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The initial question 



Formalization 

Assume a feasible equilibrium X* of 
 
 
 

where X denotes the abundance vector for all the S 
species and vector G(X) represents the dynamics of 
the system (competition, predation, mutualism…) 
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Linearization 

Assume a feasible equilibrium X* 
Linearize the dynamics around the equilibrium 

*
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X X G X X X

Jacobian matrix J 



The Jacobian matrix 

Assume that the system is “random” and properly 
scaled, i.e. the Jacobian looks like 
 
 
 
 
 
where  B (c) = Bernoulli distribution 
  N (0,σ²) = Gaussian distribution 

2

2

( ) 0,

( ) 0,

m c

m

c

m

J

B

B

Ν

Ν



The result of May (1972) 
(from Wigner 1959; rewritten by Allesina & Tang 2012) 

 
For large S, the system is stable if and only if  
 

1c S m
Interaction sd 

Connectance of the 
interaction matrix 

Species richness 

Feedback of a 
species on itself 



General question 

May’s result proves that, all else being equal, a 
system with many (S) interacting (c) species, with 
“intense” interactions (σ) is very likely to be 
unstable 
 
Q: What are the missing elements that would 
allow for many-species stable ecological systems? 



Sequels to May’s paper 

Three main lines of investigation: 
 
1. Rephrasing the “stability” criterion 

 
2. Jointly studying feasibility & stability 

 
3. Extending May’s approach to more detailed 

cases 



A recent example 

 
Following line (3) : dissected May’s arguments by 
interaction type 

– predation (-/+) 
– mutualism (+/+) 
– competition (-/-) 

Allesina & Tang 2012 



A recent example 

Main result from Allesina & Tang 
Empirical spectral distribution (ESD) changes by 
interaction type 

Allesina & Tang 2012 



Specific question 

Spatial structure and dispersal are often invoked as 
determinants of stability/instability 
 
Q: What happens in May’s model with spatial 
structure? 



Our own sequel 

 
 
1. Rephrasing the “stability” criterion 

 
2. Jointly studying feasibility & stability 

 
3. Extending May’s approach to more detailed 

cases 



Conceptual model 

S species 
S species 

n patches 



Principle of the analysis 

1c S m
Random part 

 
= square root of 

variance x system size 

Deterministic part 
 

= min |λ| from the 
deterministic ESD 



Principle of the analysis 

Random part 
 

= square root of 
variance x system size 

Deterministic part 
 

= min |λ| from the 
deterministic ESD 

“Radius” of the ESD 
subset of J that stands 

closest to positive 
values  
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Principle of the analysis 

15 10 5 0
10

5

0

5

10

m ( 1)σ c S



Principle of the analysis 

Support of the ESD of X = A + B (size = n) with  
• A random, mean = 0, sd = σ 
• B deterministic, ESD = μB 

= z’s that verify 

/
2

( )
1B n

du

z u
Tao et al. 2010 



Spatial structure in the Jacobian 
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Spatial structure in the Jacobian 
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Deterministic part of the Jacobian 
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Deterministic part of the Jacobian 

Eigenvalues of the deterministic part of the 
Jacobian change from 

(-m,-m,…,-m) 
 
to 

(-m,-m,…,-m,-m-dn/(n-1),…,-m-dn/(n-1)) 
 

 

 The deterministic effect of d is to “push” a 
fraction of the ESD to the left of the complex plane 

S times 

S times (n-1)S times 



Random part of the Jacobian 

A

With only one patch… (May’s model) 



Random part of the Jacobian 
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Random part of the Jacobian 

• Connectance goes from c to c/n 
 

• System size goes from S to nS 
 

• Variance? 



Random part of the Jacobian 

• Connectance goes from c to c/n 
 

• System size goes from S to nS 
 

• Variance 
 For large d, changes from 
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Heterogeneous random parts 

Computing the variance: 
when all Ai are independent (heterogeneous case) 

 
 

 With heterogeneous random parts, high 
dispersal among patches leads to a less stringent 
criterion for stability 
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Homogeneous random parts 

Computing the variance: 
when all Ai are equal (homogeneous case) 

 
 

 With homogeneous random parts, spatial 
structure has no effect on stability 

 

A AV V

1c S m



General case (large d) 

Computing the variance: 
general case (depends on the correlation ρ among A’s) 
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General case (small d) 

When d is small, a different approximation: 
 
 
 
 
 
valid whatever the value of ρ 
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What it looks like… 
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What it looks like… 
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What it looks like… 
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Extensions 

• Works with non-complete spatial graphs 
 

• Works with species-specific dispersal rates 
 

• Simulations (with feasibility constraints) show the 
same results 
 

• One thing you can’t study from J alone is the 
feedback between d and the homogeneity of A  
 



Feedback between d and A 

Predicted decline due to 
heterogeneous patches 

High dispersal                             
= synchronizing dynamics        
= more homogeneous A 



Take-home messages 

1. Stabilization requires heterogeneity of Jacobians 
 

2. Dispersal effectively splits the ESD into diverging 
disks, and the disk closest to R+ has weight = 1/n 
 

3. Dispersal can feed back on the homogeneity of 
the random parts  intermediate dispersal rates 
are better at stabilizing 



Perspectives 

• dispersal when not diffusive 
– density-dependent dispersal 

 
• putting together dispersal at different scales (non 

trans-specific definition of patches) 
 

• explicit link between feasibility conditions and 
stability conditions (like Bastolla et al. 2005) 



Thank you! 


