Large-dimensional and multi-scale effects in stocks volatility modeling

Rémy Chicheportiche

Swissquote bank, Quant Asset Management

work done at:

Chaire de finance quantitative, École Centrale Paris

Capital Fund Management, Paris

Journées MAS Toulouse, 27–29 août 2014

Outline

Introduction and definitions

Large-dimensonality effects

Multi-scaling

Conclusion and extensions

Volatility dynamics: clustering and memory Regressive models of conditional volatility dynamics Stationnarity in $\mathsf{ARCH}(q)$

Stock prices log-returns: $x_t = \ln P_t - \ln P_{t+1}$

Stock's volatility: a measure of "typical amplitude" or "fluctuations"

Can be understood globally (distributional sense, like empirical standard deviation) or dynamically (time-varying).

In this talk: time-varying volatility (several possible estimators: $|x_t|$, x_t^2 , rolling std-dev, Rogers-Satchell, etc.)

Clustering

Long memory: auto-correlation

Long memory: auto-correlation

Long memory: auto-correlation

$$\begin{array}{l} \blacktriangleright \ \langle (x_t^2 - \langle \sigma^2 \rangle) x_{t-\tau}^2 \rangle \\ \\ \blacktriangleright \ \ \mbox{power-law fit} \ \sim \tau^{-\beta} \end{array}$$

Definitions Volatility dynamics: clustering and memory Regressive models of conditional volatility dynamics Stationnarity in $\mathsf{ARCH}(q)$

$$\begin{cases} x_t &= \sigma_t \, \xi_t \\ \xi_t &\sim F_\xi \\ \sigma_t^2 &= \mathcal{F}(\{x_{t-\tau}\}) \end{cases} \text{ stochastic signed residuals (e.g. Student)}$$

ARCH(q):
$$\mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau=1}^{q} K(\tau) x_{t-\tau}^2, \quad q \le \infty$$

$$\begin{cases} x_t &= \sigma_t \, \xi_t \\ \xi_t &\sim F_\xi \\ \sigma_t^2 &= \mathcal{F}(\{x_{t-\tau}\}) \end{cases} \text{ stochastic signed residuals (e.g. Student)}$$

$$\begin{split} & \mathsf{ARCH}(q) \colon \mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau=1}^q K(\tau) x_{t-\tau}^2, \quad q \leq \infty \\ & \mathsf{Leverage} \colon \mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau>0} L(\tau) x_{t-\tau} + \sum_{\tau>0} K(\tau) x_{t-\tau}^2, \qquad L < 0 \end{split}$$

Definitions Volatility dynamics: clustering and memory Regressive models of conditional volatility dynamics Stationnarity in $\mathsf{ARCH}(q)$

$$\begin{cases} x_t &= \sigma_t \, \xi_t \\ \xi_t &\sim F_\xi \\ \sigma_t^2 &= \mathcal{F}(\{x_{t-\tau}\}) \end{cases} \text{ stochastic signed residuals (e.g. Student)}$$

$$\begin{split} & \text{ARCH}(q) \colon \mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau=1}^q K(\tau) x_{t-\tau}^2, \quad q \leq \infty \\ & \text{Leverage} \colon \mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau>0} L(\tau) x_{t-\tau} + \sum_{\tau>0} K(\tau) x_{t-\tau}^2, \qquad L < 0 \\ & \text{QARCH} \colon \boxed{\mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau>0} L(\tau) x_{t-\tau} + \sum_{\tau,\tau'>0} K(\tau,\tau') x_{t-\tau} x_{t-\tau'}} \end{split}$$

Definitions Volatility dynamics: clustering and memory Regressive models of conditional volatility dynamics ${\it Stationnarity}$ in ${\it ARCH}(q)$

$$\begin{cases} x_t &= \sigma_t \, \xi_t \\ \xi_t &\sim F_\xi \\ \sigma_t^2 &= \mathcal{F}(\{x_{t-\tau}\}) \end{cases} \text{ stochastic signed residuals (e.g. Student)}$$

$$\langle \sigma_t^2 \rangle = s^2 + \sum_{\tau=1}^q K(\tau) \langle x_{t-\tau}^2 \rangle$$
$$= s^2 + \sum_{\tau=1}^q K(\tau) \langle \sigma_{t-\tau}^2 \rangle \langle \xi_{t-\tau}^2 \rangle$$
$$\langle \sigma_t^4 \rangle = \dots$$

need to be finite. In particular, $\operatorname{Tr} K < 1/\langle \xi^2 \rangle = 1$

Outline

Introduction and definitions

Large-dimensonality effects

Multi-scaling

Conclusion and extensions

Figure: Allowed region in the α,g space for $K(\tau,\tau)=g\,\tau^{-\alpha}\mathbbm{1}_{\{\tau\leq q\}}$ and $L(\tau)=0$, according to the finiteness of $\langle\sigma^2\rangle$ and $\langle\sigma^4\rangle$. Divergence of $\langle\sigma^2\rangle$ is depicted by 45° (red) hatching, while divergence of $\langle\sigma^4\rangle$ is depicted by -45° (blue) hatching. In the wedge between the dashed blue and solid red lines, $\langle\sigma^2\rangle<\infty$ while $\langle\sigma^4\rangle$ diverges.

▶ Critical $\alpha_c \approx 1.376$ where $\langle \sigma^4 \rangle$ diverges as soon as $\langle \sigma^2 \rangle$ diverges

- ▶ Critical $\alpha_c \approx 1.376$ where $\langle \sigma^4 \rangle$ diverges as soon as $\langle \sigma^2 \rangle$ diverges
- ▶ a long-ranged power-law decaying correlation function $(0 < \beta < 1)$ can be obtained theoretically with a power-law volatility-feedback kernel with exponent $\alpha = (3 \beta)/2 \in (1, 1.5)$.

- ▶ Critical $\alpha_c \approx 1.376$ where $\langle \sigma^4 \rangle$ diverges as soon as $\langle \sigma^2 \rangle$ diverges
- ▶ a long-ranged power-law decaying correlation function $(0 < \beta < 1)$ can be obtained theoretically with a power-law volatility-feedback kernel with exponent $\alpha = (3 \beta)/2 \in (1, 1.5)$.
- ▶ Empirically, the estimated (exponentially truncated) power-law kernel is found to have $q \approx 0.081$ and $\alpha \approx 1.11$.

Outline

Introduction and definitions

Large-dimensonality effects

Multi-scaling

Conclusion and extensions

$$\mathcal{F}(\{x_{t-\tau}\}) = s^2 + \sum_{\tau, \tau' > 0} K(\tau, \tau') x_{t-\tau} x_{t-\tau'}$$

$$\sum_{\tau',\tau''=1}^{q} \left(\sum_{n} \lambda_n v_n(\tau') v_n(\tau'') \right) r_{t-\tau'} r_{t-\tau''} \equiv \sum_{n} \lambda_n \langle r | v_n \rangle_t^2$$

The square volatility σ_t^2 picks up contributions from various past returns eigenmodes. The modes associated to the largest eigenvalues λ are those which have the largest contribution to volatility spikes.

Examples of non-diagonal quadratic kernels (0)

ARCH(q): purely diagonal [engle1982autoregressive, bollerslev1986generalized, bollerslev1994arch]

$$K(\tau,\tau')$$

$$\sigma_t^2 = s^2 + \sum_{\tau=1}^q K(\tau,\tau) x_{t-\tau}^2$$

Examples of non-diagonal quadratic kernels (1)

Correlation between past 1-day returns and q-days weighted trends

$$K(\tau, \tau')$$

$$\sigma_t^2 = \mathsf{ARCH} + x_{t-1} \sum_{\tau=1}^q k_{\mathsf{LT}}(\tau) x_{t-\tau}$$

Examples of non-diagonal quadratic kernels (2)

Past squared 2-days returns over q lags

$$K(\tau, \tau')$$

$$\sigma_t^2 = \mathsf{ARCH} + \sum_{\tau=0}^{q-2} k_2(\tau) [R_{t-\tau}^{(2)}]^2$$

where
$$R_t^{(\ell)} \equiv \sum_{ au=1}^\ell x_{t- au}$$

Examples of non-diagonal quadratic kernels (3)

Squared last ℓ-days trends [borland2005multi]

$$K(\tau, \tau')$$

$$\sigma_t^2 = \mathsf{ARCH} + \sum_{\ell=1}^q k_\mathsf{BB}(\ell) [R_t^{(\ell)}]^2$$

Examples of non-diagonal quadratic kernels (4)

Correlations between past ℓ-days trends [zumbach2010volatility]

$$K(\tau, \tau')$$

$$\sigma_t^2 = \mathsf{ARCH} + \sum_{\ell=1}^{\lfloor q/2 \rfloor} k_\mathsf{Z}(\ell) R_t^{(\ell)} R_{t-\ell}^{(\ell)}$$

Estimation methods

- Method of Moments
 - pros: no distributional hypothesis, computationally easy (inverting a linear system)
 - cons: very noisy, in particular with high moments

Estimation methods

- Method of Moments
 - pros: no distributional hypothesis, computationally easy (inverting a linear system)
 - cons: very noisy, in particular with high moments
- Maximum Likelihood
 - pros: does not rely on noisy moment estimates
 - cons: need to specify a residual distribution, emphasis on the core of the distribution, computationally (very) intensive

Estimation methods

- Method of Moments
 - pros: no distributional hypothesis, computationally easy (inverting a linear system)
 - cons: very noisy, in particular with high moments
- Maximum Likelihood
 - pros: does not rely on noisy moment estimates
 - cons: need to specify a residual distribution, emphasis on the core of the distribution, computationally (very) intensive

Compromise: one-step ML with GMM prior.

Dataset

Daily stock prices for N=280 names: universality hypothesis Present in the SP500 index during 2000-2009 (T=2515 days) Removing market "low-frequency" fluctuations (separate calibration for volatility of the index)

Results

Results

Outline

Introduction and definitions

Large-dimensonality effects

Multi-scaling

Conclusion and extensions

Generates a too large Time-reversal asymmetry:

$$\widetilde{C}^{(2)}(\ell) = \langle (\sigma_t^2 - \langle \sigma^2 \rangle) x_{t-\ell}^2 \rangle$$

Generates a too large Time-reversal asymmetry:

$$\widetilde{C}^{(2)}(\ell) = \langle (\sigma_t^2 - \langle \sigma^2 \rangle) x_{t-\ell}^2 \rangle$$

Generates a too large Time-reversal asymmetry:

$$\widetilde{C}^{(2)}(\ell) = \langle (\sigma_t^2 - \langle \sigma^2 \rangle) x_{t-\ell}^2 \rangle$$

Put in more randomness: ARCH mechanism + TRI stochastic volatility !

Time-reversal asymmetry Conclusion References

Conclusions:

► Large-dimensional requirements and criticality

- Large-dimensional requirements and criticality
- Multi-scaling sub-dominant but statistically significant

- Large-dimensional requirements and criticality
- Multi-scaling sub-dominant but statistically significant
- Feedback structure not obvious . . .

- Large-dimensional requirements and criticality
- Multi-scaling sub-dominant but statistically significant
- Feedback structure not obvious . . .

- Large-dimensional requirements and criticality
- Multi-scaling sub-dominant but statistically significant
- Feedback structure not obvious . . .

Extensions:

specific day/night self- and cross-excitement effects

- Large-dimensional requirements and criticality
- Multi-scaling sub-dominant but statistically significant
- Feedback structure not obvious . . .

- specific day/night self- and cross-excitement effects
- similarities with Hawkes modelling

Time-reversal asymmetry Conclusion References

Pierre Blanc, Rémy Chicheportiche, and Jean-Philippe Bouchaud.

The fine structure of volatility feedback II: Overnight and intra-day effects.

Physica A: Statistical Mechanics and its Applications, 402:58 – 75, 2014.

Tim Bollerslev.

Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307–327, 1986.

Tim Bollerslev, Robert F. Engle, and Daniel B. Nelson.

ARCH models, pages 2959–3038.

Volume 4 of Engle and McFadden [engle1986handbook], 1994.

Lisa Borland and Jean-Philippe Bouchaud.

On a multi-timescale statistical feedback model for volatility fluctuations.

The Journal of Investment Strategies, 1(1):65–104, December 2011.

Rémy Chicheportiche and Jean-Philippe Bouchaud.
The fine-structure of volatility feedback I: Multi-scale self-reflexivity.

Physics A. Straightful Machanian and its Application.

Physica A: Statistical Mechanics and its Applications, 410:174 – 195, 2014.

Robert F. Engle

 $\label{lem:conditional} \mbox{ Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.}$

Econometrica: Journal of the Econometric Society, pages 987–1007. 1982.

Robert F. Engle and Daniel L. McFadden, editors. Handbook of Econometrics, volume 4.

Elsevier/North-Holland, Amsterdam, 1994.

Gilles O. Zumbach.
Volatility conditional on price trends.

Quantitative Finance. 10(4):431–442. 2010.