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Backgrounds and settings Stochastic Approximation Algorithms Vanishingly Smooth Fictitious play

Settings

Player 1 (Decision Maker), Player 2 (Nature, environment),

�nite sets of actions I and L ; sets of mixed actions : X = ∆(I),
Y = ∆(L),

X := {(xi)i∈I , xi ≥ 0,
∑
i

xi = 1}.

payo� function of DM : π (I × L matrix)

we assume that agents play repeatedly. Let hn = (i1, l1, ..., in, ln)
history at time n.
a strategy for DM is a map σ :

∪nHn → ∆(I), hn 7→ σ(hn) ∈ ∆(I).

A pair of strategies (σ, τ) induces a probability measure P on

(I × L)N ; we assume that agents play independently :

P (in+1 = i, ln+1 = l | Hn) = P (in+1 = i | Hn)P (ln+1 = l | Hn) .
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Regret

Empirical distribution of moves and the average realized payo� up to time

n :

xn :=
1

n

n∑
k=1

δik ∈ X, yn =
1

n

n∑
k=1

δlk ∈ Y, πn :=
1

n

n∑
k=1

π(ik, lk).

De�ne

Π : Y → R : y 7→ max
i
π(i, y).

De�nition (regret at stage n)

en =

max
i∈I

π(i, yn)︸ ︷︷ ︸
Π(yn)

− 1

n

n∑
k=1

π(ik, lk)︸ ︷︷ ︸
πn

.
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Consistency

De�nition

Player 1's strategy is consistent if, regardless of the strategy τ of nature,

lim sup
n→+∞

en ≤ 0, almost surely.

It is η-consistent provided

lim sup
n→+∞

en ≤ η, almost surely.

Mathieu Faure 4 / 17
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Fictitious play

Let br be the best response map :

br : Y ⇒ X, y 7→ Argmaxx∈Xπ(x, y)

De�nition

The strategy σ of DM is a �ctitious play strategy if, ∀n ∈ N,

σ(hn) ∈ br(ỹn),

with ỹn = 1
n+1 y0︸︷︷︸

prior

+ n
n+1yn.

Remark

FP is not consistent

Mathieu Faure 5 / 17
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Perturbed payo� function and Smooth best response

Let ε be a small positive parameter

De�nition (Perturbed payo�)

The (ρ, ε)-perturbed payo� relative to the original payo� function π is

de�ned by

πε(x, y) = π(x, y) + ερ(x),

where ρ is concave and its gradient explodes at the boundary.

We have :

hence for all y ∈ Y , Argmaxx∈Xπ
ε(·, y) reduces to one point,

Thus we can de�ne the smooth best response map

brε : Y → Int(X) :

brε(y) := Argmaxx∈Xπ
ε(x, y).

Mathieu Faure 6 / 17
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Particular case

Example

ρ(x) = −
∑
i

xi log xi.

In that case, we can give an explicit formula for the perturbed best

response map :

(brε(y))i =
exp

(
1
επ(i, y)

)∑
k exp

(
1
επ(k, y)

)
De�nition (Smooth �ctitious play)

σ is a smooth �ctitious play (SFP(ε)) strategy for player 1 if, for all n ∈ N

σ(hn) = brε(yn),

Mathieu Faure 7 / 17
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Interpretations

One way to interpret SFP((ε)) strategies is that the agent chooses to

randomize his moves, playing the best response to the average moves

of the opponent, with respect to a slightly perturbed version of his

payo� function ;

Another possible interpretation of SFP(ε) strategies is that his payo�s
are actually perturbed by i.i.d. random shocks (usually called

stochastic �ctitious play).
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Smooth �ctitious play

Theorem (Fudenberg-Levine)

Given η > 0, SFP(ε) is η-consistent, provided ε is small enough.

Benaïm-Hofbauer-Sorin (2006) gave an alternative proof using stochastic

approximations technics : we have xn+1 − xn = 1
n+1

(
δin+1 − xn

)
. Hence

xn+1 − xn =
1

n+ 1

E
(
δin+1 | Hn

)︸ ︷︷ ︸
brε(yn)

−xn +
(
δin+1 − E

(
δin+1 | Hn

))︸ ︷︷ ︸
martingale di�erence



yn+1 − yn =
1

n+ 1

E
(
δln+1 | Hn

)︸ ︷︷ ︸
τ(hn)

−yn +
(
δln+1 − E

(
δln+1 | Hn

))︸ ︷︷ ︸
martingale di�erence


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Stochastic Approximation Algorithms, the ODE method

M compact subset of Rd. Let (vn)n be a M -valued stochastic process

governed by the recursive formula

vn+1 − vn =
1

n+ 1
(f(vn) + Un+1),

where

f is a Lipschitz vector �eld, inducing a �ow Φ on M ,

(Un)n is a bounded sequence of random variables.

Question : can we say anything about the qualitative asymptotic behavior

of (vn)n ?
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Mean ODE

vn+1 = vn +
1

n+ 1
(f(vn) + Un+1), (1)

Consider the mean ODE :

v̇ = f(v). (2)

Link between (1) and (2) : if (Un)n is a martingale di�erence :

E(Un+1 | Fn) = 0, the asymptotic behavior of the paths (vn(ω))n should

be related to the solution curves of (2) (ODE method)

Mathieu Faure 11 / 17
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Convergence of Stochastic Approximation Algorithms

Theorem (Limit set theorem, Benaïm, 1996)

a) The limit set of (vn)n is almost surely compact convex, invariant and

attractor-free,

b) if A is a global attractor, L((vn)n) ⊂ A almost surely.

Theorem (Benaïm, Hofbauer and Sorin, 2005)

It also holds when f is a (reasonably regular) set-valued map.

Mathieu Faure 12 / 17
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Back to SFP(ε)

State variable : vn = (xn, yn, πn).
We have

vn+1 − vn ∈
1

n+ 1
(F ε(vn) + Un+1),

where

F ε(x, y, π) = {(brε(yn), τ, π(brε(yn), τ), τ ∈ Y } − (x, y, π)

The set-valued map F ε is very regular,

As a consequence, BHS results apply and, if the di�erential inclusion

v̇(t) ∈ F ε(v(t)) admits a global attractor A then L((vn)n) ⊂ A.

Mathieu Faure 13 / 17
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Proof of η-consistency via stochastic approximations

Theorem (Benaïm-Hofbauer-Sorin, 2006)

Given η > 0, for ε small enough we have

the set A := {v = (x, y, π) : Π(y)− π ≤ η} contains a global

attractor for the di�erential inclusion v̇(t) ∈ F ε(v(t)),

consequently

lim sup
n

Π(yn)− πn ≤ η almost surely.

Mathieu Faure 14 / 17
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A natural question

What happens when the parameter ε is replaced by a vanishing sequence

εn ↓ 0 ?

De�nition (Vanishingly Smooth �ctitious play)

Given a sequence εn ↓ 0 , we say that DM plays accordingly to a

vanishingly smooth �ctitious play strategy (VSFP(εn)) if, for all n ∈ N,

σ(hn) = brεn(yn).

Remark

VSFP is not consistent, if εn = 1
n

Mathieu Faure 15 / 17
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A counter-Example

Example

2-player matching pennies and that nature uses (l, r, l, r...). εn = 1/n, prior
y0 = (1/3, 2/3), then

ỹ2n =
1

2n+ 1
y0 +

n

n+ 1
y2n =

(
1

2
− 1

6(2n+ 1)
,
1

2
+

1

6(2n+ 1)

)
.

After a few lines of calculus one gets :

brεn(ỹ2n) −→n→+∞

(
1

2
− c, 1

2
+ c

)
.

Mathieu Faure 16 / 17
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Statement of the main result

Theorem (Benaïm, F.)

If, for some α < 1, εn ≥ 1
nα then VSFP(εn) is consistent.

The proof relies on set-valued dynamical systems approach, similarily

to BHS,

unfortunately, we now need to deal with nonautonomous di�erential

inclusions,

Mathieu Faure 17 / 17
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