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Model

Shared resource systems (network, processors) can often be modeled by a
finite game where:

@ the structure of the game is unknown to each player (e.g. the set of
players),

@ players only observe the payoff of their chosen action,

@ Observations (of the payoffs) may be corrupted by noise.

)
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-
Learning Algorithm

In the following we consider a finite potential game.

Our goal is to design a distributed algorithm (executed by each user) that
learns the Nash equilibria. Each user computes its strategy according to a
sequential process that should satisfies the following desired properties:

@ only uses in-game information (stateless),

@ does not require time-coordination between the users (asynchronous),

@ tolerates outdated measurements on the observations of the payoffs
(delay-oblivious),

@ tolerates random perturbations on the observations (robust),

@ converges fast even if the number of users is very large (scalable).
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Notations

@ k is for players,

e «,f € A are for actions,

@ x € X is a mixed strategy profile,

® ukq(x) is the (expected) payoff of k when playing  and facing x.
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Notations

@ k is for players,

e «,f € A are for actions,

@ x € X is a mixed strategy profile,

® ukq(x) is the (expected) payoff of k when playing  and facing x.

Potential Games (Monderer and Shapley, 1996)
There exists a multilinear function U : X — R such that

uka(x) — ukp(x) = Uos x—k) = U(B: x—)

@ Congestion games are potential games.
@ Mechanism design can turn a game (e.g. general routing game with
additive costs) into a potential game.
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Basic Convergence Results in Potential Games

When facing a vector of payoffs u € R4 coming from a potential game, if
players successively
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-
Basic Convergence Results in Potential Games

When facing a vector of payoffs u € R4 coming from a potential game, if
players successively

@ play best response = (asymptotic) convergence to Nash equilibrium,
@ play according to the Gibbs map G : RA 5 X
e'yuoz

Zﬁ evs

then convergence with high probability (when v — o0) to a NE that
globally maximizes the potential.

Go(u) =

30



Basic Convergence Results in Potential Games Il

But in both cases,

@ each players needs to know its payoff vector. Stateless: no
@ Convergence may fail in the presence of noise. Robust: no

@ Convergence may fail if players do not play one at a time.
asynchronous: no

@ Convergence may also fail with delayed observations. Delay-oblivious:
no

@ Convergence is slow when the number of players is large. Scalable: no



Outline of the Talk

[ Simple Learning scheme based on payoff vector }

limit

{ Entropy-driven

game dynamics }

stochastic approximation

[ 2 Learning schemes only based on current payoff }
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]
Outline of the Talk

[ Simple Learning scheme based on payoff vector }

weight of past information in aggregation process

limit

{ Entropy-driven game dynamics }

“rationality level” of players

stochastic approximation

[ 2 Learning schemes only based on current payoff }
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-
A General Learning Process

Let us consider a single agent repeatedly observing a stream of payoffs

u(t).
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-
A General Learning Process

Let us consider a single agent repeatedly observing a stream of payoffs

u(t).

Two stages:
1. Score phase.

o yo(t) is the score of a € A,
i.e. the agent assessment of « up to time t.
o The score phase describes how y,(t) is updated
using the payoffs u,(s), s < t.

2. Choice phase.
o Specifies the choice map @ : R — X which prescribes the agent’s

mixed strategy x € X given his assessment of actions (the vector y).
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-
Score Stage

The score is a discounted aggregation of the payoffs:

w(o) = [ T2y, (x(5)) s,
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The score is a discounted aggregation of the payoffs:

w(o) = [ T2y, (x(5)) s,
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Score Stage

The score is a discounted aggregation of the payoffs:

w(o) = [ T2y, (x(5)) s,

In differential form:
Ya(t) = ta(t) = Tya(t)
and T is the discount factor of the learning scheme.
@ T > 0: exponentially more weight to recent observations.

@ T = 0: no discounting: the score is the aggregated payoff
o T < 0: reinforcing past observations.
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-
Choice Stage: Smoothed Best-Response

At each decision time t, the agent chooses a mixed action x € X
according to the choice map @ : RA - X
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Choice Stage: Smoothed Best-Response

At each decision time t, the agent chooses a mixed action x € X
according to the choice map @ : RA - X

We assume Q(y) to be a smoothed best-response, i.e. the unique
solution of

maximize 5 xgys — h(x),

subject to x >0, ZB xg =1,

where the entropy function h is smooth, strictly convex on X such that

|dh(x)| — oo whenever x — bd(X).
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Entropy-Driven Learning Dynamics

If the agent's payoffs are coming from a finite game, the continuous-time
learning dynamics is

Score Dynamics
Yka = Uka(X) = Tykas

X = Qu(yk),

where

@ Q) is the choice map of the driving entropy of player k, hy : X — R,
@ T is the discounting parameter.
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Entropy-Driven Learning Dynamics

If the agent's payoffs are coming from a finite game, the continuous-time
learning dynamics is

Score Dynamics
Yka = Uka(X) = Tykas

X = Qu(yk),

where

@ Q) is the choice map of the driving entropy of player k, hy : X — R,
@ T is the discounting parameter.

This is the score-based formulation of the dynamics.
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-
Strategy-based Formulation of the Dynamics

Let us assume that h is decomposable: h(x 20 Xq). By setting

-1
0"(x) = [, 1/¢"(xs)]
Then, a little algebra yields:

Strategy Dynamics

o = gy |- 0T, 9" )
S
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-
Boltzmann-Gibbs Entropy

Let h(x) = Zxa log(x4). Then the dynamics become:
[0

Yo = Ua(X) — Tya,
x = Gibbs(y),

and
Xo = Xo [ua(x) — Zﬁ x/3u5(x)} - T Xu [Iog Xo — ZB xg Iong]
Replicator Dynamics Entropy-adjustment term
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-
Rest Points of the Dynamics

Proposition

1. For T =0, the rest points of the entropy-driven dynamics are the
restricted Nash equilibria of the game.
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Proposition
1. For T =0, the rest points of the entropy-driven dynamics are the
restricted Nash equilibria of the game.
2. For T > 0, the rest points coincide with the restricted QRE (solutions
of x = Q(u/T), that converge to restricted NE when T — 0)
3. For T <0, the rest points are the restricted QRE of the opposite
game (opposite payoffs).
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-
Rest Points of the Dynamics

Proposition
1. For T =0, the rest points of the entropy-driven dynamics are the
restricted Nash equilibria of the game.
2. For T > 0, the rest points coincide with the restricted QRE (solutions
of x = Q(u/T), that converge to restricted NE when T — 0)
3. For T <0, the rest points are the restricted QRE of the opposite
game (opposite payoffs).

The parameter T plays a double role:

o it reflects the importance given by players to past events (the
discount factor),

@ it determines the rationality level of rest points.
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-
Convergence for Potential Games

Lemma

Let U : X — R be the potential of a finite potential game. Then,
F(x) = U(x) — Th(x) is strictly Lyapunov for the entropy-driven dynamics.
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Convergence for Potential Games

Lemma
Let U : X — R be the potential of a finite potential game. Then,
F(x) = U(x) — Th(x) is strictly Lyapunov for the entropy-driven dynamics.

- the dynamics tend to move towards the maximizers of F for every

parameter T,
- the parameter modifies the set of maximizers.
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-
Convergence for Potential Games

Lemma
Let U : X — R be the potential of a finite potential game. Then,
F(x) = U(x) — Th(x) is strictly Lyapunov for the entropy-driven dynamics.

- the dynamics tend to move towards the maximizers of F for every
parameter T,
- the parameter modifies the set of maximizers.

Proposition

Let x(t) be a trajectory of the entropy-driven dynamics for a potential
game. Then:

1. For T > 0, x(t) converges to a QRE.
2. For T =0, x(t) converges to a restricted Nash equilibrium.

3. For T <0, x(t) converges to a vertex or is stationary.
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Penalty—Adjusted Replicator Dyanmics(T=2) Penalty—Adjusted Replicator Dyanmics (T=0.5)
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-
From Continuous-Time Dynamics to Distributed Algorithm

@ Aim: discretization of the entropy-driven dynamics with the same
convergence properties than the continuous dynamics.

17 /30



From Continuous-Time Dynamics to Distributed Algorithm

@ Aim: discretization of the entropy-driven dynamics with the same
convergence properties than the continuous dynamics.
@ Main difficulty: a distributed algorithm should only use random

samples of the payoff u(x), i.e. u(A) where A is a random action
profile with distribution x.

We derive two stochastic approximations of the dynamics respectively with
scores and strategies updates.
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The Stochastic Approximation Tool

We will consider the random process

Z(n+1) = Z(n) + a1 (F(Z(n) + V(n+1))
as a stochastic approximation of the ODE
z="1(2)
where

@ (7n) is the sequence of step-sizes assumed to be (2 — /') summable
series (typically, v, = 1/n),
o E[V(n+1)|F,=0.

18 /30



.
The Stochastic Approximation Tool

Theorem (Benaim, 99)

Assume that
o the ODE admits a strict Lyapunov function,
@ weak condition on the Lyapunov function,
o supE[[|V(n)]?] < oo,

@ sup||Z(n)|| < oo as.,
n

Then the set of accumulation points of the sequence (Z(n))
generated by the stochastic approximation of the ODE

z=1(2)

almost surely belongs to a connected invariant set of the ODE.
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Score-Based learning with imperfect payoff monitoring

Recall the score based version of the dynamics:
Yka = Uka(X) = Tykas

xk = Qr(yx);
A stochastic approximation yields the following algorithm:
Score-based Algorithm
1. At stage n+ 1, each player selects an action a,(n+ 1) € Ay based
on a mixed strategy Xx(n) € Xk.
2. Every player gets bounded and unbiased estimates g, (n + 1) s.t.

2.1 Eldka(n+1) | Fo] = uka(X(n)),
2.2 |ika(n+1)| < C (as.),

3. For each action «, the score is updated:
Yka(n + 1) Sa Yka(n) -+ ’yn(ﬁka(n + 1) — TYka(n));

4. Each player updates its mixed strategy Xi(n+ 1) < Qx(Yx(n+ 1));
and the process repeats ad infinitum.

)
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Score-Based Algorithm Assessment

Theorem

The Score-Based Algorithm converges (a.s.) to a connected set of QRE of
& with rationality parameter 1/ T.

@ Each players needs to know its payoff vector. Stateless: no

@ Convergence to QRE in the presence of noise. Robust: yes

@ Players play simultaneously. Asynchronous: no

@ Convergence may also fail with delayed observations. Delay-oblivious:
no

@ Convergence is fast when the number of players is large. Scalable: yes

(based on numerical evidence).
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Score-Based learning using in-game payoff

Assume now that the only information at the players’ disposal is the payoff
of their chosen actions (possibly perturbed by some random noise process).

k(n+1) = ug(ar(n+1),...,an(n+1)) + &(n+ 1),

where the noise & is a bounded, F-adapted martingale difference (i.e.

E[&k(n+1) | Fn] =0 and [¢x| < C for some C > 0) with & (n+ 1)
independent of a(n+1).

We can use the the unbiased estimator
I(ak(n+1) =)
E(ak(n+1)=al| Fn)

= Lo (n+1) = a)-m

0ka(n+1) = ﬁk(n—l—l)‘




Score-Based learning using in-game payoff (I1)

This allows us to replace the inner action-sweeping loop of the
Scored-Based Algorithm with the update score:

Yiar < Year + V(0 — TYkay )/ Xkay

This algorithm works well in practice (it converges to a QRE in potential
games whenever T > 0).

But both conditions
L supE[|V(n)]?] < oo,
2. sup||Z(n)|| < oo a.s.,

are hard (impossible?) to prove (in fact 2 = 1).
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-
Strategy-Based Algorithm

The strategy-based version of the dynamics is

= — " ug(x)
A0 = i) [Ua(x) -0 (Xk)zﬁ ) Tgaﬂ(Xk)] :

A stochastic approximation of the strategy based dynamics is

X 2 0 ey | o (10 = ) = o) = T

n G/I(Xka)
where A is the randomly chosen action profile with distribution X.
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-
Algorithm assessment

Theorem

When T > 0, the sequence (X(n)) generated by the strategy-based
algorithm remains positive and converges almost surely to a connected set
of QRE of & with rationality level 1/T.

Each players only observes in-game payoff. Stateless: yes
Convergence to QRE in the presence of noise. Robust: yes
Players play simultaneously Asynchronous: no

no delay in observations Delay-oblivious: no

Convergence is fast when the number of players is large. Scalable: yes
(based on numerical evidence).
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Asynchronous version of the Algorithm

Using extensions of the stochatic approximation theorem (Borkar, 2008),
converge to QRE is still true for the asynchronous and delayed version of
the algorithm:

let dj «(n) de the (integer-valued) lag between player j and k when k plays
at stage n. The observed payoff dx(n+ 1) of k at stage n+ 1 depends on
his opponents’ past actions:

E [ﬁk(n + ].) ’ ]:n] = Uy (Xl(n - dl,k(n)), e ,Xk(n), e ,XN(n - dN’k(n))) .
(1)
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-
Asynchronous version of the Algorithm

Algorithm 1: Strategy-based learning for one player (with asynchronous
and imperfect in-game observations)
n<+0;

Initialize Xy € relint(X) as a mixed strategy with full support;
repeat

until Next Play occurs at time 7x(n+1) € T; # Local time clock
n<n+1;

select new action ay according to mixed strategy Xg; # current action
observe fy; # receive measured payoff

foreach action o € A, do

Xkat= n [( loy=a —Xka) - Ok — TXka (|Og Xea — 3.t X log Xkﬂ)}

# update strategy
until termination criterion is reached;

2




-
Algorithm assessment

Each players only observes in-game payoff. Stateless: yes
Convergence to QRE in the presence of noise. Robust: yes
Players play according to local timers. Asynchronous: yes

Convergence with delayed observations. Delay-oblivious: yes

Convergence is fast when the number of players is large. Scalable: yes
(based on numerical evidence).
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Numerical experiments

(a) Initial db (n = 0).‘ (b) Db. ;Nith n _ 2.

©o0 a3 ©0 g @y

(c) Db with n=5.  (d) Db. with n = 10.
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