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Why put probability in financial markets ?

e Typical daily return ry =InS;/S¢—1 ~ (St — St—1)/Se-1 :
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Why put probability in financial markets ?

e Typical daily return ry =InS;/S¢—1 ~ (St — St—1)/S¢-1 :
re =~ 107% || = 1072

e Huge amounts of data, interacting agents : probabilistic
approach is natural (statistical physics)

e Don't let finance to economists because they really have a
great sense of humour :

e Eugene Fama (Nobel prize 2013) : markets are efficient.
e Robert Shiller (Nobel prize 2013) : markets are unefficient !



Modelling financial markets

A model of asset price (S¢)¢>0 must take into account :

Week-end, holidays
Overnight (~ 2h)
open/close

News Macro (14h30)

Discretization effects : tick size at high frequency



Modelling financial markets

In the sequel, we will denote X; = In(S;). All time scales 7 are
interesting ; we set :

ry = rth) = Xt+7— — Xt.

There are discrete models with fixed 7 (GARCH, etc...) and
continuous models which therefore give a rule to relate the
distribution of returns at different scales 7 (Local or Stochastic
volatility models, Multifractal models, etc...).



Modelling financial markets

One must distinguish two scales (we denote 7. the time which
corresponds to 100 trades : typically, 7 ~ 1 — 10 mins.) :

e 7 < 7¢ : High frequency trading (HF). The price process is not
well defined : tick, bid-ask spread effect. Study of the order
book, limit orders, market orders, etc... Returns can be
correlated. See talk of T. Jaisson and |. Mastromatteo

e 7 > 7. : Returns are decorrelated.

There is no benchmark continuous model which models all time
scales. In the sequel of this talk, we consider 7 > 7.



Modelling financial markets

In the discrete case, we write (r: = In S(t11)7/St7) :
® It = Ot€t
o (0t)tez is the volatility (highly correlated).

e (€t)tez is an i.i.d. sequence of variance 1 (typically with
normal or student distribution).

In the continuous case, we write :
e dS;/St = o¢dW; + (Jumps)
e (0t)ter is the volatility (highly correlated).
e (W;)e>0 is Brownian motion (BM)



Popular models in mathematical finance or econophysics

o Asymmetric GARCH(1,1) (o + 8-/2+ 5+/2 < 1) :

of = 0’ +a(of 1 ~0")+B-(rt1=0%)Lr <ot B (rF1—0%)1r >0

e Levy process : dS;:/S; is a Lévy process (Black Scholes :
BM-drift)
e Local volatility : dS:/S; = u(t, Se)dt + o(t, S¢)dW;

e Stochastic volatility : dS;/S; = o+dW; and (o¢)¢>0 solution of
an SDE.



Multifractal random walk (MRW)

Discrete time (at scale 7) :

® It = Ot€y, (Ut)t L (€t)t
e (€t)teyz i.i.d. standard Gaussian
Awl =N E[(w])?] (

e 0 =o0e w] )¢ is a centered Gaussian sequence :
Elwfwf] = Int — 1
|t —s|T+ T

e o : average volatility
e )2 : intermittency parameter
e T :integral scale (cut-off)



Multifractal random walk (MRW)

Continuous time : dS;/S; = odW; where the volatility process is

Ut — Ue)\wt—)\QE[(wt)Q]

where w is a centered Gaussian "process”’ (independent of W)
with covariance
T

|t —s]

Elwsw] = InT

Problem : it makes no sense!



Multifractal random walk (MRW)

Write :
/[o,t] osdWs = Bf[o,rl ofds:

where B is a BM. Then, one can define the integrated volatility
process M (Gaussian multiplicative chaos) :

M[0, t] = o2 / s 2XEEl s ¢ >
0.1

Definition ( 2002 )
The Multifractal Random walk (MRW) is simply Buo -

The model is a time changed BM. This idea appears already in
Mandelbrot, Taylor (1967).




Historics

e 1962 : Kolmogorov-Obukhov : lognormal model (Journal of
Fluid Mechanics).

e 1972 : Mandelbrot defines the limit lognormal model.

e 1985 : Kahane defines the theory of Gaussian multiplicative
chaos (Sur le chaos multiplicatif, Annales Scientifiques et
Mathematiques Quebec).



Gaussian multiplicative chaos (volatility)

M is defined by a limit procedure M = IimOMT :
T—
M, [0, ] = O_/ e2/\“§/7*2’\25[(“’s7/f)2]ds, £>0
(0.7]

where (w])s is the discrete Gaussian process :

T

T T 1 —|nt
Elws/rwijrl =1n Tt 7



Local volatility : dS;/S; = o(S;)dW; good model ?

SP500: price and volatility
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Ficure: SP500 :1995-2014. Notice that volatility is NOT a function of
price



Lévy process : good model ?
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FIGURE: Simulation of independent Student(3) and SP500 (2001-2009).
Notice that i.i.d. variables do not exhibit clustering.



Intermittency of MRW as a function

Returns MRW lambda*2=0.03

FIGURE: Returns of MRW : A\? = 0.03 and SP500 (2001-2009).



Intermittency of MRW as a function of \?

Returns MRW: lambda®2=0.1

FIGURE: Returns of MRW : A\? = 0.1 and SP500 (2001-2009).



Intermittency of MRW as a function of \?

Returns MRW lambda®2=0.15
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FIGURE: Returns of MRW : A\? = 0.15 and SP500 (2001-2009).



Intermittency of the SP500

SP500 Index
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FIGURE: Returns of the SP500 on the period 2001-2009.



Intermittency of the Nasdaq 100 index

0.2

Nasda‘q 100 Inde)‘<
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FIGURE: Returns of the Nasdaq index on the period 2001-2009.



Empirical stylized facts

Stylized fact : "universal” (statistical) signature of all assets :
stocks, indices, currencies, bonds, etc... But some are specific like
the leverage effect for stocks or indices.

Next slides : empirical study of the indices SP500 and the Nasdaq
100 Index.



Returns are approximately decorrelated

The log price X; = InS; of a good model in finance must satisfy :

E[Xs(Xe — X)] = 0.



Correlation of returns of the Nasdag 100

Correlations Ret-Ret Nasdag 100 Index: 01-oct.09
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FI1GURE: Empirical correlation of the daily returns of the Nasdaq index
on the period 2001-2009.



Correlation of returns of the SP500

Correlations Ret-Ret SP500 Index: 01-oct.09
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F1GURE: Empirical correlation of the daily returns of the SP500 index on
the period 2001-2009.



Volatility correlations

The definition of volatility is ambiguous; if X; = InS; is the log
price, we define

e the theoretical volatility (hard to observe : filtering, etc...) is
the square root of the quadratic variation < X > of X :

n—1

<X >5t= n'g‘;o Z(Xti+l - Xti)27
i=0

where s =ty < ... < t, = t is a subdivision of [s, t] with
mesh going to 0.

e in practice, volatility between s and t can be (one speaks of
proxy) :

|X: — Xs|, sup X, — inf X,, etc...

UG[S,t] UG[S,t]



Long range volatility correlations

One observes the following volatility correlations on markets (Corr
denotes correlation) :

Corr(< X >01, < X >¢41) = A/(L+ t)H,

where 1 € [0,0.5].
The MRW model corresponds approximately to taking p — 0 :

Corr(< X >01,< X >t ¢41) = A— Blin(t + 1).

In the next graphics, we will take
onL(t) = SUPyeft,t4+1) Xu — Infuefr,e41) Xu as proxy for

vV << X >t,t+1 (t is in days).



Volatility correlations of the SP500

Correlations VolVol de I'indice SP500: 01-oct.09
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FIGURE: Empirical volatility correlations of the SP500 on the period
2001-20009.



Volatility correlations of the Nasdaq 100

Correlations VolVol de I'indice Nasdaq 100: 01-oct.09
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F1GURrE: Empirical volatility correlations of the Nasdaq 100 on the period
2001-2009.



Distribution of volatility

The distribution of < X > for s < t is approximately lognormal.
In the next graphics, we will consider the empirical distribution of

the following daily renormalized proxy of /< X > ¢41 :

JHL(t) = sup X,— inf X,
uelt,t+1] ue(t,t+1]

We will fit the empirical distribution of oy (t) with :

1 (In(x)—p)?

e 2052

e a lognormal distribution of density : f(x) = ——

e an inverse gamma distribution with density :
v A

f(X) = Wei;.



Distribution of the SP500 volatility

Distibution de la Vol du SP500 Index: 01-oct.09
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FIGURE: Empirical volatility distribution of the SP500 on the period
2001-20009.



Distribution of the Nasdaq 100 volatility

Distibution de la Vol du Nasdaq 100 Index: 01-oct.09
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F1GURE: Empirical volatility distribution of the Nasdag 100 on the period
2001-2009.



Distribution of the volatility of the SP500 stocks

Distibution de la Vol des Stocks SP500: 03-oct.08
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FI1GURE: Empirical volatility distribution of the SP500 stocks on the
period 2001-2008.



Distribution of the volatility of the SP500 stocks

Distibution de la Vol des Stocks SP500: 03-oct.08
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FIGURE: Empirical volatility distribution (log-log) of the SP500 stocks on
the period 2001-2008.



Effet Levier : corrélations Ret-Vol

One observes the following Return-Volatility correlations on the
market

E[X;i <X > .
X t’t+21] = —Ae"t/L (Corrélations Ret-Vol)
E[< X >t,t+1]

where A > 0 and L is the decorrelation scale.

In the next graphics, we consider the correlations Ret-Vol with

OHL = SUPyelt,e+1] Xu — Infuglr,e1) Xu as proxy for /< X >¢ 41
(t is in days).



Leverage effect of the SP500

Effet Levier Ret-Vol SP500 Index: 01-oct.09
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FIGURE: Leverage effect of the SP500 on the period 2001-2009.



Leverage effect of the Nasdaq 100 index

Effet Levier Ret-Vol Nasdaq 100 Index: 01-oct.09
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FIGURE: Leverage effect of the Nasdag 100 index on the period
2001-2009.



Intraday stylized facts

Most intrady daily stylized effects are similar to daily stylized
effects : we will see a few empirical curves for the SP500 index. It
is important though to take properly into account the intrady
seasonality, i.e. the U-effect of volatility.



U-effect of volatility as a function of time in the day

Volatilite de I'indice SP500 en fonction de I'heure: 2000-2009
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FIGURE: 5 mins. volatility log(H/L) of the SP500 index on the period
2000-2009.



Distribution of 5 mins. volatility of the SP500

Distribution de la volatilitd sur 5 min de I'indice SP500: 2000-2009
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FIGURE: Empirical distribution of the 5 mins. log(H/L) volatility of the
SP500 on the period 2000-2009.



Distribution of 5 mins. volatility of the SP500

Distribution de la volatilitd sur 5 min de I'indice SP500: 2000-2009
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FIGURE: Empirical distribution of the 5 mins. log(H/L) volatility
(log-log) of the SP500 on the period 2000-20009.



Forecasting volatility with the MRW and the 1/f noise

The integrated volatility process M := MT of MRW :

MT[0,t] = o / e s 2N E[l s ¢ > 0
[0,

where w is a centered Gaussian "process’ (independent of W)
with covariance

Elwswe] = InT

|t — s



Forecasting the volatility with the MRW and the 1/f noise

Definition (Invariance by integral scale change)

Forall T < T :

(Mo, t])eefo, 1] et/ 72X In*(/\/’T[O t])eeo,

(dlstrlbutlon)

where Q /7 is a centered Gaussian variable of variance 2X\?In TT/
that is independent of (M ([0, t]))¢eo,7]-

Consequence : if the observation window of M7 is of length less
than or equal to T, it is impossible de determine o and T
(ill-posed problem).

Idea : let T — oo to get rid of o and T!



Exact definition of the log-volatility w

w is a gaussian measure on the space of tempered distributions
S'(R) (in the sense of Schwartz) :

v¢ € S(R)v E(eif]R ¢(t)wtdt) = e_l/ZE((fR ¢(t)wtdt)2)
— o~ 1/2[ Ja2 (£)6(s) In* (T /|t—s|)dsdt

We want to let T — oo in the above formula.



Exact definition of the log-volatility w for T — oo

w is a Gaussian measure on the quotient space S’(R)/R (1/f noise)
If one considers So(R) = {¢ € S(R) ; [ #(t)dt = 0} then :

V¢ S S()(]R)7 E(eif]R ¢(t)w?°dt) _ efl/zE((f]R B(t)weedt)?)
e71/2ffR2 d(t)p(s) In(1/|t—s|)dsdt

_ 16(6)[2
e 1/4f1R 1€] d5.

See also Duplantier, Rhodes, Sheffield, V. : Log-correlated
Gaussian fields : an overview.



Exact prediction formulas for the 1/f noise

We consider the reproducing kernel Hilbert space of w :
HI2R) = {f € S®/R; [ [€lIF(E)PdE < oo).
R

Theorem ( , 2007)
For all f € H'Y/?(R),

0
V>0 E[w®|(w®)eco = F] = %/_ #r‘(s)ds.



Exact prediction formulas for the log-volatility w

Let L be some observation window and T the integral scale. There
is an explicit kernel K| 7(t,s) such that :

Corollary ( , 2007)
For all f € HY/2(R),

0

Wt €10, T — 2L[, Elwel(ws) atesco = f] = / Kur(t5)f()ds
2

Remark

On can discretize the above formulas to get approximate formulas
for the discrete model. In that case, one can also transfer the
prediction formulas to the volatility itself.
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