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Hidden Markov Models
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Figure : Graph representation of a general HMM.

(Xt): initial distribution µθ, transition fθ.
(Yt) given (Xt): measurement gθ.
Prior on the parameter θ ∈ Θ.

Inference in HMMs, Cappé, Moulines, Ryden, 2005.
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Example: battery voltage
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Figure : Current (input) and measured voltage (output) of a battery.
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Example: phytoplankton – zooplankton
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(a) Phytoplankton +90% credible interval of filtering distributions.
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(b) Zooplankton +90% credible interval of filtering distributions.
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Example: athletic records
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Figure : Best two times of each year in women’s 3000m events.
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Example: stochastic volatility
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Figure : Daily log returns of S&P 500 between 2005 and 2007.
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Sequential Monte Carlo for filtering

Objects of interest:

filtering distributions: p(xt |y1:t , θ), for all t, for a given θ,

likelihood: p(y1:t | θ) =
∫

p(y1:t | x0:t , θ)p(x0:t | θ)dx0:t .

Particle filters:

propagate recursively Nx particles approximating p(xt | y1:t , θ)
for all t,

give likelihood estimates p̂Nx (y1:t | θ) of p(y1:t | θ) for all t.

Pierre Jacob Sequential Bayesian Inference 8/ 34
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Sequential Monte Carlo for filtering

Properties of the likelihood estimator
The likelihood estimator is unbiased,

E
[
p̂Nx (y1:T | θ)

]
= E

[ T∏
t=1

1
Nx

Nx∑
k=1

wk
t

]
= p(y1:T | θ)

and the relative variance is bounded linearly in time,

V
[

p̂Nx (y1:T | θ)
p(y1:T | θ)

]
≤ C T

Nx

for some constant C (under some conditions!).

Del Moral 2004, 2013 for books on the topic.

Pierre Jacob Sequential Bayesian Inference 10/ 34



Outline

1 Hidden Markov Models

2 SMC2 for sequential inference

3 Illustration on a stochastic volatility model

4 Towards online inference

Pierre Jacob Sequential Bayesian Inference 10/ 34



Ideal approach

The goal is now to approximate sequentially

p(θ), p(θ|y1), . . . , p(θ|y1:T ).

Sequential Monte Carlo samplers.
Jarzynski 1997, Neal 2001, Chopin 2004, Del Moral, Doucet
& Jasra 2006. . .

Propagates a number Nθ of θ-particles approximating
p(θ | y1:t) for all t.
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Targets
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Figure : Sequence of target distributions.
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First step
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Figure : First distribution in black, next distribution in red.
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Importance Sampling
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Figure : Samples θ weighted by p(θ | y1)/p(θ) ∝ p(y1 | θ).
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Resampling and move
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Figure : Samples θ after resampling and MCMC move.
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Proposed method

SMC samplers require

pointwise evaluations of p(yt | y1:t−1, θ),

MCMC moves leaving each intermediate distribution invariant.

For Hidden Markov models, the likelihood is intractable.

Particle filters provide likelihood approximations for a given θ.

Hence we equip each θ-particle with its own particle filter.
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One step of SMC2

For each θ-particle θ
(m)
t , perform one step of its particle filter:

to obtain p̂Nx (yt+1 | y1:t , θ
(m)
t ) and reweight:

ω
(m)
t+1 = ω

(m)
t × p̂Nx (yt+1|y1:t , θ

(m)
t ).
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One step of SMC2

Whenever

Effective sample size =

(∑Nθ
m=1 ω

(m)
t+1

)2

∑Nθ
m=1

(
ω

(m)
t+1

)2 < threshold × Nθ

(Kong, Liu & Wong, 1994)

resample the θ-particles and move them by PMCMC, i.e.

Propose θ⋆ ∼ q(·|θ(m)
t ) and run PF(Nx , θ⋆) for t + 1 steps.

Accept or not based using p̂Nx (y1:t+1 | θ⋆).
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Exact approximation

SMC2 is a standard SMC sampler on an extended space, with
target distribution:

πt(θ, x1:Nx
0:t , a1:Nx

0:t−1) = p(θ|y1:t)

× 1
Nx

Nx∑
n=1

p(xn
0:t |θ, y1:t)
N t−1

x


Nx∏
i=1

i ̸=hn
t (1)

q1,θ(x i
1)


×


t∏

s=1

Nx∏
i=1

i ̸=hn
t (s)

W ai
s−1

s−1,θqs,θ(x i
s |xai

s−1
s−1 )

 .

For any Nx , the target admits the correct marginal on θ
⇒ consistency when Nθ → ∞.
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Numerical illustrations: Stochastic Volatility

Goal: model log returns log(pt+1/pt) of a series of prices (pt).

Daily log returns assumed to follow:

yt = µ + βvt + v1/2
t ϵt , ϵt ∼ N (0, 1).

Hidden states: actual volatility (vt).

Actual volatility (vt) is the integral of the spot volatility over
daily intervals.

Spot volatility (zt) is modeled as a Lévy process.

Barndorff-Nielsen and Shephard (2001, 2002)
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Numerical illustrations: Stochastic Volatility

Transition kernel of the Markov chain

spot volatility zt+1 = e−λzt +
k∑

j=1
e−λ(t+1−cj)ej

actual volatility vt+1 = 1
λ

zt − zt+1 +
k∑

j=1
ej


where, at each time t:

k ∼ Poi
(
λξ2/ω2

)
c1:k

iid∼ U(t, t + 1) e1:k
iid∼ Exp

(
ξ/ω2

)
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Numerical illustrations: Stochastic Volatility
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Figure : Synthetic data with T = 500.
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Numerical illustrations: Stochastic Volatility
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Figure : Posterior of parameter ξ at time 400.
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Numerical illustrations: Stochastic Volatility
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Figure : Posterior of parameter ξ at time 410.
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Numerical illustrations: Stochastic Volatility
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Figure : Posterior of parameter ξ at time 500.
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Numerical illustrations: Stochastic Volatility
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Figure : Predicted y2
t+1 given y1:t (90% credible region),

and squared observations (line).
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Scalability in T

Cost if move at each time step

A single move step at time t costs O (tNxNθ).

If move at every time, the total cost becomes O
(
t2NxNθ

)
.

If Nx = Ct, the total cost becomes O
(
t3Nθ

)
.

With adaptive resampling, the cost is only O
(
t2Nθ

)
. Why?
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Scalability in T
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Figure : Typical ESS of the θ-particles on a long run.
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Scalability in T
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computing time vs iteration
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Scalability in T

Under Bernstein-Von Mises, the posterior becomes Gaussian.

p(θ|y1:ct)

p(θ|y1:t)

Θ

de
ns

ity

E[ESS ] from p(θ | y1:t) to p(θ | y1:ct) becomes independent of t.
Hence resampling times occur geometrically: τk ≈ ck with c > 1.
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Towards online inference

Open problem
Sequential Bayesian inference in linear time?

On one hand dim(X0:t) = dim(X ) × (t + 1) which grows . . .

. . . but θ itself is of fixed dimension and p(θ | y1:t) ≈ N (θ⋆, v⋆/t)!

Our specific problem
Move steps at time t imply running a particle filter from time zero.
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Discussion

SMC2 allows sequential exact approximation in HMMs.

Properties of posterior distributions could help achieving
online inference, or prove that it is impossible?

One step towards plug and play inference for time series.

Implementation in LibBi, with GPU support.
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Links

Particle Markov chain Monte Carlo,
Andrieu, Doucet, Holenstein, 2010 (JRSS B)

SMC2: an algorithm for sequential analysis of HMM,
Chopin, Jacob, O. Papaspiliopoulos, 2013 (JRSS B)

Rethinking resampling in the particle filter on GPUs,
Murray, Lee, Jacob, 2013 (arXiv)

www.libbi.org
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