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Motivation : recommender systems

In all those cases matrix completion is a crucial ingredient (not the
only one) for improving recommender systems Koren et al. [2009]
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� Quantum physics
� Image/signal processing with missing pixels
� Communications
� Analysis of survey data
� ...



Classical theoretical model : partial
observation and Gaussian noise

Observation model
� Matrix of true ratings : X∗ ∈ R

m1×m2 (to recover)

� Indexes observed : (ωi)1≤i≤n
i.i.d.∼ Unif over [m1] × [m2],

� Noisy observations : Yωi = X∗
ωi + σεωi for 1 ≤ i ≤ n

� σ : noise level, ε : centered standard Gaussian random vector

Rem: potentially n � m1m2
Rem: randomness sources : 1) index picking 2) degraded answer



Some dataset sizes

Parameter Size m1 m2 n
MovieLens 70 · 103 10 · 103 10 · 106

NetFlix 2.5 · 106 17 · 103 100 · 106

Yahoo 1 · 106 600 · 103 250 · 106



Low rank and matrix factorization
Underlying simplifying assumption : r∗ = rank(X∗) is small
Consequence :

� pass from m1m2 to r∗(m1 + m2) degrees of freedom
Interpretation :

� a combination of few items can represent all of them
� a combination of few users can represent all of them



Popular estimator

Least square penalized by trace/nuclear norm

X̂ = arg min
X∈Rm1×m2

1
2

n∑
i=1

(Yωi − Xωi )2 + λ‖X‖σ,1

� ‖X‖σ,1 : trace/nuclear norm (�1 norm of the singular values)
� λ > 0 : regularization parameter controlling data-fitting / low

rank trade-off

Rem:

� vector case : ‖ · ‖1 regularization ⇒ sparsity (LASSO)
� matrix case : ‖ · ‖σ,1 regularization ⇒ low rank



Previous theoretical work on matrix
completion with

� noise-free scenario : Recht, Fazel and Parrilo [2010]
Candès and Recht [2009] Candès and Tao [2010]

� additive noise scenario : Candès and Plan [2010]
Koltchinskii, Tsybakov and Lounici [2011] Negahban and
Wainwrigh [2012] Klopp [2014]

Typical results :

Klopp [2014]

For λ = Cσ

√
log(m1+m2)
min(m1,m2)n , w.h.p.

‖X̂ − X∗‖2
F

m1m2
≤ c max(σ2, ‖X∗‖2

∞)r∗ max(m1, m2) log(m1 + m2)
n

Rem: can be extended to non uniform sampling provided each
coefficient is sampled sufficiently often



Limits of the previous model

� Generally ratings are discrete (0-1, 1-5 stars, etc.)
� In surveys, answers are naturally discrete (yes/no, classes,

etc.)
� Variance of the noise model (implicitly) assumed identical for

all entries. Cases with picky distribution e.g., movies with
agreement (only 5’s) / disagreement among the audience (lots
of 1’s and lots of 5’s).



Binary model

Observation model Davenport et al. [2012]
� Matrix of true ratings to recover : X∗ ∈ R

m1×m2

� Indexes observed : (ωi)1≤i≤n
i.i.d.∼ Unif over [m1] × [m2],

� Indirect observations :

P(Yωi = 1) = f (X∗
ωi ) and P(Yωi = −1) = 1 − f (X∗

ωi ) ,

where f is a link function taking value in [0, 1].

Rem: Uniform sampling only for the sake of simplicity
Rem: To obtain theoretical guarantees log(f (·)) and log(1 − f (·))
need to be concave (e.g., logit, probit)



The estimator

The log-likelihood of the observations X → L(X) :

L(X) =
n∑

i=1

[
1{Yωi =1} log(f (Xωi )) + 1{Yωi =−1} log(1 − f (Xωi ))

]
.

Penalized log-likelihood estimator

X̂ = arg min
X∈R

m1×m2
F(X) , where F(X) = − 1

n L(X) + λ‖X‖σ,1 ,

with λ > 0 a regularization parameter.



Results

Proposed result

For λ = C
√

log(m1+m2)
min(m1,m2)n w.h.p.

KL
(
f (X∗), f (X̂)

)
≤ c∗ r∗ max(m1, m2) log(m1 + m2)

n

where we define the Kullback-Liebler divergence :

KL (P, Q) := 1
m1m2

∑
1≤i≤m1
1≤j≤m2

[
Pi,j log Pi,j

Qi,j
+ (1 − Pi,j) log 1 − Pi,j

1 − Qi,j

]
.



Multinomial Coordinate Lifted Gradient Desc. : Dudik et al. [2012]
Data: Observations : Y
ini. param. : θ0 ∈ Θ+ ; tolerance : ε ; maximum iterations : K
Result: θ ∈ Θ+
Initialization : θ ← θ0, conv ← 0, k ← 0
while k ≤ K and conv = 0 do

Compute top singular vectors pair of (−∇ F(Wθ)) : u, v Let
g = λ +

〈
∇ L, uv�〉

if g ≤ −ε/2 then
β = arg minb∈R

F (θ + (bδuv� ))
θ ← θ + βδuv� ; k ← k + 1

end
else

if g ≤ ε then
conv ← 1

end
else

θ ← arg minθ′∈R+K,supp(θ′)⊂supp(θ) F(θ′) ; k ← k + 1
end

end
end



Main interests compared to other classical
methods

� Does not require full SVD as proximal methods
� Convex formulation which offers strong theoretical guarantees
� Well adapted to sparse structure
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Numerical experiments

� Simulate X∗ for
m1 × m2 = 100 × 150, 300 × 450, 900 × 1350 and r∗ = 5

� For each X∗ simulate with logit distribution n observations,
from n = 10000 to 500000

� For Gaussian and Binomial estimator, choose λ by cross
validation

� For Gaussian and Binomial estimator, estimate X∗

� For Gaussian and Binomial estimator, compute KL divergence



Illustration over simulation (with
cross-validation choice for λ)
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Conclusion

� New results for binary / logit matrix completion
� No need to know a bound on the rank or to make a

“spikiness” assumption
� Fast algorithm based on Lifted Coordinate Descent Dudik et

al. [2012]
� Extension to multinomial under some separability
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