Iacopo Mastromatteo CMAP, École Polytechnique

A stylized model for the anomalous impact of meta-orders

Journées MAS 2014: *"Phénomènes de grand dimension"*

Toulouse, August 28th 2014

Collaborators: J.-P. Bouchaud B. Tóth

Collaborators: E. Bacry J.-F. Muzy *Iacopo Mastromatteo* CMAP, École Polytechnique

A stylized model for the anomalous impact of meta-orders

Journées MAS 2014: *"Phénomènes de grand dimension"*

Toulouse, August 28th 2014

Collaborators: J.-P. Bouchaud B. Tóth

Collaborators: E. Bacry J.-F. Muzy

Motivation

"Buy trades move prices up and sell trades move prices down"

Why and how trades move prices?

Is this trivial?

Not at all! The details about **how** this happens are still unknown, and there is no consensus so far about which model should describe the effect of trades on prices.

Why is this relevant?

For practitioners and regulators:

- Control the effect of their actions on the market (trading costs, stability) *For theorists:*

- Knowing how information is incorporated into prices

Outline

- Response to trades: empirical evidence and theoretical implications
- * The microstructure of financial markets
- * A stylized model for market impact
- * A more empirically grounded generalization

Markets as oracles

Markets can be seen as large information processing devices

The input process

Empirically, the sign process is strongly autocorrelated!

$$C(\tau) = \langle \epsilon_t \epsilon_{t+\tau} \rangle - \langle \epsilon_t \rangle \langle \epsilon_{t+\tau} \rangle$$

0.5

 $C(\tau)$ 0.05

0.005

τ

100

1000

10

autocorrelation of orderflow

Herding vs splitting

In some cases, the **ID of the brokers are available**. This allows to decompose correlations in *same broker / other brokers* contributions

from B.Tóth *et al.,* "Why is the order flow so persistent?" arXiv:1108.1632 (2011)

 $C(\tau) = C_{same}(\tau) + C_{other}(\tau)$

Meta-orders

Autocorrelation is dominated by splitting: why is this?

Information: As soon as you trade, you are **giving away private information** to others. You should better hide it!

Costs: The more you trade, the more you move price by reducing quantity available at best price: **trading fast is expensive**!

Hence traders hide their orders into the noise (of the regular order flow)!

the collective order is usually referred to as meta-order

Meta-orders

Autocorrelation is dominated by splitting: why is this?

Information: As soon as you trade, you are giving away private information to others. You should better hide it!

Costs: The more you trade, the more you move price by reducing quantity available at best price: **trading fast is expensive**!

Hence traders hide their orders into the noise (of the regular order flow)!

the collective order is usually referred to as **meta-order**

The response of price to a set of sequential trades has a concave shape:

$$\left<\Delta p\right> = Y\sigma_D \left(\frac{Q}{V_D}\right)^{1/2}$$

- Δp price change
- *Y* dimensionless, **remarkably stable** (1995-2013)
- σ_D daily fluctuations
- V_D daily traded volume
- Q executed volume

Notes:

- Signal is very weak: you need to average in order to catch it (SNR ~ 10⁻²)
- Fragility of markets: Impact diverges at the origin
- Non-additivity: The impact of two consecutive trades is not the sum of the separate impacts

Strategy for the model

What are the causes of impact?

- Trades forecast prices: trades cause price changes because they add information to the price process
- Prices forecast trades: people trade because they discover how prices are going to change in the future
- Trades mechanically impact prices: while buying, I reduce offer and when selling I reduce demand

What is the mechanics of trading?

Buy orders (<i>bid</i>)	LAST Price Time	QQQ - MATCH 25.1290 11:42:15.597	Gi QC Syr Syr TODAY'S Orders Volume	ET STOCK Q go nbol Search S ACTIVITY 67,212 12,778,400	• Traded contract Sell orders (<i>ask</i>)
	BUV ORDERS SELL ORDERS -		ORDERS -		
	SHARES	PRICE	SHARES	PRICE	
	600	25.1240	500	25.1470	
	3,200	25.1230	400	25.1470	
	3,200	25.1220	600	25.1480	
	4,000	25.1220	100	25.1500	
	100	25.1210	3,200	25.1520	
	100	25.1200	4,000	25.1520	
	3,200	25.1200	4,000	25.1530	
	<u>9,600</u>	25.1130	7,200	25.1530	
	4,000	25.1130	3,200	25.1550	
	400	25.1130	4,000	25.1570	
	4,000	25.1130	4,000	25.1570	
	<u>8,000</u>	25.1120	<u>100</u>	25.1590	
	5,000	25.1110	800	25.1680	
	3,000	25.1100	8,000	25.1680	
	1,000	25.1100	5,000	25.1690	
	(237	7 more)	(119) more)	

What is the mechanics of trading?

What is the mechanics of trading?

How do you influence them?

Market orders:

Unconditional orders to instantly buy/sell at best price a given volume (decreases liquidity)

Limit orders:

Add order to buy a given volume at specific price (increases liquidity)

Cancellations:

Removes previously added price

How do you influence them?

Market orders:

Unconditional orders to instantly buy/sell at best price a given volume (decreases liquidity)

Limit orders:

Add order to buy a given volume at specific price (increases liquidity)

Cancellations:

Removes previously added price

How do you influence them?

Market orders:

Unconditional orders to instantly buy/sell at best price a given volume (decreases liquidity)

Limit orders:

Add order to buy a given volume at specific price (increases liquidity)

Cancellations:

Removes previously added price

How do you influence them?

Market orders:

Unconditional orders to instantly buy/sell at best price a given volume (decreases liquidity)

Limit orders:

Add order to buy a given volume at specific price (increases liquidity)

Cancellations:

Removes previously added price

Demand and supply

Can the order book be considered as a proxy for demand and supply curves?

Not exactly: that is a small fraction of the latent demand and supply curve $(V_{avail} \ll V_{daily})$

The idea

We formulate a mechanical theory of market impact based on universal principles

- Prices live on a onedimensional line
- Demand and supply curves vanish at the traded price

... if curve is locally linear

This is a static picture... Does this hold when one has a proper dynamics (slow execution)?

Our model: ingredients

We consider a **one-dimensional reaction-diffusion** system:

 $A+B\to \emptyset$

in order to model the latent liquidity process

Hopping:

Annihilation:

Particles have probability D per unit time of jumping left/right

Particles of different type on the same site **annihilate** with probability λ per unit time (eventually, we want $\lambda \rightarrow \infty$)

Insertion: New particles are *inserted* at the boundaries at a rate J per unit time

we are interested in studying the statistics of the interface among the **rightmost B** and the **leftmost A**

The mean-field equation

The master equation for the process is rather complicated to write. Indeed, one can extract the dynamics of the **mean density**

$$\frac{\partial \langle b(x,t) \rangle}{\partial t} = D \frac{\partial^2 \langle b(x,t) \rangle}{\partial x^2} - \lambda \langle a(x,t)b(x,t) \rangle$$
$$\frac{\partial \langle a(x,t) \rangle}{\partial t} = D \frac{\partial^2 \langle a(x,t) \rangle}{\partial x^2} - \lambda \langle a(x,t)b(x,t) \rangle$$

with boundaries

$$\begin{split} J &= -D \frac{\partial \langle b(x,t) \rangle}{\partial x} \Big|_{x=0} & 0 &= -D \frac{\partial \langle b(x,t) \rangle}{\partial x} \Big|_{x=L} \\ 0 &= -D \frac{\partial \langle a(x,t) \rangle}{\partial x} \Big|_{x=0} & -J &= -D \frac{\partial \langle a(x,t) \rangle}{\partial x} \Big|_{x=L} \end{split}$$

where we remark that

 $\langle a(x,t)b(x,t)\rangle \neq \langle a(x,t)\rangle\langle b(x,t)\rangle$

Stationary model

The field

$$\varphi(x,t) = b(x,t) - a(x,t)$$

diffuses freely due to the **conservation law** for *B* - *A*

while the stationary value of the interface is at the center of the system

Perturbed model (I)

We model the presence of an extra buyer with a modified reaction law:

$$A + B \rightarrow \emptyset$$
 w. prob. $1 - p$
 $A + B \rightarrow B$ w. prob. $p \frac{1 + m}{2}$
 $A + B \rightarrow A$ w. prob. $p \frac{1 - m}{2}$

for p=0 we get the old model, while for $p \neq 0$ we get a bias governed by m

$$\frac{\partial \langle b(x,t) \rangle}{\partial t} = D \frac{\partial^2 \langle b(x,t) \rangle}{\partial x^2} - \lambda u_A \langle a(x,t)b(x,t) \rangle \qquad u_A = 1 - p\left(\frac{1+m}{2}\right)$$
$$\frac{\partial \langle a(x,t) \rangle}{\partial t} = D \frac{\partial^2 \langle a(x,t) \rangle}{\partial x^2} - \lambda u_B \langle a(x,t)b(x,t) \rangle \qquad u_B = 1 - p\left(\frac{1-m}{2}\right)$$

and the new conserved field is $\psi = u_B b - u_A a$

Perturbed model (II)

The system hasn't a stationary state anymore!

In fact, the interface drifts as

 $\Delta p_t = 2\alpha (u_B/u_A)\sqrt{Dt}$

with
$$\alpha(z)\left(\frac{z+1}{z-1} - \operatorname{erf}[\alpha(z)]\right) - \frac{1}{\sqrt{\pi}}e^{-\alpha^2(z)}$$

Y-ratio: executed volumes

As one would like to determine the relation with respect to the volume, one can calculate:

Executed volume: $\langle Q \rangle = \beta (u_B/u_A)(JT)$ **Market volume:** $\langle V \rangle = \gamma (u_B/u_A)(JT)$

so that finally

$$\Delta p_t = 2\alpha (QD/\beta J)^{1/2}$$

While the value of $Y=2\alpha / (D/\beta J)^{1/2}$ is fixed by the **participation ratio**

$$\phi(z) = \frac{(\text{trader volume})}{(\text{market volume})} = \frac{2\beta(z)}{\beta(z) + \gamma(z)}$$

Generalizations

Any generalization preserving the asymmetric part of the dynamics **yields the same impact relation**.

The variance of the price p_t *can be tuned*

$$\langle m_t m_{t+\tau} \rangle \sim \tau^{-\gamma}$$

so to enforce consistency with empirical data

Diffusion constant by varying the order persistence

E-intelligence model

Different type of models sharing the same ingredients (dimensionality and vanishing liquidity at the mid-price) yield **qualitatively similar results**

[Mastromatteo, I., *et al.* (2014) Physical Review E, 89(4), 042805. Tóth, B., *et al.* (2011). Physical Review X, 1(2), 021006]

- Gain: Closer to empirical data (faithfully describes market, limits and cancellations)
- LOSC: Analytical tractability

This are the empirically grounded models which inspired the **stylized one** which has been illustrated.

Conclusions

- Anomalous market impact arises from the anomalous properties of a market as an information processing system
- * Empirically, impact is universal and concave
- A simple model reproducing the minimal ingredients (dimensionality and locally linear book) is able to reproduce a square root impact
- * Generalizations of these ideas still yield concave impact

Thank you

References

- Mastromatteo, I., Toth, B., & Bouchaud, J.-P. (2014). Anomalous impact in reaction-diffusion models. arXiv preprint arXiv: 1403.3571.
- Mastromatteo, I., Toth, B., & Bouchaud, J.-P. (2014). Agent-based models for latent liquidity and concave price impact. Physical Review E, 89(4), 042805.
- * Tóth, B., Lemperiere, Y., Deremble, C., De Lataillade, J., Kockelkoren, J., & Bouchaud, J.-P. (2011). *Anomalous price impact and the critical nature of liquidity in financial markets*. Physical Review X, 1(2), 021006.