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Stock prices log-returns: z; = In P, — In Py

Stock’s volatility: a measure of “typical amplitude” or
“fluctuations”

Can be understood globally (distributional sense, like empirical
standard deviation) or dynamically (time-varying).

In this talk: time-varying volatility (several possible estimators:
|z¢|, 22, rolling std-dev, Rogers-Satchell, etc.)
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x =01y
& ~ F¢ stochastic signed residuals (e.g. Student)

0?2 = F({x_,}) positive fluctuating ‘volatility’

Not stochastic vol models, rather conditionally deterministic vol.
See discussion on ‘Time-reversal asymmetry’ later.
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r =01t
& ~ F¢ stochastic signed residuals (e.g. Student)

0?2 = F({x_,}) positive fluctuating ‘volatility’

Not stochastic vol models, rather conditionally deterministic vol.
See discussion on ‘Time-reversal asymmetry’ later.

ARCH(q): F({zt_,}) = s> + ZK(T).’E%_T, qg < o0
T=1

Leverage: F({z;—,}) = s* + Z L(7)zi—r + Z K(r)z?_., L<0
7>0 7>0
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r =01t
& ~ F¢ stochastic signed residuals (e.g. Student)

0?2 = F({x_,}) positive fluctuating ‘volatility’

Not stochastic vol models, rather conditionally deterministic vol.
See discussion on ‘Time-reversal asymmetry’ later.

ARCH(q): F({zt_,}) = s> + ZK(T).’E%_T, q < o0
T=1

Leverage: F({z;—,}) = s* + Z L(7)zi—r + Z K(r)z?_., L<0

7>0 7>0
QARCH: | F({zt_+}) = s> + ZL(T)Q:,:,T + Z K(r, 7 xi—rai_p
>0 7,7 >0
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Ty =o01&
& ~ F¢ stochastic signed residuals (e.g. Student)

o2 = F({xi_,}) positive fluctuating ‘volatility’

(07) = 5 +ZK (e} _,)

=S +ZK Ut T><€t T)

(of) = ...

need to be finite.
In particular, Tr K < 1/(¢%) =1
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Parameter space and criticality
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Figure: Allowed region in the «, g space for K(7,7) = g7~ “1¢,<, and
L(7) = 0, according to the finiteness of (¢2) and (¢*). Divergence of
(02) is depicted by 45° (red) hatching, while divergence of (o) is
depicted by —45° (blue) hatching. In the wedge between the dashed blue
and solid red lines, (0%) < oo while (o) diverges.

Rémy Chicheportiche Large-dimensional and multi-scale effects in stocks volatility n



Parameter space and criticality

diverges

» Critical a. ~ 1.376 where (o) diverges as soon as (02)
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» Critical a. ~ 1.376 where (o) diverges as soon as (02)
diverges

> a long-ranged power-law decaying correlation function
(0 < B < 1) can be obtained theoretically with a power-law

volatility-feedback kernel with exponent
a=(3-p)/2€(1,15).
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Parameter space and criticality

» Critical a. ~ 1.376 where (o) diverges as soon as (02)
diverges

> a long-ranged power-law decaying correlation function
(0 < B < 1) can be obtained theoretically with a power-law
volatility-feedback kernel with exponent
a=(3-p)/2€(1,15).

» Empirically, the estimated (exponentially truncated)
power-law kernel is found to have g ~ 0.081 and o ~ 1.11.
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Spectral interpretation of QARCH
Examples of non-diagonal quadratic kernels
Model calibration

F{or}) =+ Y K(r 7)oz

7,7 >0
q
Z Z MO (TR (T") | 7o 7y = Z A (7|vg)?
T r'=1 n

The square volatility o2 picks up contributions from various past
returns eigenmodes. The modes associated to the largest
eigenvalues A are those which have the largest contribution to
volatility spikes.
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E les of q ic kernels
Model calibration

Examples of non-diagonal quadratic kernels (0)

ARCH(q): purely diagonal [engle1982autoregressive,
bollerslev1986generalized, bollerslev1994arch]

K(r,7")
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Examples of non-diagonal quadratic kernels (1)

Correlation between past 1-day returns and g-days weighted trends

K(r,7)

q
of =ARCH+ ;1 > kir(T)ae -

T=1
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Examples of non-diagonal quadratic kernels (2)

Past squared 2-days returns over ¢ lags

q—2
o? = ARCH + Y ka(7) (R}, )2

-
7=0

0
where REZ) = Z:ﬂt,f

T=1
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Examples of non-diagonal quadratic kernels (3)

Squared last ¢-days trends [borland2005multi]

K(r,7")

q
07 = ARCH + " kgg (0)[R{")?
/=1
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Examples of non-diagonal quadratic kernels (4)

Correlations between past ¢-days trends [zumbach2010volatility]

La/2]
0? = ARCH + Y kz(0)R{"RY,
/=1
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Estimation methods

» Method of Moments

» pros: no distributional hypothesis, computationally easy
(inverting a linear system)
> cons: very noisy, in particular with high moments
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» Method of Moments

» pros: no distributional hypothesis, computationally easy
(inverting a linear system)
> cons: very noisy, in particular with high moments

» Maximum Likelihood

> pros: does not rely on noisy moment estimates
» cons: need to specify a residual distribution, emphasis on the
core of the distribution, computationally (very) intensive
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Estimation methods

» Method of Moments
» pros: no distributional hypothesis, computationally easy
(inverting a linear system)
> cons: very noisy, in particular with high moments
» Maximum Likelihood

> pros: does not rely on noisy moment estimates
» cons: need to specify a residual distribution, emphasis on the
core of the distribution, computationally (very) intensive

Compromise: one-step ML with GMM prior.
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Dataset

Daily stock prices for N = 280 names: universality hypothesis
Present in the SP500 index during 2000 — 2009 (7" = 2515 days)

Removing market “low-frequency” fluctuations (separate
calibration for volatility of the index)
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Conclusion
References

Explicitly backward looking construction: o7 =

F({zi—})
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Put in more randomness: ARCH mechanism + TRI stochastic
volatility !
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Conclusions:
» Large-dimensional requirements and criticality
» Multi-scaling sub-dominant but statistically significant

» Feedback structure not obvious . ..

Extensions:

» specific day/night self- and cross-excitement effects

Rémy Chicheportiche Large-dimensional and multi-scale effects in stocks volatility n



Introduction and definitions
Large-dimensonality effects
Multi-scaling

Conclusion and extensions

Time-reversal asymmetry
Conclusion
References

Conclusions:
» Large-dimensional requirements and criticality
» Multi-scaling sub-dominant but statistically significant

» Feedback structure not obvious . ..

Extensions:
» specific day/night self- and cross-excitement effects

> similarities with Hawkes modelling

Rémy Chicheportiche Large-dimensional and multi-scale effects in stocks volatility n



Time-reversal asymmetry
Conclusion
References

Pierre Blanc, Rémy Chicheportiche, and Jean-Philippe
Bouchaud.
The fine structure of volatility feedback II: Overnight and
intra-day effects.
Physica A: Statistical Mechanics and its Applications, 402:58 —
75, 2014

Tim Bollerslev.
Generalized gressive conditional
Journal of Econometrics, 31(3):307-327, 1986.

Tim Bollerslev, Robert F. Engle, and Daniel B. Nelson.
ARCH models, pages 2959-3038.
Volume 4 of Engle and McFadden [engle1986handbook], 1994.

Lisa Borland and Jean-Philippe Bouchaud.
On a multi-timescale statistical feedback model for volatility
fluctuations.
The Journal of Investment Strategies, 1(1):65-104, December
2011.

Rémy Chicheportiche and Jean-Philippe Bouchaud.
The fine-structure of volatility feedback I: Multi-scale
self-reflexivity.
Physica A: Statistical Mechanics and its Applications, 410:174

kedasticity.

— 195, 2014.
Robert F. Engle.
A gressive conditional Jasticity with estil of

the variance of United Kingdom inflation.
Econometrica: Journal of the Econometric Society, pages
987-1007, 1982.

Robert F. Engle and Daniel L. McFadden, editors.
Handbook of Econometrics, volume 4.
Elsevier/North-Holland, Amsterdam, 1994.

Gilles O. Zumbach.
Volatility conditional on price trends.
Quantitative Finance, 10(4):431-442, 2010. =] ) - = o

_ Large-dimensional and multi-scale effects in stocks volatility




	Introduction and definitions
	Large-dimensonality effects
	Multi-scaling
	Conclusion and extensions

