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Summary in one slide 

 Recent work [Bach et al. ICML 12] showed how Frank-
Wolfe optimization could obtain adaptive quadrature 
rules with potentially better rates than Monte-Carlo (MC) 
or quasi-Monte-Carlo (QMC) integration 
 

 Here we replace the random sampling phase in a particle 
filter with Frank-Wolfe optimization to get better 
locations of particles to approximate the distribution (a 
mixture of Gaussians) 
 

 Our preliminary empirical study indicates that we can 
obtain improvements over MC or QMC in term of number 
of particles 
 



Part I: Adaptive quadrature rule with 
Frank-Wolfe optimization 

 Approximating integrals: 
  

 
 Random sampling    yields                error 
 Kernel herding [Chen et al. 10]  (can) yield          error! 

          (like quasi-MC) 

 -> generalized to FW optimization [Bach et al. 12] and 
could even get              error 
 

 Trick: run Frank-Wolfe optimization on dummy objective: 
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is the marginal polytope

and ¹(p) = Ep(x)©(x) is the mean map
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 Why? Well, controlling moment discrepancy  
 is enough to control error of integrals in RKHS      : 

Approx. integrals in RKHS 

 
 
 Reproducing property: 
 Define mean map : 
 Want to approximate integrals of the form: 

 
 Use weighted sum to get approximated mean:  

 
 

 Approximation error is then bounded by: 
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 FW algorithm – repeat: 
 

f   convex & cts. differentiable 

M   convex & compact 

 alg. for constrained opt.: 

(aka conditional gradient) 

where: 

1) Find good feasible direction by 
    minimizing linearization of    : f

2) Take convex step in direction:  

®k+1 = (1¡ °k)®k + °k sk+1

Frank-Wolfe algorithm [Frank, Wolfe 1956] 

 Properties:   O(1/N) rate 
 sparse iterates 
 get duality gap         for free 
 affine invariant 
 rate holds even if linear 

subproblem solved 
approximately 
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FW quadrature 

1) FW search: 
 
2) convex combo: 
 
 
 variations: 

 kernel herding:  
 

 line-search FW 
 

 fully-corrective FW (FCFW) 

x(k+1) = argmin
x2X

gk(x)¡ ¹(p)(x)

gk+1 = (1¡ °k) gk + °k©(x(k+1))

e.g. minimum of a difference of 
mixture of Gaussian bumps! 

°k =
1

k +1 O(1=N)

 Theoretical rates for k¹(p̂)¡ ¹(p)kH
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   finite  infinite dim(H) :



Fitting a mixture of Gaussian 



 

higher d: 



Part II: Particle filtering 
 HMM / state-space model: 
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 goal: approximate filtering distribution 
 with weighted set of N ‘particles’                    : 
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 One view of PF algorithm: 
 
 
 
 

Propagate approximation forward in time by:  

1) Sample new particles from:  ¹qt+1(x1:(t+1)) := p(xt+1jxt)qt(x1:t)

=
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2) Reweight particles according to observation:  
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New weighted set gives:  

E.g. a mixture of 
Gaussians! 

 

 



 (aside: if use quasi-random sampling from         instead, 
we get the previously proposed QMC particle filters)   

 
 
 

Sequential Kernel Herding 
 Main idea: replace the random sampling step 

to approximate        with FW-quadrature 
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:= p(xt+1jxt)qt(x1:t)

 Modular algorithm! Can add FW-quadrature anywhere need 
to get particles to approximate distribution 

 Conditions to run: 
 need to be able to compute expectation of kernel with 
 need to be able to (approx.) optimize this function 

 In our experiments:          is a mixture of Gaussians; we use  
Gaussian kernel; optimize non-convex problem using 
exhaustive search over random sample from   
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Convergence result 
 current result (roughly): 

 assume that:  
 
 

  
 then: 
 
 

 so in if      is finite dimensional: 
 can get provably faster rates than PF (for integrals of members of     ) 
 compare with           for sequential QMC in [Garber & Chopin 14] 
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Ht = H 8t

for ¯xed t, MMD error on predictive p(xt+1jy1:t) is O(²)

where ² is bound on FW MMD error at each t
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Synthetic experiments 

 FW quadrature points for mixture of Gaussians 
chosen by optimizing through 50k random samples 

 

(variance of Gaussian kernel) 
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Results: Linear Gaussian system 

 
 
 

 
 

d = 15

d = 3

¾2 = 1



 
Nonlinear 1d time series results:  



Robot localization experiment 

 The UAV is tracked using IMU 
and visual odometry 

 High-dimensional vehicle state: 
 pose, velocities, accelerations 
 sensor biases 
 landmark positions 

 Four filters: 
 PF, QMC, FW-SKH, FCFW-SKH 
 all Rao-Blackwellized 
[particles on 7d state:  
 3d space + quaternion rotation] 

 Compare position errors relative 
to a reference trajectory (mean 
of 10 PF with N = 100k) 

Yamaha RMAX UAV 



Robot localization results 
error last time step 



Conclusion 
 Tools from optimization to help deterministic sampling! 
 With FW-quadrature, getting each particle is more costly, 

but empirically, we need less particles to get a good error 
 -> this could be useful when evaluating                    is very 

expensive (e.g. in robot localization problem) 
 [e.g. 0.2 s for N=50 PF; overhead of 0.1 s for N=50 FW] 

 Current work: 
 refine convergence theory 
 results somewhat sensitive to kernel bandwidth parameter -> find 

ways to adaptively choose it 
 understand better relationship between kernel and error 

propagation for class of functions 
 (e.g. introduce a kernel on past histories as well – changing        ) 

p(yt+1jx
(i)
t+1)

Ht



Thank you! Any question? 



 

Jump Markov Gaussian linear 
model results: 

 RMSE computed on mean 
predicted position vs. good 
approximation from Rao-
Blackwellized Discrete PF 
with 10k particles 

 
 
 
 

d = 2, 3 modes, ¾2 = 1

Nonlinear 1d time series results:  
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