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Variable Selection in Bioinformatics

Microarrays
Data Matrix n x p, n < p
n ~ 100, p ~ 10000
p pretreatment X =
Expression levels of p probes

monitored for n patients

r11 ... T1p

Tnl -+ Tnp

~» Models for microarray data bet on:
e Sparsity
e Structural correlation between variables
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Variable Selection in Bioinformatics

Standard Solutions

1. Univariate analysis and select effects via multiple testing
~~ Genomic data are often highly correlated. ..

2. Combine multivariate analysis and model selection techniques

arg min —£(8;y, X) + X |8,
BeRP

~ NP-hard in general (exact solutions only for p < 30)

More Recent Ideas
Use a convex relaxation of the multivariate problem

arg min —L(8;y, X) + A [|8]/,
BeRp

...or more fancy penalties to account for structure
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Contributions

1. We suggest a unifying view of sparsity-inducing penalties
o may provide insights on these methods
. as an interpretation: robust optimization, Bayesian framework?
. as way to derive generic results
~» monitoring of convergence
o results in a generic algorithm for computing solutions
2. The associated algorithm relies on solving linear systems is
o accurate
o efficient up to medium scale problems (thousands of variables)
~~ speeds up (double) cross-validation, bootstrap/subsampling
methods
~+ model selection
~ stabilization
~> permutation tests
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The Variational Way The Duality Way
The Variational Way
Going quadratic: solving problems amount to solve systems

Elastic-Net Example
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The Variational Way The Duality Way

The Variational Way
Going quadratic: solving problems amount to solve systems

Elastic-Net Example

min |X8 — y||2
| 2 min X5 - v/
min [| X3 —y/[3
BERP P /e .
1 9 <9 s.t min < + ) ﬁj2 <s
5.t BB+ Bl < s b2\
Il = [IB[l: <0, 75, =0
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The Variational Way The Duality Way

The Variational Way
Building the Admissible Set

Admissible set
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The Variational Way The Duality Way

The Variational Way
Building the Admissible Set

Admissible set

Bo

b1
The admissible set is the union of ellipses
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The Variational Way The Duality Way

The Variational Way
Recap

1. Provides an alternative view of sparsity-inducing penalties
o provides insights on these methods
. as an interpretation: in the hierarchical Bayesian framework
. as a way to generalize them through the richness of quadratic penalties
o allows to use some of the known results on ridge-like penalties
o results in a generic algorithm for computing solutions
2. The associated algorithm relies on solving linear systems is
o accurate
o rather inefficient due to the number of systems to be solved

. an infinite nunber of ellipses are required to cover the admissible set
. these ellipses are degenerated at parsimonous solutions

~~ numerical stability issues

~~ alternative formulations with higher computational cost
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The Varic ‘ay  The Duality Way

The Duality Way

Going quadratic again: second attempt

Elastic-Net Example

. X . 2
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The V: Way  The Duality Way

The Duality Way

Going quadratic again: second attempt

Elastic-Net Example

i —vl? min | X8 — y||?
min | X8~ y][3 sinIX8 -yl
st BB <s | st mwx LpsogE<s+
B .t X = — 4
g P2 TN = 2 ~e{-1,1}p 2 1z = 2
R - |
Q] Na}
P 631
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Admissible set
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The V. nal Way  The Duality Way

The Duality Way
Building the Admissible Set

Admissible set

B
The admissible set is the intersection of ellipses
Solutions in 3 are defined by the worst-case ~
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Generality Algor

Beyond Elastic-Net

=

structured e.-n. fused-lasso + /5 OSCAR + /5
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Analysis

Generality /

Beyond Elastic-Net

General Formulation

i —y|? min | X8 — y||?
gg@”xﬂ vil5 ,GGRP” B -yl

&
1 2 1 2 t
— s. t. — — <
s.t. 5 [1Bllg +nlBl < s max 1Bl —v'B<s
where
Dy ={yeR: ||, <n}
Simply reformulate with the dual norm to get a quadratic expression in 3

-~ is an adversarial prior
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Benefits

Algorithm

Generic Active Set Algorithm

so Initialization

B+ B A {j: B #0}; // Start with a feasible 3
v = arg max —g' B3 ; // Pick a worst admissible -~y
g€D~
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Algorithm

Generic Active Set Algorithm

so Initialization

BB A« {j: Bj #0}; // Start with a feasible 3
v = arg max —g' B3 ; // Pick a worst admissible -~y
g€D~
s1 Update active variables 34
B (X, X4+ AL ) (XTy +Aa) // Subproblem resolution
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Benefits

Algorithm

Generic Active Set Algorithm

so Initialization
B+ B% A« {j:B;#0};

v = arg max —g' B3 ;
g€D~

s1 Update active variables 34
-1
Ba— (XLXa+ALy)  (Xy + M) s
s2 Verify coherence of ~ 4 with the updated 34
if —~? —g' 3, then
YaBa < Jaax gaB4
L Ba < B +p(Ba— B

// Start with a feasible (3
// Pick a worst admissible -y

// Subproblem resolution

// if 4 is not worst-case

// Last v 4-coherent solution
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Algorithm A

Generic Active Set Algorithm

so Initialization

BB A« {j: B; #0}; // Start with a feasible (3
~ = arg max —g'3 ; // Pick a worst admissible -y
g€D~
s1 Update active variables 34
B (X, X4+ AL ) (XTy +Aa) // Subproblem resolution
s2 Verify coherence of ~ 4 with the updated 34
if _'VitﬁA < 1161%)( —gj\,BA then // if 4 is not worst-case
g ~
L By ﬁjld +p(B4 — led) ; // Last v 4-coherent solution
s3 Update active set A
gj l’élgl ‘x; (XoaBa—y)+XBj =) i=1,...,p // worst-case gradient
YELy
if3je A:p3; =0andg; = 0then
| A+ A5} // Downgrade j
else
if max;c 4c g; # 0 then
‘ Jj* <+ argmaxg;, A<+ AU{j*}; // Upgrade j*
jEAC
else

| Stop and return 3, which is optimal
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Monitoring Convergence
Optimality Gap

Proposition: Let D, = {v € R? : ||v||, <n}. Forany ||-||, andn > 0,
Vv € RP: ||v||, > n, we have:

| S (vl =m) o o
min max J,\(B,’)’,) > —— B ),y ——5— v )
in max i, P E ) = Il

where

INB.y) = XB-yl3+ B —~[5 and B*(v) = arﬁgeﬁgn INB,7y) -

Optimality gap: pick a «-value such that the current worst-case gradient
is null (the current B3-value then being the optimal 3*(v)).
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ty Al Analysis

Monitoring Convergence
lllustration

a
I

Optimality gap |

-6
I

-8

T T
150 200

' ) # of iterations
True optimality gap along a solution path (solid black), our upper bound (dashed
blue) and Fenchel’s duality gap (dotted red).
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Comparison of Stand-Alone Implementations
Small-Medium Problem Sizes
We compare R-packages on Lasso problems:
1. accelerated proximal methods — SPAMs-FISTA (Mairal et al.),
2. coordinate descent — glmnet (Friedman et al.),

3. homotopy/LARS algorithm— lars (Hastie and Efron) and
SPAMs-LARS,

4. our implementation — quadrupen.
The distance to the optimum is averaged along the regularization path by

D(method) = <|A| Z < Jlasso < lars) Jlasso (Iériethod>)2) 1/2 |

where A is given by the first min(n, p) steps of lars.
~ Vary {p, (p,n)}, fix s = 0.25 min(n, p) and average over 50 runs.
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Experimental results

n = 100, p = 40
o — low correlation (0.1)
——— med correlation (0.4)
= ‘ —— high correlation (0.8)
< A

bo A A A

[®) O
o "

o
i<}

"

% --<--- glmnet (CD, active set)
=1 - SPAMs (FISTA, no active set)
Q A SPAMs (homotopy/LARS)

¥4 L] quadrupen (this paper)
- . . lars (homotopy/LARS)

CPU time (in seconds, log;,)

Sparsity by Worst-Case Quadratic Penalties



Motivations Going Quadratic Benefits Experiments Conclusion

Experimental results

n = 200, p = 1000

[
>

A~
A
[

CPU time (in seconds, log;,)

— low correlation (0.1)
——— med correlation (0.4)
N —— high correlation (0.8)

glmnet (CD, active set)
SPAMs (FISTA, no active set)
SPAMs (homotopy/LARS)
quadrupen (this paper)

lars (homotopy/LARS)
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Experimental results

2
L

n = 400, p = 10000

low correlation (0.1)
~——— med correlation (0.4)
—— high correlation (0.8)

ffffff glmnet (CD, active set)
A SPAMs (FISTA, no active set)
A SPAMs (homotopy/LARS)
L] quadrupen (this paper)
. lars (homotopy/LARS)

DA‘(mei‘;hod‘,) (lgglo)

-10

CPU time (in seconds, log},)
e Solving systems is a good strategy for this range of problem sizes
o Comparing speed is not enough: inaccuracy impacts test results
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The Duality Way
Recap

1. Provides an unifying view of sparsity-inducing penalties
o provides insights on these methods
. as an interpretation: robust optimization
. as a way to build penalties ~» which solutions should be avoided?
. as way to derive generic results
~~ monitoring of convergence (limited practical use)
. to promote efficiency
~ D~ polytope with not too many vertices
o results in a generic algorithm for computing solutions
2. The associated algorithm relies on solving linear systems is
o accurate
o efficient for small to medium scale problems (thousands of variables)

Available R-package, with stability selection
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