
Sequential Kernel Herding:
Frank-Wolfe Optimization for

Particle Filtering
Simon Lacoste-Julien

INRIA / ENS, France
SIERRA Project Team

Journée MAS 2014 – Session statistique et optimisation
August 27th 2014

Fredrik Lindsten
University of Cambridge, UK
Department of Engineering

Francis Bach
INRIA / ENS, France
SIERRA Project Team

Summary in one slide

 Recent work [Bach et al. ICML 12] showed how Frank-
Wolfe optimization could obtain adaptive quadrature
rules with potentially better rates than Monte-Carlo (MC)
or quasi-Monte-Carlo (QMC) integration

 Here we replace the random sampling phase in a particle
filter with Frank-Wolfe optimization to get better
locations of particles to approximate the distribution (a
mixture of Gaussians)

 Our preliminary empirical study indicates that we can
obtain improvements over MC or QMC in term of number
of particles

Part I: Adaptive quadrature rule with
Frank-Wolfe optimization

 Approximating integrals:

 Random sampling yields error
 Kernel herding [Chen et al. 10] (can) yield error!

 (like quasi-MC)

 -> generalized to FW optimization [Bach et al. 12] and
could even get error

 Trick: run Frank-Wolfe optimization on dummy objective:

Z

X
f(x)p(x)dx ¼

1

N

NX

i=1

f(x(i))

x(i) » p(x) O(1=
p
N)

O(1=N)

for ¯xed p, and multiple f 's in a RKHS H

O(e¡cN)

(need ¯nite dim. H)

min
g2M

1

2
kg ¡ ¹(p)k2H

where M = cl-conv (©(X))

is the marginal polytope

and ¹(p) = Ep(x)©(x) is the mean map
representer: k(x; ¢) 2 H

 Why? Well, controlling moment discrepancy
 is enough to control error of integrals in RKHS :

Approx. integrals in RKHS

 Reproducing property:
 Define mean map :
 Want to approximate integrals of the form:

 Use weighted sum to get approximated mean:

 Approximation error is then bounded by:

f 2 H) f(x) = hf;©(x)i
¹(p) = Ep(x)©(x)

Ep(x)f(x) = Ep(x)hf;©(x)i= hf; ¹(p)i

Ep̂(x)f(x) =
NX

i=1

w(i)f(x(i))

jEp(x)f(x)¡ Ep̂(x)f(x)j · kfkH k¹(p)¡ ¹(p̂)kH

H
k¹(p̂)¡ ¹(p)kH

¹(p̂) = Ep̂(x)©(x) =
NX

i=1

w(i)©(x(i)))

p̂ =
NX

i=1

w
(i)
t ±

x(i)

 FW algorithm – repeat:

f convex & cts. differentiable

M convex & compact

 alg. for constrained opt.:

(aka conditional gradient)

where:

1) Find good feasible direction by
 minimizing linearization of : f

2) Take convex step in direction:

®k+1 = (1¡ °k)®k + °k sk+1

Frank-Wolfe algorithm [Frank, Wolfe 1956]

 Properties: O(1/N) rate
 sparse iterates
 get duality gap for free
 affine invariant
 rate holds even if linear

subproblem solved
approximately

min
®2M

f(®)

FW quadrature

1) FW search:

2) convex combo:

 variations:

 kernel herding:

 line-search FW

 fully-corrective FW (FCFW)

x(k+1) = argmin
x2X

gk(x)¡ ¹(p)(x)

gk+1 = (1¡ °k) gk + °k©(x(k+1))

e.g. minimum of a difference of
mixture of Gaussian bumps!

°k =
1

k +1 O(1=N)

 Theoretical rates for k¹(p̂)¡ ¹(p)kH

O(e¡cN)

O(e¡cN)

O(1=
p
N)

O(1=
p
N)

O(1=
p
N)

repeat: input: p

at end:
gN =

NX

i=1

w(i)©(x(i))

 finite infinite dim(H) :

Fitting a mixture of Gaussian

higher d:

Part II: Particle filtering
 HMM / state-space model:

p(x1:T ; y1:T) =
TY

t=1

p(xtjxt¡1) p(ytjxt)

 goal: approximate filtering distribution
 with weighted set of N ‘particles’ :

p(x1:tjy1:t)

fx(i)1:t; w
(i)
t gNi=1

p(x1:tjy1:t) ¼ qt(x1:t) :=
NX

i=1

w
(i)
t ±(x

(i)
1:t; x1:t)

 One view of PF algorithm:

Propagate approximation forward in time by:

1) Sample new particles from: ¹qt+1(x1:(t+1)) := p(xt+1jxt)qt(x1:t)

=
NX

i=1

w
(i)
t ±(x

(i)
1:t; x1:t)p(xt+1jx

(i)
t)

2) Reweight particles according to observation:

x
(i)
1:(t+1)

» ¹qt+1

w
(i)
t+1 / p(yt+1jx

(i)
t+1) qt+1(x1:(t+1))

New weighted set gives:

E.g. a mixture of
Gaussians!

 (aside: if use quasi-random sampling from instead,
we get the previously proposed QMC particle filters)

Sequential Kernel Herding
 Main idea: replace the random sampling step

to approximate with FW-quadrature

¹qt+1

¹qt+1

[Philomin et al. ECCV 00, Ormoneit et al. UAI 01]
fx(i)

1:(t+1)
; ¹w

(i)
t+1g

N
i=11) obtained from FW-quadrature on ¹qt+1(x1:(t+1))

2) w
(i)
t+1 / ¹w

(i)
t+1p(yt+1jx

(i)
t+1)

:= p(xt+1jxt)qt(x1:t)

 Modular algorithm! Can add FW-quadrature anywhere need
to get particles to approximate distribution

 Conditions to run:
 need to be able to compute expectation of kernel with
 need to be able to (approx.) optimize this function

 In our experiments: is a mixture of Gaussians; we use
Gaussian kernel; optimize non-convex problem using
exhaustive search over random sample from

¹qt+1

¹qt+1

¹qt+1

Convergence result
 current result (roughly):

 assume that:

 then:

 so in if is finite dimensional:
 can get provably faster rates than PF (for integrals of members of)
 compare with for sequential QMC in [Garber & Chopin 14]

ft(xt+1; ¢) := p(xt+1j¢) p(ytj¢) 2 H 8xt+1

Ht = H 8t

for ¯xed t, MMD error on predictive p(xt+1jy1:t) is O(²)

where ² is bound on FW MMD error at each t

o(1p
N
)

and regularity condition on norm of ft

H
H

Synthetic experiments

 FW quadrature points for mixture of Gaussians
chosen by optimizing through 50k random samples

(variance of Gaussian kernel)

2

Results: Linear Gaussian system

d = 15

d = 3

¾2 = 1

Nonlinear 1d time series results:

Robot localization experiment

 The UAV is tracked using IMU
and visual odometry

 High-dimensional vehicle state:
 pose, velocities, accelerations
 sensor biases
 landmark positions

 Four filters:
 PF, QMC, FW-SKH, FCFW-SKH
 all Rao-Blackwellized
[particles on 7d state:
 3d space + quaternion rotation]

 Compare position errors relative
to a reference trajectory (mean
of 10 PF with N = 100k)

Yamaha RMAX UAV

Robot localization results
error last time step

Conclusion
 Tools from optimization to help deterministic sampling!
 With FW-quadrature, getting each particle is more costly,

but empirically, we need less particles to get a good error
 -> this could be useful when evaluating is very

expensive (e.g. in robot localization problem)
 [e.g. 0.2 s for N=50 PF; overhead of 0.1 s for N=50 FW]

 Current work:
 refine convergence theory
 results somewhat sensitive to kernel bandwidth parameter -> find

ways to adaptively choose it
 understand better relationship between kernel and error

propagation for class of functions
 (e.g. introduce a kernel on past histories as well – changing)

p(yt+1jx
(i)
t+1)

Ht

Thank you! Any question?

Jump Markov Gaussian linear
model results:

 RMSE computed on mean
predicted position vs. good
approximation from Rao-
Blackwellized Discrete PF
with 10k particles

d = 2, 3 modes, ¾2 = 1

Nonlinear 1d time series results:

	Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering
	Summary in one slide
	Part I: Adaptive quadrature rule with Frank-Wolfe optimization
	Approx. integrals in RKHS
	Slide Number 5
	FW quadrature
	Fitting a mixture of Gaussian
	Slide Number 8
	Part II: Particle filtering
	Sequential Kernel Herding
	Convergence result
	Synthetic experiments
	Results: Linear Gaussian system
	Slide Number 14
	Robot localization experiment
	Robot localization results
	Conclusion
	Thank you! Any question?
	Slide Number 19

