Sequential Bayesian Inference for Hidden Markov

Models

Pierre Jacob
Department of Statistics, University of Oxford

Journées MAS 2014

1/ 34



Hidden Markov Models
SMC? for sequential inference
[llustration on a stochastic volatility model

Towards online inference



Outline

Hidden Markov Models



Hidden Markov Models
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Figure : Graph representation of a general HMM.

(X;): initial distribution 1, transition fp.
(Y:) given (X;): measurement gy.
Prior on the parameter 0 € ©.
Inference in HMMs, Cappé, Moulines, Ryden, 2005.



Example: battery voltage
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Figure : Current (input) and measured voltage (output) of a battery.



Time

(a) Phytoplankton +90% credible interval of filtering distributions.

Time

(b) Zooplankton +90% credible interval of filtering distributions.



Example: athletic records
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Figure : Best two times of each year in women’s 3000m events.



Example: stochastic volatility
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Figure : Daily log returns of S&P 500 between 2005 and 2007.



Sequential Monte Carlo for filtering

Objects of interest:
m filtering distributions: p(x|y1.¢, ), for all ¢, for a given 6,
m likelihood: p(y1:¢ | 0) = [ p(y1:e | 70:¢,0)p(20:4 | 0)daot.
Particle filters:

m propagate recursively N, particles approximating p(z; | y1.¢,0)
for all ¢,

m give likelihood estimates p™=(yy.; | 6) of p(y1.¢ | 0) for all t.



Sequential Monte Carlo for filtering
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Sequential Monte Carlo for filtering
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Sequential Monte Carlo for filtering
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Sequential Monte Carlo for filtering

Properties of the likelihood estimator

The likelihood estimator is unbiased,

E [p"(s.r | 6)] = [H Zwt]—pym!@)

and the relative variance is bounded linearly in time,

AN,

p L(yl:T ‘ ‘9) T
Vi—————————2 | < (C—

[ plyrr[0) | —  No

for some constant C' (under some conditions!).

Del Moral 2004, 2013 for books on the topic.
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SMC? for sequential inference



|deal approach

m The goal is now to approximate sequentially

p(9)7p(9’y1)7 s ap(0|y1:T)'

m Sequential Monte Carlo samplers.

Jarzynski 1997, Neal 2001, Chopin 2004, Del Moral, Doucet
& Jasra 2006. ..

m Propagates a number Ny of #-particles approximating
p(0 | y1.¢) for all ¢.
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Figure : Sequence of target distributions.
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First step
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Figure : First distribution in black, next distribution in red.
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Importance Sampling
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Figure : Samples 0 weighted by p(6 | y1)/p(0) < p(y1 | 0).



Resampling and move
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Figure : Samples 6 after resampling and MCMC move
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Proposed method

SMC samplers require

m pointwise evaluations of p(y; | y1:¢—1,6),

m MCMC moves leaving each intermediate distribution invariant.
For Hidden Markov models, the likelihood is intractable.

m Particle filters provide likelihood approximations for a given 6.

m Hence we equip each #-particle with its own particle filter.



One step of SMC?

For each #-particle Ggm), perform one step of its particle filter:

W

X

X

(m))

to obtain ﬁNZ(ytH | y1:t, 0; and reweight:

W%—TE = ng) X ﬁNz(yt+1|y1:ta9§m))-



One step of SMC?

Whenever
(5, o)’
S (o)’

(Kong, Liu & Wong, 1994)

Effective sample size = < threshold x Ny

resample the #-particles and move them by PMCMC, i.e.

m Propose 0* ~ q(-|0§m)) and run PF(N,, 6*) for t + 1 steps.

m Accept or not based using p* (1441 | 0%).
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Exact approximation

SMC? is a standard SMC sampler on an extended space, with
target distribution:

(0, 7o) er aéfi\fl) = p(0]y1:1)

Ny

p(x4.410, y1:¢)
Z t T art—1 H 41,0 96‘1
By (1)
i
x H H 19%9( 5|z )
s

For any N,, the target admits the correct marginal on 6
= consistency when Ny — 0.
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Numerical illustrations: Stochastic Volatility

m Goal: model log returns log(psy1/p:) of a series of prices (p;).

Daily log returns assumed to follow:
1/2
yt:M+ﬁUt+Ut €ty EtNN(071)°

m Hidden states: actual volatility (v;).

m Actual volatility (v;) is the integral of the spot volatility over
daily intervals.

m Spot volatility (z;) is modeled as a Lévy process.
Barndorff-Nielsen and Shephard (2001, 2002)



Numerical illustrations: Stochastic Volatility

Transition kernel of the Markov chain

k
spot volatility Zp1 =€ 2+ Z e*)\(Hl*Cj)ej
j=1
1 k
Vi1 = 3 2t — Zg+1 + z; ej
=

actual volatility

where, at each time ¢:

k ~ Poi ()\52/w2) ek MU, t+1) e 4 Exp ({/wQ)



Numerical illustrations: Stochastic Volatility
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Figure : Synthetic data with 7' = 500.



Numerical illustrations: Stochastic Volatility
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Figure : Posterior of parameter ¢ at time 400.
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Numerical illustrations: Stochastic Volatility
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Figure : Posterior of parameter ¢ at time 410.



Numerical illustrations: Stochastic Volatility

Figure : Posterior of parameter ¢ at time 500.



Numerical illustrations: Stochastic Volatility
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Figure : Predicted y7 ; given y1.; (90% credible region),
and squared observations (line).
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Towards online inference



Scalability in T

Cost if move at each time step

m A single move step at time ¢ costs O (tN,;Ny).

m If move at every time, the total cost becomes O (12N, Ny).

m If N, = Ct, the total cost becomes O (t3Ny).

With adaptive resampling, the cost is only O (t2Ny). Why?



Scalability in T
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Figure : Typical ESS of the 0-particles on a long run.



Scalability in T
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Figure : y/computing time vs iteration



Scalability in T

Under Bernstein-Von Mises, the posterior becomes Gaussian.

p(elylzct)

density

p(elyl:t)

<)

E[ESS] from p(6 | y1:¢) to p(0 | y1.ct) becomes independent of t.
Hence resampling times occur geometrically: 7, ~ ¢* with ¢ > 1.



Towards online inference

Open problem

Sequential Bayesian inference in linear time?

On one hand dim(Xp.;) = dim(X) x (¢ + 1) which grows ...

... but 0 itself is of fixed dimension and p(0 | y1.1) =~ N (0*, v*/t)!

Our specific problem

Move steps at time ¢t imply running a particle filter from time zero.




Discussion

m SMC? allows sequential exact approximation in HMMs.

m Properties of posterior distributions could help achieving
online inference, or prove that it is impossible?

m One step towards plug and play inference for time series.

m Implementation in LibBi, with GPU support.



Particle Markov chain Monte Carlo,
Andrieu, Doucet, Holenstein, 2010 (JRSS B)

m SMC?: an algorithm for sequential analysis of HMM,
Chopin, Jacob, O. Papaspiliopoulos, 2013 (JRSS B)

Rethinking resampling in the particle filter on GPUS,
Murray, Lee, Jacob, 2013 (arXiv)

m www.libbi.org
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