An introduction to econophysics and the Multifractal Random walk

Vincent Vargas

28 août 2014

Table des matières

- 1 Introduction
 - The problem of modelling financial assets
 - Looking for a good model...
- 2 The stylized facts of financial markets
 - Daily stylized facts
 - Intraday stylized facts
- 3 Forecasting volatility with the MRW and the 1/f noise
- 4 References

Why put probability in financial markets?

• Typical daily return $r_t=\ln S_t/S_{t-1}pprox (S_t-S_{t-1})/S_{t-1}$: $r_tpprox 10^{-4},\ |r_t|pprox 10^{-2}.$

Why put probability in financial markets?

• Typical daily return $r_t=\ln S_t/S_{t-1}pprox (S_t-S_{t-1})/S_{t-1}$: $r_tpprox 10^{-4},\ |r_t|pprox 10^{-2}.$

 Huge amounts of data, interacting agents: probabilistic approach is natural (statistical physics)

Why put probability in financial markets?

• Typical daily return $r_t = \ln S_t/S_{t-1} pprox (S_t - S_{t-1})/S_{t-1}$:

$$r_t \approx 10^{-4}, |r_t| \approx 10^{-2}.$$

- Huge amounts of data, interacting agents: probabilistic approach is natural (statistical physics)
- Don't let finance to economists because they really have a great sense of humour:
 - Eugene Fama (Nobel prize 2013): markets are efficient.
 - Robert Shiller (Nobel prize 2013): markets are unefficient!

A model of asset price $(S_t)_{t\geq 0}$ must take into account :

- · Week-end, holidays
- Overnight (\sim 2h)
- open/close
- News Macro (14h30)
- Discretization effects: tick size at high frequency

In the sequel, we will denote $X_t = \ln(S_t)$. All time scales τ are interesting; we set :

$$r_t = r_t^{(\tau)} = X_{t+\tau} - X_t.$$

There are discrete models with fixed τ (GARCH, etc...) and continuous models which therefore give a rule to relate the distribution of returns at different scales τ (Local or Stochastic volatility models, Multifractal models, etc...).

One must distinguish two scales (we denote τ_c the time which corresponds to 100 trades : typically, $\tau_c \sim 1-10$ mins.) :

- $\tau \leq \tau_c$: High frequency trading (HF). The price process is not well defined: tick, bid-ask spread effect. Study of the order book, limit orders, market orders, etc... Returns can be correlated. See talk of T. Jaisson and I. Mastromatteo
- $au > au_c$: Returns are decorrelated.

There is no benchmark continuous model which models all time scales. In the sequel of this talk, we consider $\tau > \tau_c$.

In the discrete case, we write $(r_t = \ln S_{(t+1)\tau}/S_{t\tau})$:

- $r_t = \sigma_t \epsilon_t$
- $(\sigma_t)_{t\in\mathbb{Z}}$ is the volatility (highly correlated).
- $(\epsilon_t)_{t\in\mathbb{Z}}$ is an i.i.d. sequence of variance 1 (typically with normal or student distribution).

In the continuous case, we write:

- $dS_t/S_t = \sigma_t dW_t + (Jumps)$
- $(\sigma_t)_{t\in\mathbb{R}}$ is the volatility (highly correlated).
- $(W_t)_{t\geq 0}$ is Brownian motion (BM)

Popular models in mathematical finance or econophysics

• Asymmetric GARCH(1,1) $(\alpha + \beta_{-}/2 + \beta_{+}/2 < 1)$:

$$\sigma_t^2 = \sigma^2 + \alpha(\sigma_{t-1}^2 - \sigma^2) + \beta_-(r_{t-1}^2 - \sigma^2) \mathbf{1}_{r_{t-1} < 0} + \beta_+(r_{t-1}^2 - \sigma^2) \mathbf{1}_{r_{t-1} > 0}.$$

- Levy process : dS_t/S_t is a Lévy process (Black Scholes : BM+drift)
- Local volatility : $dS_t/S_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t$
- Stochastic volatility : $dS_t/S_t = \sigma_t dW_t$ and $(\sigma_t)_{t\geq 0}$ solution of an SDE.

Multifractal random walk (MRW)

Discrete time (at scale τ) :

- $r_t = \sigma_t \epsilon_t$, $(\sigma_t)_t \perp (\epsilon_t)_t$
- $(\epsilon_t)_{t\in\mathbb{Z}}$ i.i.d. standard Gaussian
- $\sigma_t = \sigma e^{\lambda \omega_t^{\tau} \lambda^2 E[(\omega_t^{\tau})^2]}$, $(\omega_t^{\tau})_t$ is a centered Gaussian sequence :

$$E[\omega_s^{\tau}\omega_t^{\tau}] = \ln^+ \frac{T}{|t - s|\tau + \tau}$$

- ullet σ : average volatility
- λ^2 : intermittency parameter
- T : integral scale (cut-off)

Multifractal random walk (MRW)

Continuous time : $dS_t/S_t = \sigma_t dW_t$ where the volatility process is

$$\sigma_t = \sigma e^{\lambda \omega_t - \lambda^2 E[(\omega_t)^2]}$$

where ω is a centered Gaussian "process" (independent of W) with covariance

$$E[\omega_s \omega_t] = \ln^+ \frac{T}{|t - s|}$$

Problem: it makes no sense!

Multifractal random walk (MRW)

Write:

$$\int_{[0,t]} \sigma_s dW_s = B_{\int_{[0,t]} \sigma_s^2 ds}.$$

where B is a BM. Then, one can define the integrated volatility process M (Gaussian multiplicative chaos) :

$$M[0,t] = \sigma^2 \int_{[0,t]} e^{2\lambda\omega_s - 2\lambda^2 E[\omega_s^2]} ds, \quad t \ge 0$$

Definition (Bacry, Delour, Muzy, 2002)

The Multifractal Random walk (MRW) is simply $B_{M[0,t]}$.

Remark

The model is a time changed BM. This idea appears already in Mandelbrot, Taylor (1967).

Historics

- 1962 : Kolmogorov-Obukhov : lognormal model (*Journal of Fluid Mechanics*).
- 1972 : Mandelbrot defines the limit lognormal model.
- 1985: Kahane defines the theory of Gaussian multiplicative chaos (Sur le chaos multiplicatif, Annales Scientifiques et Mathematiques Quebec).

Gaussian multiplicative chaos (volatility)

M is defined by a limit procedure $M = \lim_{ au o 0} M_{ au}$:

$$M_{\tau}[0,t] = \sigma \int_{[0,t]} e^{2\lambda \omega_{s/\tau}^{\tau} - 2\lambda^2 E[(\omega_{s/\tau}^{\tau})^2]} ds, \quad t \geq 0$$

where $(\omega_s^{\tau})_s$ is the discrete Gaussian process :

$$E[\omega_{s/\tau}^{\tau}\omega_{t/\tau}^{\tau}] = \ln^{+}\frac{T}{|t-s|+\tau}$$

Local volatility : $dS_t/S_t = \sigma(S_t)dW_t$ good model?

FIGURE: SP500 :1995-2014. Notice that volatility is NOT a function of price

Lévy process : good model?

FIGURE: Simulation of independent Student(3) and SP500 (2001-2009). Notice that i.i.d. variables do not exhibit clustering.

Intermittency of MRW as a function of λ^2

FIGURE: Returns of MRW : $\lambda^2 = 0.03$ and SP500 (2001-2009).

Intermittency of MRW as a function of λ^2

FIGURE: Returns of MRW : $\lambda^2 = 0.1$ and SP500 (2001-2009).

Intermittency of MRW as a function of λ^2

FIGURE: Returns of MRW : $\lambda^2 = 0.15$ and SP500 (2001-2009).

Intermittency of the SP500

FIGURE: Returns of the SP500 on the period 2001-2009.

Intermittency of the Nasdaq 100 index

FIGURE: Returns of the Nasdaq index on the period 2001-2009.

Empirical stylized facts

Stylized fact: "universal" (statistical) signature of all assets: stocks, indices, currencies, bonds, etc... But some are specific like the leverage effect for stocks or indices.

Next slides: empirical study of the indices SP500 and the Nasdaq 100 Index.

Returns are approximately decorrelated

The log price $X_t = \ln S_t$ of a good model in finance must satisfy :

$$E[X_s(X_t-X_s)]=0.$$

Correlation of returns of the Nasdaq 100

FIGURE: Empirical correlation of the daily returns of the Nasdaq index on the period 2001-2009.

Correlation of returns of the SP500

FIGURE: Empirical correlation of the daily returns of the SP500 index on the period 2001-2009.

Volatility correlations

The definition of volatility is ambiguous; if $X_t = \ln S_t$ is the log price, we define

• the theoretical volatility (hard to observe : filtering, etc...) is the square root of the quadratic variation $< X >_{s,t}$ of X :

$$< X >_{s,t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} (X_{t_{i+1}} - X_{t_i})^2,$$

where $s = t_0 < ... < t_n = t$ is a subdivision of [s, t] with mesh going to 0.

 in practice, volatility between s and t can be (one speaks of proxy):

$$|X_t - X_s|, \sup_{u \in [s,t]} X_u - \inf_{u \in [s,t]} X_u, \text{ etc...}$$

Long range volatility correlations

One observes the following volatility correlations on markets (Corr denotes correlation) :

$$Corr(< X >_{0,1}, < X >_{t,t+1}) = A/(1+t)^{\mu},$$

where $\mu \in [0, 0.5]$.

The MRW model corresponds approximately to taking $\mu o 0$:

$$Corr(\langle X \rangle_{0,1}, \langle X \rangle_{t,t+1}) = A - B \ln(t+1).$$

In the next graphics, we will take $\sigma_{HL}(t) = \sup_{u \in [t,t+1]} X_u - \inf_{u \in [t,t+1]} X_u \text{ as proxy for } \sqrt{< X>_{t,t+1}} \text{ (t is in days)}.$

Volatility correlations of the SP500

FIGURE: Empirical volatility correlations of the SP500 on the period 2001-2009.

Volatility correlations of the Nasdaq 100

FIGURE: Empirical volatility correlations of the Nasdaq 100 on the period 2001-2009.

Distribution of volatility

The distribution of $< X >_{s,t}$ for s < t is approximately lognormal. In the next graphics, we will consider the empirical distribution of the following daily renormalized proxy of $\sqrt{< X >_{t,t+1}}$:

$$\sigma_{HL}(t) = \sup_{u \in [t,t+1]} X_u - \inf_{u \in [t,t+1]} X_u$$

We will fit the empirical distribution of $\sigma_{HL}(t)$ with :

- a lognormal distribution of density : $f(x) = \frac{1}{x\sqrt{2\pi}\sigma}e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}}$
- an inverse gamma distribution with density :

$$f(x) = \frac{A^{\nu}}{\Gamma(\nu)x^{1+\nu}}e^{-\frac{A}{x}}.$$

Distribution of the SP500 volatility

FIGURE: Empirical volatility distribution of the SP500 on the period 2001-2009.

Distribution of the Nasdaq 100 volatility

FIGURE: Empirical volatility distribution of the Nasdaq 100 on the period 2001-2009.

Distribution of the volatility of the SP500 stocks

FIGURE: Empirical volatility distribution of the SP500 stocks on the period 2001-2008.

Distribution of the volatility of the SP500 stocks

FIGURE: Empirical volatility distribution (log-log) of the SP500 stocks on the period 2001-2008.

Effet Levier : corrélations Ret-Vol

One observes the following Return-Volatility correlations on the market

$$\frac{E[X_1 < X>_{t,t+1}]}{E[< X>_{t,t+1}]^2} = -Ae^{-t/L}, \quad \text{(Corrélations Ret-Vol)}$$

where A > 0 and L is the decorrelation scale.

In the next graphics, we consider the correlations Ret-Vol with $\sigma_{HL} = \sup_{u \in [t,t+1]} X_u - \inf_{u \in [t,t+1]} X_u$ as proxy for $\sqrt{< X>_{t,t+1}}$ (t is in days).

Leverage effect of the SP500

FIGURE: Leverage effect of the SP500 on the period 2001-2009.

Leverage effect of the Nasdaq 100 index

FIGURE: Leverage effect of the Nasdaq 100 index on the period 2001-2009.

Intraday stylized facts

Most intrady daily stylized effects are similar to daily stylized effects: we will see a few empirical curves for the SP500 index. It is important though to take properly into account the intrady seasonality, i.e. the U-effect of volatility.

U-effect of volatility as a function of time in the day

FIGURE: 5 mins. volatility log(H/L) of the SP500 index on the period 2000-2009.

Distribution of 5 mins. volatility of the SP500

FIGURE: Empirical distribution of the 5 mins. log(H/L) volatility of the SP500 on the period 2000-2009.

Distribution of 5 mins. volatility of the SP500

FIGURE: Empirical distribution of the 5 mins. log(H/L) volatility (log-log) of the SP500 on the period 2000-2009.

Forecasting volatility with the MRW and the 1/f noise

The integrated volatility process $M := M^T$ of MRW:

$$M^{\mathsf{T}}[0,t] = \sigma \int_{[0,t]} e^{2\lambda\omega_s - 2\lambda^2 E[\omega_s^2]} ds, \quad t \ge 0,$$

where ω is a centered Gaussian "process" (independent of W) with covariance

$$E[\omega_s \omega_t] = \ln^+ \frac{T}{|t - s|}$$

Forecasting the volatility with the MRW and the 1/f noise

Definition (Invariance by integral scale change)

For all T < T':

$$(M^{T'}[0,t])_{t \in [0,T]} \underset{(\textit{distribution})}{=} e^{\Omega_{T'/T} - 2\lambda^2 \ln \frac{T'}{T}} (M^T[0,t])_{t \in [0,T]}$$

where $\Omega_{T'/T}$ is a centered Gaussian variable of variance $2\lambda^2 \ln \frac{T'}{T}$ that is independent of $(M^T([0,t]))_{t\in[0,T]}$.

Consequence : if the observation window of M^T is of length less than or equal to T, it is impossible de determine σ and T (ill-posed problem).

Idea : let $T \to \infty$ to get rid of σ and T!

Exact definition of the log-volatility ω

 ω is a gaussian measure on the space of tempered distributions $\mathcal{S}'(\mathbb{R})$ (in the sense of Schwartz) :

$$\begin{split} \forall \phi \in \mathcal{S}(\mathbb{R}), \quad E(e^{i\int_{\mathbb{R}}\phi(t)\omega_t dt}) &= e^{-1/2E((\int_{\mathbb{R}}\phi(t)\omega_t dt)^2)} \\ &= e^{-1/2\int\int_{\mathbb{R}^2}\phi(t)\phi(s)\ln^+(T/|t-s|)dsdt}. \end{split}$$

We want to let $T \to \infty$ in the above formula.

Exact definition of the log-volatility ω for $T \to \infty$

 ω is a Gaussian measure on the quotient space $\mathcal{S}'(\mathbb{R})/\mathbb{R}$ (1/f noise) If one considers $\mathcal{S}_0(\mathbb{R}) = \{\phi \in \mathcal{S}(\mathbb{R}) : \int_{\mathbb{R}} \phi(t)dt = 0\}$ then :

$$\begin{split} \forall \phi \in \mathcal{S}_0(\mathbb{R}), \quad & E(e^{i\int_{\mathbb{R}}\phi(t)\omega_t^\infty dt}) = e^{-1/2E((\int_{\mathbb{R}}\phi(t)\omega_t^\infty dt)^2)} \\ & = e^{-1/2\int\int_{\mathbb{R}^2}\phi(t)\phi(s)\ln(1/|t-s|)dsdt} \\ & = e^{-1/4\int_{\mathbb{R}}\frac{|\hat{\phi}(\xi)|^2}{|\xi|}d\xi}. \end{split}$$

See also Duplantier, Rhodes, Sheffield, V.: Log-correlated Gaussian fields: an overview.

Exact prediction formulas for the 1/f noise

We consider the reproducing kernel Hilbert space of ω :

$$\mathcal{H}^{1/2}(\mathbb{R})=\{f\in\mathcal{S}'(\mathbb{R})/\mathbb{R}\;;\;\int_{\mathbb{R}}|\xi||\hat{f}(\xi)|^2d\xi<\infty\}.$$

Theorem (Duchon, Robert, V., 2007)

For all $f \in \mathcal{H}^{1/2}(\mathbb{R})$,

$$\forall t>0 \quad E[\omega_t^{\infty}|(\omega_s^{\infty})_{s<0}=f]=\frac{1}{\pi}\int_{-\infty}^0\frac{\sqrt{t}}{(t-s)\sqrt{-s}}f(s)ds.$$

Exact prediction formulas for the log-volatility ω

Let L be some observation window and T the integral scale. There is an explicit kernel $K_{L,T}(t,s)$ such that :

Corollary (Duchon, Robert, V., 2007)

For all $f \in H^{1/2}(\mathbb{R})$,

$$\forall t \in]0, T - 2L[, E[\omega_t | (\omega_s)_{-2L < s < 0} = f] = \int_{-2L}^0 K_{L,T}(t,s) f(s) ds.$$

Remark

On can discretize the above formulas to get approximate formulas for the discrete model. In that case, one can also transfer the prediction formulas to the volatility itself.

References

Books and general articles on econophysics and empirical finance :

- Bouchaud, Potters: Theory of Financial Risk and Derivative Pricing, Cambridge University Press, Cambridge (2003).
- Cont: Empirical properties of asset returns: stylized facts and statistical issues, *Quantitative Finance*, 1 no.2 (2001), 223-236.
- Dacorogna, Gencay, Muller, Olsen, Pictet: An Introduction to High-Frequency Finance, Academic Press (2001).
- Cizeau, Gopikrishnan, Liu, Meyer, Peng, Stanley: Statistical properties of the volatility of price fluctuations, *Physical Review E*, 60 no.2 (1999), 1390-1400.

References

Books and articles on multifractal models:

- Bacry, Kozhemyak, Muzy: Continuous cascade models for asset returns, available at www.cmap.polytechnique.fr/ bacry/biblio.html, to appear in Journal of Economic Dynamics and Control.
- Bacry, Muzy: Log-infinitely divisible multifractal process, Communications in Mathematical Physics, 236 (2003), 449-475.
- Calvet, Fisher: Multifractal Volatility: Theory, Forecasting, and Pricing, Academic Press (2008).
- Duchon, Robert, Vargas: Forecasting volatility with the multifractal random walk model, to appear in Mathematical Finance.

References

Books and articles on the work of Mandelbrot:

- Mandelbrot, Taylor: On the distribution of stock price differences, Operations Research, 15 (1967), 1057-1062.
- Mandelbrot: A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence, Statistical Models and Turbulence, La Jolla, CA, Lecture Notes in Phys. no. 12, Springer, (1972), 333-351.
- Mandelbrot: Fractals and Scaling in Finance, Springer-Verlag (1997).
- Borland, Bouchaud, Muzy, Zumbach: The Dynamics of Financial Markets - Mandelbrot's Multifractal Cascades, and Beyond, Wilmott magazine.