
Distributed Learning based on Entropy-Driven
Game Dynamics

Bruno Gaujal

joint work with Pierre Coucheney and Panayotis Mertikopoulos

Inria

Aug., 2014



Model

Shared resource systems (network, processors) can often be modeled by a
finite game where:

the structure of the game is unknown to each player (e.g. the set of
players),

players only observe the payoff of their chosen action,

Observations (of the payoffs) may be corrupted by noise.

2 / 30



Learning Algorithm

In the following we consider a finite potential game.
Our goal is to design a distributed algorithm (executed by each user) that
learns the Nash equilibria. Each user computes its strategy according to a
sequential process that should satisfies the following desired properties:

only uses in-game information (stateless),

does not require time-coordination between the users (asynchronous),

tolerates outdated measurements on the observations of the payoffs
(delay-oblivious),

tolerates random perturbations on the observations (robust),

converges fast even if the number of users is very large (scalable).
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Notations

k is for players,

α, β ∈ A are for actions,

x ∈ X is a mixed strategy profile,

ukα(x) is the (expected) payoff of k when playing α and facing x .

Potential Games (Monderer and Shapley, 1996)

There exists a multilinear function U : X → R such that

ukα(x)− ukβ(x) = U(α; x−k)− U(β; x−k)

Congestion games are potential games.

Mechanism design can turn a game (e.g. general routing game with
additive costs) into a potential game.

4 / 30



Notations

k is for players,

α, β ∈ A are for actions,

x ∈ X is a mixed strategy profile,

ukα(x) is the (expected) payoff of k when playing α and facing x .

Potential Games (Monderer and Shapley, 1996)

There exists a multilinear function U : X → R such that

ukα(x)− ukβ(x) = U(α; x−k)− U(β; x−k)

Congestion games are potential games.

Mechanism design can turn a game (e.g. general routing game with
additive costs) into a potential game.

4 / 30



Notations

k is for players,

α, β ∈ A are for actions,

x ∈ X is a mixed strategy profile,

ukα(x) is the (expected) payoff of k when playing α and facing x .

Potential Games (Monderer and Shapley, 1996)

There exists a multilinear function U : X → R such that

ukα(x)− ukβ(x) = U(α; x−k)− U(β; x−k)

Congestion games are potential games.

Mechanism design can turn a game (e.g. general routing game with
additive costs) into a potential game.

4 / 30



Basic Convergence Results in Potential Games

When facing a vector of payoffs u ∈ RA coming from a potential game, if
players successively

play best response ⇒ (asymptotic) convergence to Nash equilibrium,

play according to the Gibbs map G : RA → X

Gα(u) =
eγuα∑
β e

γuβ

then convergence with high probability (when γ →∞) to a NE that
globally maximizes the potential.
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Basic Convergence Results in Potential Games II

But in both cases,

each players needs to know its payoff vector. Stateless: no

Convergence may fail in the presence of noise. Robust: no

Convergence may fail if players do not play one at a time.
asynchronous: no

Convergence may also fail with delayed observations. Delay-oblivious:
no

Convergence is slow when the number of players is large. Scalable: no
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Outline of the Talk

Simple Learning scheme based on payoff vector

2 Learning schemes only based on current payoff

Entropy-driven game dynamics

limit

stochastic approximation
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Outline of the Talk

Simple Learning scheme based on payoff vector

weight of past information in aggregation process

2 Learning schemes only based on current payoff

Entropy-driven game dynamics

“rationality level” of players

limit

stochastic approximation

7 / 30



A General Learning Process

Let us consider a single agent repeatedly observing a stream of payoffs
u(t).

Two stages:

1. Score phase.

yα(t) is the score of α ∈ A,
i.e. the agent assessment of α up to time t.

The score phase describes how yα(t) is updated
using the payoffs uα(s), s ≤ t.

2. Choice phase.

Specifies the choice map Q : RA → X which prescribes the agent’s
mixed strategy x ∈ X given his assessment of actions (the vector y).
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Score Stage

The score is a discounted aggregation of the payoffs:

yα(t) =

∫ t

0
eT (t−s)uα(x(s))ds,

In differential form:
ẏα(t) = uα(t)− Tyα(t)

and T is the discount factor of the learning scheme.

T > 0: exponentially more weight to recent observations.

T = 0: no discounting: the score is the aggregated payoff

T < 0: reinforcing past observations.
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Choice Stage: Smoothed Best-Response

At each decision time t, the agent chooses a mixed action x ∈ X
according to the choice map Q : RA → X

x(t) = Q(y(t)).

We assume Q(y) to be a smoothed best-response, i.e. the unique
solution of

maximize
∑

β xβyβ − h(x),

subject to x ≥ 0,
∑

β xβ = 1,

where the entropy function h is smooth, strictly convex on X such that

|dh(x)| → ∞ whenever x → bd(X ).
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Entropy-Driven Learning Dynamics

If the agent’s payoffs are coming from a finite game, the continuous-time
learning dynamics is

Score Dynamics

ẏkα = ukα(x)− Tykα,

xk = Qk(yk),

where

Qk is the choice map of the driving entropy of player k , hk : Xk → R,

T is the discounting parameter.

This is the score-based formulation of the dynamics.
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Strategy-based Formulation of the Dynamics

Let us assume that h is decomposable: h(x) =
∑
α

θ(xα). By setting

Θ′′(x) =
[∑

β
1/θ′′(xβ)

]−1
.

Then, a little algebra yields:

Strategy Dynamics

ẋα =
1

θ′′(xα)

[
uα(x)−Θ′′(x)

∑
β

uβ(x)

θ′′(xβ)

]
− T

θ′′(xα)

[
θ′(xα)−Θ′′k(x)

∑
β

θ′(xβ)

θ′′(xβ)

]
,
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Boltzmann-Gibbs Entropy

Let h(x) =
∑
α

xα log(xα). Then the dynamics become:

ẏα = uα(x)− Tyα,

x = Gibbs(y),

and

ẋα = xα
[
uα(x)−

∑
β
xβuβ(x)

]
− T xα

[
log xα −

∑
β
xβ log xβ

]
Replicator Dynamics Entropy-adjustment term

13 / 30



Rest Points of the Dynamics

Proposition

1. For T = 0, the rest points of the entropy-driven dynamics are the
restricted Nash equilibria of the game.

2. For T > 0, the rest points coincide with the restricted QRE (solutions
of x = Q(u/T ), that converge to restricted NE when T → 0)

3. For T < 0, the rest points are the restricted QRE of the opposite
game (opposite payoffs).

The parameter T plays a double role:

it reflects the importance given by players to past events (the
discount factor),

it determines the rationality level of rest points.
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Convergence for Potential Games

Lemma

Let U : X → R be the potential of a finite potential game. Then,
F (x) ≡ U(x)−Th(x) is strictly Lyapunov for the entropy-driven dynamics.

- the dynamics tend to move towards the maximizers of F for every
parameter T ,
- the parameter modifies the set of maximizers.

Proposition

Let x(t) be a trajectory of the entropy-driven dynamics for a potential
game. Then:

1. For T > 0, x(t) converges to a QRE.

2. For T = 0, x(t) converges to a restricted Nash equilibrium.

3. For T < 0, x(t) converges to a vertex or is stationary.
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Phase portrait of the
parameter-adjusted
replicator dynamics in a
2× 2 potential game.
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From Continuous-Time Dynamics to Distributed Algorithm

Aim: discretization of the entropy-driven dynamics with the same
convergence properties than the continuous dynamics.

Main difficulty: a distributed algorithm should only use random
samples of the payoff u(x), i.e. u(A) where A is a random action
profile with distribution x .

We derive two stochastic approximations of the dynamics respectively with
scores and strategies updates.
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The Stochastic Approximation Tool

We will consider the random process

Z (n + 1) = Z (n) + γn+1 (f (Z (n)) + V (n + 1))

as a stochastic approximation of the ODE

ż = f (z)

where

(γn) is the sequence of step-sizes assumed to be (`2 − `1) summable
series (typically, γn = 1/n),

E[V (n + 1) | Fn] = 0.
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The Stochastic Approximation Tool

Theorem (Benaim, 99)

Assume that

the ODE admits a strict Lyapunov function,

weak condition on the Lyapunov function,

sup
n

E[‖V (n)‖2] <∞,

sup
n
‖Z (n)‖ <∞ a.s.,

Then the set of accumulation points of the sequence (Z (n))
generated by the stochastic approximation of the ODE

ż = f (z)

almost surely belongs to a connected invariant set of the ODE.
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Score-Based learning with imperfect payoff monitoring

Recall the score based version of the dynamics:

ẏkα = ukα(x)− Tykα,

xk = Qk(yk),

A stochastic approximation yields the following algorithm:

Score-based Algorithm

1. At stage n + 1, each player selects an action αk(n + 1) ∈ Ak based
on a mixed strategy Xk(n) ∈ Xk .

2. Every player gets bounded and unbiased estimates ûkα(n + 1) s.t.

2.1 E [ûkα(n + 1) | Fn] = ukα(X (n)),
2.2 |ûkα(n + 1)| ≤ C (a.s.),

3. For each action α, the score is updated:
Ykα(n + 1)← Ykα(n) + γn(ûkα(n + 1)− TYkα(n));

4. Each player updates its mixed strategy Xk(n + 1)← Qk(Yk(n + 1));
and the process repeats ad infinitum.
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Score-Based Algorithm Assessment

Theorem

The Score-Based Algorithm converges (a.s.) to a connected set of QRE of
G with rationality parameter 1/T .

Each players needs to know its payoff vector. Stateless: no

Convergence to QRE in the presence of noise. Robust: yes

Players play simultaneously. Asynchronous: no

Convergence may also fail with delayed observations. Delay-oblivious:
no

Convergence is fast when the number of players is large. Scalable: yes
(based on numerical evidence).
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Score-Based learning using in-game payoff

Assume now that the only information at the players’ disposal is the payoff
of their chosen actions (possibly perturbed by some random noise process).

ûk(n + 1) = uk(α1(n + 1), . . . , αN(n + 1)) + ξk(n + 1),

where the noise ξk is a bounded, F-adapted martingale difference (i.e.
E [ξk(n + 1) | Fn] = 0 and |ξk | ≤ C for some C > 0) with ξk(n + 1)
independent of αk(n + 1).
We can use the the unbiased estimator

ûkα(n+1) = ûk(n+1)· 1(αk(n + 1) = α)

E (αk(n + 1) = α | Fn)
= 1(αk(n+1) = α)· ûk(n + 1)

Xkα(n)
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Score-Based learning using in-game payoff (II)

This allows us to replace the inner action-sweeping loop of the
Scored-Based Algorithm with the update score:

Ykαk
← Ykαk

+ γn(ûk − TYkαk
)/Xkαk

This algorithm works well in practice (it converges to a QRE in potential
games whenever T > 0).

But both conditions

1. sup
n

E[‖V (n)‖2] <∞,

2. sup
n
‖Z (n)‖ <∞ a.s.,

are hard (impossible?) to prove (in fact 2⇒ 1).
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Strategy-Based Algorithm

The strategy-based version of the dynamics is

ẋα =
1

θ′′(xα)

[
uα(x)−Θ′′(xk)

∑
β

uβ(x)

θ′′(xβ)
− Tgα,θ(Xk)

]
,

A stochastic approximation of the strategy based dynamics is

Xkα
+
= γn ×

1

θ′′(Xkα)

[
uk(A)

XkAk

(
1(Ak = α)− Θ′′(Xk)

θ′′(XkAk
)

)
− Tgα,θ(Xk)

]
where A is the randomly chosen action profile with distribution X .
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Algorithm assessment

Theorem

When T > 0, the sequence (X (n)) generated by the strategy-based
algorithm remains positive and converges almost surely to a connected set
of QRE of G with rationality level 1/T .

Each players only observes in-game payoff. Stateless: yes

Convergence to QRE in the presence of noise. Robust: yes

Players play simultaneously Asynchronous: no

no delay in observations Delay-oblivious: no

Convergence is fast when the number of players is large. Scalable: yes
(based on numerical evidence).
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Asynchronous version of the Algorithm

Using extensions of the stochatic approximation theorem (Borkar, 2008),
converge to QRE is still true for the asynchronous and delayed version of
the algorithm:
let dj ,k(n) de the (integer-valued) lag between player j and k when k plays
at stage n. The observed payoff ûk(n + 1) of k at stage n + 1 depends on
his opponents’ past actions:

E [ûk(n + 1) | Fn] = uk (X1(n − d1,k(n)), . . . ,Xk(n), . . . ,XN(n − dN,k(n))) .
(1)
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Asynchronous version of the Algorithm

Algorithm 1: Strategy-based learning for one player (with asynchronous
and imperfect in-game observations)

n← 0;

Initialize Xk ∈ rel int(Xk) as a mixed strategy with full support;
repeat

until Next Play occurs at time τk(n + 1) ∈ T ; # Local time clock

n← n + 1;

select new action αk according to mixed strategy Xk ; # current action

observe ûk ; # receive measured payoff

foreach action α ∈ Ak do

Xkα+= γn

[(
1αk=α−Xkα

)
· ûk − TXkα

(
logXkα −

∑k
β Xkβ logXkβ

)]
# update strategy

until termination criterion is reached;
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Algorithm assessment

Each players only observes in-game payoff. Stateless: yes

Convergence to QRE in the presence of noise. Robust: yes

Players play according to local timers. Asynchronous: yes

Convergence with delayed observations. Delay-oblivious: yes

Convergence is fast when the number of players is large. Scalable: yes
(based on numerical evidence).
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Numerical experiments
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Merci!

30 / 30


