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The initial guestion

Will a Large Complex System
be Stable?
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Formalization

Assume a feasible equilibrium X* of

dX
— =G(X
5~ )

where X denotes the abundance vector for all the S
species and vector G(X) represents the dynamics of
the system (competition, predation, mutualism...)



Linearization

Assume a feasible equilibrium X~
Linearize the dynamics around the equilibrium

d(X - X"
dt

~ 0G(X).(X=X")

Jacobian matrix J



The Jacobian matrix

Assume that the system is “random” and properly
scaled, i.e. the Jacobian looks like

—m B(c)x (0,6%)

B(c) XW(O, 02)

where B (c) = Bernoulli distribution
N (0,02) = Gaussian distribution



The result of May (1972)

(from Wigner 1959; rewritten by Allesina & Tang 2012)

For large S, the system is stable if and only if

—

e -
Interaction sd Species richness
Connectance of the Feedback of a

Interaction matrix species on itself



General question

May’s result proves that, all else being equal, a
system with many (S) interacting (c) species, with
“intense” interactions (o) is very likely to be
unstable

Q: What are the missing elements that would
allow for many-species stable ecological systems?



Sequels to May'’s paper

Three main lines of investigation:
1. Rephrasing the “stability” criterion
2. Jointly studying feasibility & stability

3. Extending May’s approach to more detailed
cases



A recent example

Stability criteria for complex ecosystems

Stefano Allesina®? & Si Tane!
o

Following line (3) : dissected May’s arguments by
Interaction type

— predation (-/+)
— mutualism (+/+)
— competition (-/-)

Allesina & Tang 2012



A recent example

Main result from Allesina & Tang
Empirical spectral distribution (ESD) changes by

iInteraction type
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Specific question

Spatial structure and dispersal are often invoked as
determinants of stability/instability

Q: What happens in May’s model with spatial
structure?



Our own sequel
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2. Jointly studying feasibility & stability

3. Extending May’s approach to more detailed
cases




Conceptual model

S species

S species n patches




Principle of the analysis

e

\ , e
Random part Deterministic part
= square root of = min |A| from the

variance x system size  deterministic ESD



What we need!

Principle of the analysis

e

\ , e
Random part Deterministic part
= square root of = min |A| from the

variance x system size  deterministic ESD

““Radius” of the ESD Center of the ESD
subset of J that stands subset of J that

closest to positive stands closest to
values positive values



Principle of the analysis
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Principle of the analysis

Support of the ESD of X = A + B (size = n) with
* Arandom, mean=0,sd =c¢
* B deterministic, ESD = yg

=Z’s that verify

[Hors@
-

Tao et al. 2010



Spatial structure in the Jacobian
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Spatial structure in the Jacobian

—(m+d)l+A, (d/(n-1))1I (d/(n—1))1

(d/(n-1))I —(m+d)l+A, (d/(n—1))1

(d/(n-1)1 (d/(n-1))1 ~(m+d)I+A,
Among patches

Within patches



Deterministic part of the Jacobian

—(m+d)] (d/(n-1))1 (d/(n-1))I

(d/(n-1))I —(m+d)] (d/(n-1))1I

(d/(n-1))1I (d/(n-1)) —(m+d)]
Among patches

Within patches



Deterministic part of the Jacobian

Eigenvalues of the deterministic part of the
Jacobian change from

(‘-m,-m,. .. ,-M)

)

Y
S times

to
(-m,-m,...,-m,-m-dn/(n-1),...,-m-dn/(n-1))

v v
S times (n-1)S times

— The deterministic effect of dis to “push” a
fraction of the ESD to the left of the complex plane



Random part of the Jacobian

With only one patch... (May’s model)



Random part of the Jacobian

A, 0 0

0 Ay 0

0 0 A
Among patches

Within patches



Random part of the Jacobian

e Connectance goes from ¢ to ¢/n
e System size goes from S to NS

e Variance?



Random part of the Jacobian

e Connectance goes from ¢ to ¢/n
e System size goes from S to NS

* Variance
For large d, changes from  V[A]

to VIA|=V Isa,




Heterogeneous random parts

Computing the variance:
when all A are independent (heterogeneous case)

VIA|=V

cinceper
2l

- =Y V[A]=2V[A]

— With heterogeneous random parts, high
dispersal among patches leads to a less stringent
criterion for stability

—

o,c(S—1)/n<m



Homogeneous random parts

Computing the variance:
when all A are equal (homogeneous case)

V| A |=V[A]

— With homogeneous random parts, spatial
structure has no effect on stability

O C(S—1)<m



General case (large d)

Computing the variance:
general case (depends on the correlation p among A’s)

V

A

=V|A|/n,

n,=n/|1+(n-1)p|

oc(S—-1)/n, <m



General case (small d)

When d is small, a different approximation:

G«/C(S —1) <m+d

valid whatever the value of p
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What it looks like...
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What it looks like...
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What it looks like...
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Extensions

Works with non-complete spatial graphs
Works with species-specific dispersal rates

Simulations (with feasibility constraints) show the
same results

One thing you can’t study from J alone is the
feedback between d and the homogeneity of A



Feedback between d and A
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Take-home messages

1. Stabilization requires heterogeneity of Jacobians

2. Dispersal effectively splits the ESD into diverging
disks, and the disk closest to R*has weight = 1/n

3. Dispersal can feed back on the homogeneity of
the random parts — intermediate dispersal rates
are better at stabilizing




Perspectives

e dispersal when not diffusive
— density-dependent dispersal

» putting together dispersal at different scales (non
trans-specific definition of patches)

o explicit link between feasibility conditions and
stability conditions (like Bastolla et al. 2005)



Thank you!
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