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From stochastic optimization to bandit problems
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Stochastic optimization
Bandit models: classical framework

I Classical framework in stochastic optimization
f:X—R max f(a) ?
acx

Sequential observations: at time t, choose a; € X', observe

Xt = f(at) +€t

After T observations,

Minimize the optimization error

If a7 is a guess of the argmax

minimize E[f(aT) — f(a")]

| \

Minimize the regret

T
minimize E Z(f(a*) —f(ar))
t=1

3/22 08.2014 Emilie Kaufmann Two optimization problems in a stochastic bandit model



From stochastic optimization to bandit problems
Regret minimization
Best arm identification

I A particular case: the bandit model
f:{L....,K} —R max f(a)?

Stochastic optimization
Bandit models: classical framework

[ERRE

Sequential observations: at time t, choose A; € {1,..., K},
observe

Xi¢ ~va, where v, has mean f(a)

After T observations,

Minimize the probability of error

If AT is a guess of the argmax
minimize P (ANT % A*)

Minimize the regret

T
minimize E Z f(A*) — f(Ar))

t=1
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From stochastic optimization to bandit problems
Regret minimization
Best arm identification

I Two bandit problems

A binary bandit model is a set of K arms, where

Stochastic optimization
Bandit models: classical framework

> arm a is a Bernoulli distribution with mean p,
» drawing arm a is observing a realization of B(u,)

» arms are assumed to be independent

In a bandit game, at round t, an agent

> chooses arm A; based on past observations, according to his
sampling strategy, or bandit algorithm

» observes a sample X; ~ B(pa,)

Two possible objectives can be considered
> best arm identification

> regret minimization
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From stochastic optimization to bandit problems
Regret minimization
Best arm identification

I Zoom on an application

A doctor can choose between K different treatments

Stochastic optimization
Bandit models: classical framework

» treatment number a: (unknown) probability of sucess i,

» (unknown) best treatment: a* = argmax, i,

» If treatment a is given to patient t, he is cured with
probability 1,

The doctor:
» chooses treatment A; to give to patient t
» observes whether the patient is healed : X; ~ B(ua,)

His goal: ajust (A;) so that to

Regret minimization Best arm identification
maximize the number of patients identify the best treatment
healed during a study involving with high probability
T patients (and always give this one laterg
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From stochastic optimization to bandit problems

Regret minimization
I Outline

Performance criterion
Bandit algorithms for regret minimization

Best arm identification

Regret minimization
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From stochastic optimization to bandit problems
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Best arm identification

I Asymptotically optimal algorithms

Performance criterion
Bandit algorithms for regret minimization

N,(t) be the number of draws of arm a up to time t

T K
Rr=E [Z(M* — ,LLAt)] = Z(H* — pa)E[N(T)]

t=1 a=1

» [Lai and Robbins,1985]: every consistent algorithm satisfies

.. E[N,(T)] 1
2 < p* = liminf >
: . T—oo log T d(pa, pa*)

» A bandit algorithm is asymptotically optimal if

fa < ¥ = limsup E[Ns(T)] < !
? n—00 log T~ d(pa, pta*)

where
d(x,y) = KL(B(x), B(y)).
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From stochastic optimization to bandit problems
Regret minimization
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B A family of optimistic index policies

Performance criterion
Bandit algorithms for regret minimization

> For each arm a, compute a confidence interval on p:
pa < UCB,(t) w.h.p

» Act as if the best possible model was the true model
(optimism-in-face-of-uncertainty):

A¢ = argmax, UCB,(t)

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

_Si(1) , [2log(1)
UCB,(t) = e D)

S,(t): sum of the rewards collected from arm a up to time t.

E[Na(T)] <

slog T+ C.

(/L* - /La) TELECOM

ParisTech
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From stochastic optimization to bandit problems
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I KL-UCB: an asymptotically optimal algorithm

Performance criterion
Bandit algorithms for regret minimization

» KL-UCB [Cappé et al. 2013] uses the index:

Sa(t) log(t) + cloglog(t)
) = e () =

with d(p, q) = KL (B(p), B(q)).

!
ool| [—dS,ON0.a)
—2(a-S, (N, (0§

SN, (1)

u
oLol 02 03 04 os 06 anJoa 09 1

E[Ns(T)]

1
< ——log T + o(loglog(T)).
S (loglog(T))

( a ) TELECOM
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From stochastic optimization to bandit problems m best arm identification

Regret minimization Sample complexity bounds
.
I Outline

Best arm identification The particular case of two-armed bandits

Best arm identification
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From stochastic optimization to bandit problems m best arm identification
Regret minimization Sample complexity bounds
Best arm identification The particular case of two-armed bandits

I - best arms identification

Assume f11 > -+ > fim > fm+1 > - .. pk (Bernoulli bandit model)
Parameters and notations

» m the number of arms to find

» 0 €]0, 1] a risk parameter

» Sk ={1,..., m} the set of m optimal arms

The forecaster
» chooses at time t one (or several) arms to draw

» decides to stop after a (possibly random) total number of
samples from the arms 7

» recommends a set S of m arms

His goal (in the fixed-confidence setting)
» P(S =8%) > 1— 4 (the algorithm is §-PAC)
» The sample complexity E[7] is small
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From stochastic optimization to bandit problems m best arm identification
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I Challenges for m best arm identification

The regret minimization problem is ’solved’ in some sense:
> A lower bound on the regret of any good algorithm

£ M1 — Ha

= d(pa; p1)

» Algorithms matching this bound, notably KL-UCB

R
liminf T

_ >
T—oo log(T) —
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I Challenges for m best arm identification

The regret minimization problem is ’solved’ in some sense:
» A lower bound on the regret of any good algorithm
K
... Rt p1 — [a
liminf —— > —_—
T—oo log(T) — <= d(pa, p11)
» Algorithms matching this bound, notably KL-UCB

For m best arm identification, we would want to give:

» A lower bound on the sample complexity E[7] of any -PAC
algorithm, featuring informational quantities

» -PAC algorithms matching this bound

TELECOM

ParisTech

13/22 08.2014 Emilie Kaufmann Two optimization problems in a stochastic bandit model EEEE




From stochastic optimization to bandit problems m best arm |dent|f|cat|on
Regret minimization S le cc lexity b d
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I A general lower bound

Any algorithm that is 6-PAC on every binary bandit model such
that pm > pmy1 satisfies, for & < 0.15,

K
1 1
E[r] > -l- — ] lo
[ ] (Z d MaaMerl ;H_ d(:uanum)) €25 20

This result follows from changes of distributions:

v=(v,10,...,vk), vV = (v],V5,...,V) two bandit models,
Ae F;, K
> B [No]KL(va, v5) > d(B,(A), B, (A)). -

a=1

Emilie Kaufmann
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From stochastic optimization to bandit problems m best arm identification
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I An algorithm: KL-LUCB

le cc

Generic notation:

» confidence interval (C.1.) on the mean of arm a at round t¢:
Z5(t) = [La(t), Ua(1)]
» J(t) the set of m arms with highest empirical means

Our contribution: Introduce KL-based confidence intervals

fia(t) = Na(t)d(fa(t), q) < 5(t,0)}

L(t) = min{q < fi,(t) : Na(t)d(fa(t), q) < 5(t,0)}

for 5(t,d) some exploration rate.
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From stochastic optimization to bandit problems m best arm identification
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Best arm identification The particular case of two-armed bandits

I An algorithm: KL-LUCB

At round t, the algorithm:
» draws two well-chosen arms: u; and /; (in bold)
» stops when C.I. for arms in J(t) and J(t)¢ are separated

le cc

58 118 346 330 120 72

m=3K=26
Set J(t), arm /¢ in bold Set J(t)¢, arm u; in bold
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B Theoretical guarantees

KL-LUCB using the exploration rate

le cc

B(t, ) = log (klgta) :

with @ > 1 and k; > 1+ _=5 satisfies P(S=85)>1-4.

For v > 2,
ki K(H*)® kiK(H*)®
E[r] < 4aH* {Iog <1(5)> + log log <1(O)>} + Co,
H* = min e —
c€lpmy; Mm] Z d*(Maa C)
Py Pt P P TELECOM
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B Theoretical guarantees

le cc

» Another informational quantity: Chernoff information
d*(x,y) = d(z*,x) = d(z",y),
where z* is defined by the equality
d(z*,x) = d(z%, y).
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From stochastic optimization to bandit problems m best arm |dent|flcatlon
Regret minimization S le cc | b d:
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B Summary

Lower bound

K
, E,[r] _ <& 1 1

lim sup —— > —_— + -
50 log} g d(pia; tim+1) tz;l d(pa; fim)

) E,[7] .
limsup ——= <8 min
550 log c€lume1imm] 5 Z d*(pa, c
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I Rcfined results for two-armed bandits

A tighter lower bound

Any algorithm that is 6-PAC on every two-armed bandit model
such that pq > pp satisfies, for § < 0.15,

1
Elr] > ——— log —
1= ds (1, p2) 25

where d,(u1, p2) = d(u1, z¢) = d(p2,z*), with z, defined by

d(p1,2") = d(p2, 2°).

Matching algorithms?
» Uniform sampling is (almost) optimal
> A stopping rule 7 based on the difference of empirical means
is not optimal (and we propose a new one) TELECOM

ParisTech
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I Conclusion

» KL-based confidence intervals are useful in both settings,
though KL-UCB and KL-LUCB draw the arms differently

¢

L

(m=1)
> Do the complexity of these two problems feature the same
information-theoretic quantities?

inf  limsup = M= Ha
consistent  T_y~, |Og T d(,ua, ,ul)
algorithms a=2
K K
. . E[7] 1
inf  limsup ———— > -
(e T R 2, g
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