for L (black line), S (blue line) and 6; ,, (green line). Red line:
y = —log(n) + log[d((1 — X\*)~1 — 6)] (oracle version).
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Conclusions



Conclusions

Conclusions

Consider a mixture g(x) = 01 yj(z) + (1 — 0) f(x), where the
density f is non-increasing and its support stops at A\*.

» \* = 1: there is no estimator of f# converging at parametric
rate

> < 1
» Two estimators of 6 converging at parametric rate

» Irregular model: it is possible to construct an asymptotically
efficient estimator of 6.

» Regular models: we conjecture that asymptotically efficient
estimators of 6 do not exist.
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