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Motivation

Why and how trades move prices?

“Buy trades move prices up and sell trades move prices down”

Is this trivial? 

Why is this relevant?

Not at all! The details about how this happens are still unknown, and there 
is no consensus so far about which model should describe the effect of 
trades on prices. 

For practitioners and regulators:!
- Control the effect of their actions on the market (trading costs, stability) 

For theorists:!
- Knowing how information is incorporated into prices



Outline

❖ Response to trades: empirical evidence and theoretical 
implications!

❖ The microstructure of financial markets!

❖ A stylized model for market impact!

❖ A more empirically grounded generalization



Markets as oracles

pt✏t
traded signs prices

Markets can be seen as large information processing devices

Market
Long-range correlated!
sequence of +1 and -1 
variables.!
It is the incoming flux of 
all orders from financial 
actors

Statistically efficient 
(martingale) process 
e n c o d i n g a l l t h e 
information contained 
in trades. It contains no 
information whatsoever

Predictable Unpredictable



The input process

C(⌧) = h✏t✏t+⌧ i � h✏tih✏t+⌧ i

(stock AZN traded in LSE,!
from B.Tóth et al., ”Why is the order flow so persistent?”)

Empirically, the sign process is strongly autocorrelated!

C(⌧) ⇠ ⌧��

� 2 [0.4, 0.8]

(for different market venues,!
epochs, products)

Response to trades is fine tuned!
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Figure 1: Autocorrelation function of market order signs for the stock AZN in the first half of 2009, plotted
on double logarithmic scale. The time lag ⌧ is measured in terms of number of market order placements. The
estimated autocorrelations are all positive and statistically significant out to lags of more than 100.

of the market impact of large institutional orders, as well as its permanent and temporary
components. Persistence of order flow implies that the market deviates substantially from the
equilibrium that would prevail if all participants were forced to reveal their true intentions at
the outset of trading.

Although nothing in our analysis here depends on this, in many equity markets order flow has
been observed to obey a long-memory process3. This means that the autocorrelation function
C(⌧) of the order signs (✏t = +1 for buy and ✏t = �1 for sell) asymptotically decays in time4

for large ⌧ as C(⌧) ⇠ ⌧��, where 0 < � < 1. The observation of long-memory in stock markets
is very robust; in London, for example, every stock examined shows long-memory under strict
statistical tests (Lillo and Farmer, 2004).

The persistence associated with long-memory is remarkable in many ways. The slow decay
with ⌧ implies that the autocorrelation function is not integrable. This means that order flow
is highly predictable, with events in the distant past having non-negligible influence on the
present. This predictability is persistent, in the sense that prediction errors asymptotically
decay as a power law, implying one can predict further into the future than is possible if errors
decay exponentially. We wish to emphasize, however, that nothing in this paper depends on
whether or not order flow is actually long-memory; our work here is focused on the origin of
the correlations, which are undeniably extremely long-range.

We distinguish two types of behavior that can give rise to persistent order flow:

1. Order splitting, corresponding to a sequence of orders of a given sign originating from a
single investor. This has a natural strategic cause: To reduce impact investors split their
orders into smaller pieces, and execute them gradually, as originally hypothesized by Kyle

3 A standard example of a long-memory process is a fractional Brownian motion. We use the term in its
more general sense to mean any process whose autocorrelation function is non-integrable (Beran, 1994). This
can include processes with structure breaks, such as those studied by Ding, Engle and Granger (1993). Long-
memory was observed in the London and New York stock exchanges by Lillo and Farmer (2004), in the Paris
stock exchange by Bouchaud et al. (2004) and in the Spanish stock exchange by Vaglica et al. (2008). The
question of whether or not order flow in other asset classes has long-memory remains open.

4 We are using the notation A(x) ⇠ B(x) to mean lim
x!1 A(x)/B(x) = C with C 6= 0.

3



Herding vs splitting
In some cases, the ID of the brokers are available. This allows to decompose!

correlations in same broker/other brokers contributions 

C(⌧) = C
same

(⌧) + C
other

(⌧)

from B.Tóth et al.,!
”Why is the order flow!
so persistent?”!
arXiv:1108.1632 (2011)
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Figure 6: The decomposition of the autocorrelation for the ensemble of stocks illustrates the consistency
with which C 0

same

(⌧) dominates C 0
other

(⌧). Left panel: Autocorrelations of market order signs averaged
across all 102 samples (spanning nine years and six stocks). The bars are standard deviations. Right
panel: C 0

other

(⌧) in the left panel is magnified to better observe its negative contribution. The bars in
this panel are standard errors. For both plots we use logarithmic scale on the horizontal axis and linear
scale on the vertical axis.

can observe is their behavior aggregated together with others trading through the same
broker.

We see that C 0
same

(⌧) is always positive and is substantially larger than C 0
other

(⌧) at
all lags. This is particularly true for larger lags – by ⌧ = 10, C 0

other

(⌧) is near zero.

This behavior is remarkably consistent across all 102 samples. To illustrate this,
in the left panel of Figure 6 we plot the decomposition C 0(⌧) = C 0

same

(⌧) + C 0
other

(⌧)
averaged across all of the 102 samples, and also plot the standard deviation across the
samples for each time lag. There is remarkably little variation across the samples. The
standard deviations are small compared to the di↵erence between C 0

same

and C 0
other

. For
⌧  100, where we have the best statistical reliability, there is not a single case in which
C 0

other

(⌧) > C 0
same

(⌧).

The negative value of C 0
other

observed for AZN is not special to this stock or this time
period: Almost all stocks show similar behavior. To examine this in more detail, in the
right panel of Figure 6 we enlarge the scale and plot only C 0

other

. Instead of showing the
standard deviation across the samples, we show the standard error. The fact that the
average value of C 0

other

is consistently negative for 10  ⌧  250, at many lags by more
than three times the standard error, suggests that this e↵ect is real. We will return in
Section VII to perform better statistical tests and shed some light on the cause of this
phenomenon.

23



Meta-orders
Autocorrelation is dominated by splitting: why is this?

Information:

Costs:

As soon as you trade, you are giving away private information to!
others. You should better hide it!

The more you trade, the more you move price by reducing quantity!
available at best price: trading fast is expensive!

Hence traders hide their orders into the noise (of the regular order flow)!

t0 tend

the collective order is usually referred to as meta-order
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Impact of meta-orders: 
empirical results

The response of price to a set of sequential!
trades has a concave shape:

h�pi = Y �D

✓
Q

VD

◆1/2

�p

Y

�D

VD

Q

price change

dimensionless, remarkably stable (1995-2013)

daily fluctuations

daily traded volume

executed volume

❖ Signal is very weak: you need to average 
in order to catch it (SNR ~ 10-2) !

❖ Fragility of markets: Impact diverges at 
the origin!

❖ Non-additivity: The impact of two 
consecutive trades is not the sum of the 
separate impacts 

Notes:
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Figure 1: Impact of CFM trades on the GBP futures market, obtained by
averaging over 3⇥ 104 meta-orders executed during the period 2008–2012. The
full lines with symbols in the main plot correspond to two styles of execution of
the meta-order (either with a mix of limit and market orders, or exclusively with
limit orders). The average impact in the two cases appears to be the same. The
soft dashed lines plotted for comparison show power-laws with exponents 0.5 and
1. The thick dashed line indicates the result of a power-law fit, with exponent
� = 0.44. In the inset we plot the intra-day sign autocorrelation function for the
same product averaged over all the trades of year 2012, exhibiting a power-law
decay with exponent � ⇡ 0.76.
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Market impact for 8 000 000 CFM trades



Strategy for the model

❖ Trades forecast prices: trades cause price changes 
because they add information to the price process!

❖ Prices forecast trades: people trade because they 
discover how prices are going to change in the future!

❖ Trades mechanically impact prices: while buying, I 
reduce offer and when selling I reduce demand

What are the causes of impact?



Order book (I)
What is the mechanics of trading? 2. MARKET MICROSTRUCTURE 

10 

• Microstructure: Bid/Ask quotes (Limit Orders) and trades 
(Market Orders), Ask-Bid=Spread S 

• S is the cost of an immediate roundturn 

• Market Makers post quotes, pocket that 
spread but face « adverse selection » from 
Market Orders – see below 

• In the « old days » (1900 – 1980): 

           S ~ 70 bp = 0.7%    (good to be MM!) 

• In present electronic markets: 

           S ~ a few bps      (driven down by HFT) 

 

Traded contract

Buy orders (bid) Sell orders (ask)
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Order book (I)
What is the mechanics of trading? 2. MARKET MICROSTRUCTURE 

10 

• Microstructure: Bid/Ask quotes (Limit Orders) and trades 
(Market Orders), Ask-Bid=Spread S 

• S is the cost of an immediate roundturn 

• Market Makers post quotes, pocket that 
spread but face « adverse selection » from 
Market Orders – see below 

• In the « old days » (1900 – 1980): 

           S ~ 70 bp = 0.7%    (good to be MM!) 

• In present electronic markets: 

           S ~ a few bps      (driven down by HFT) 

 

Traded contract

Buy orders (bid) Sell orders (ask)

Volumes Prices:!
highest bid < lowest ask!
due to bid-ask spread



Order book (II)
How do you influence them?

Market orders:
Unconditional orders to instantly buy/sell at!
best price a given volume (decreases liquidity)

Limit orders:
Add order to buy a given volume at specific!
price (increases liquidity)

Cancellations:
Removes previously added price p

V
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Demand and supply

Not exactly: that is a small fraction of the latent demand and supply curve!
( Vavail << Vdaily )

Can the order book be considered as a proxy for demand and supply curves?

Demand Supply

p

V

instantly avail. volume



The idea

❖ Prices live on a one-
dimensional line!

❖ Demand and supply 
curves vanish at the 
traded price

We formulate a mechanical theory of market impact based on universal principles

Demand Supply

p

V

This is a static picture… Does this hold when one has a proper dynamics (slow execution)?

Q =

Z �p

0
dp V (p) / �p2…if curve is locally linear



Our model: ingredients
We consider a one-dimensional reaction-diffusion system:

A+B ! ;

in order to model the latent liquidity process

Hopping:

Annihilation:

Particles have probability D per unit time of jumping left/right

Particles of different type on the same site annihilate with probability!
 λ per unit time (eventually, we want λ → ∞ )

Insertion: New particles are inserted at the boundaries at a rate J per unit time

we are interested in studying the statistics of the interface among the!
rightmost B and the leftmost A



The mean-field equation 
The master equation for the process is rather complicated to write. Indeed, one can!

extract the dynamics of the mean density

@hb(x, t)i
@t

= D

@

2hb(x, t)i
@x

2
� �ha(x, t)b(x, t)i

@ha(x, t)i
@t

= D

@

2ha(x, t)i
@x

2
� �ha(x, t)b(x, t)i

with boundaries

J = �D

@hb(x, t)i
@x

����
x=0

0 = �D

@hb(x, t)i
@x

����
x=L

0 = �D

@ha(x, t)i
@x

����
x=0

�J = �D

@ha(x, t)i
@x

����
x=L

where we remark that

ha(x, t)b(x, t)i 6= ha(x, t)ihb(x, t)i



Stationary model

'(x, t) = b(x, t)� a(x, t)

The field

diffuses freely due to the conservation law for B - A

h'stat(x)i

x

Jin = J J
out

= J

while the stationary value of the interface is at the center of the system



Perturbed model (I)
We model the presence of an extra buyer with a modified reaction law:

2

itly enforces the presence of a finite spread separating
the highest bid (the rightmost B particle) and the lowest
ask (the leftmost A particle) through a market clearing
condition.

The stochastic dynamics that we propose for the par-
ticles populating the book consists of a hopping process
for both type of particles (each particle can jump either
right or left with probability D per unit time) and of a re-
action process mimicking the market clearing condition:
particles at the same site will have a probability � per
unit time to start a reaction process (we will eventually
consider the limit � ! +1). The reaction process may
have three di↵erent outcomes, chosen at random accord-
ing to the value of two parameters p and m:

A+B ! ; w. prob. 1� p (2)

A+B ! B w. prob. p
1 +m

2
(3)

A+B ! A w. prob. p
1�m

2
. (4)

For p = 0, this boils down to the model studied in [13, 14],
but this setting is too restrictive as it does not allow one
to introduce a bias m, which is of course a crucial ingre-
dient to study impact. In fact, the events associated with
p > 0 can be interpreted as due to the action of an addi-
tional agent, who adds to the system an extra bid particle
(with probability (1+m)/2) or an extra ask particle (with
probability (1�m)/2). The lack of a conservation law for
the di↵erence between the number of buy and sell par-
ticles is then explained by the imbalance introduced by
such extra agent. Finally, we suppose that a flux of par-
ticles per unit time JB = JA = J (of type B and A) are
inserted at the boundaries (respectively at sites 1 and L).
Hence, the system lies in a non-equilibrium state due to
the presence of an external particle pressure, represent-
ing the flux of orders coming from new participants, that
can become interested in entering the market. The model
will only make sense if the results do not depend on L,
which is to a large extent arbitrary.

The model described above leads in continuous approx-
imation to the following dynamics:

@hb(x, t)i
@t

= D
@2hb(x, t)i

@x2
� �uAha(x, t)b(x, t)i (5)

@ha(x, t)i
@t

= D
@2ha(x, t)i

@x2
� �uBha(x, t)b(x, t)i , (6)

where a(x, t) and b(x, t) are the densities of particles of
type A and B, and uA = 1 � p( 1+m

2 ) and uB = 1 �
p( 1�m

2 ). In this limit the conditions at the boundary
become the Neumann boundary conditions

J = �D
@hb(x, t)i

@x

����
x=0

0 = �D
@hb(x, t)i

@x

����
x=L

(7)

0 = �D
@ha(x, t)i

@x

����
x=0

�J = �D
@ha(x, t)i

@x

����
x=L

(8)

This model is extremely hard to solve in one dimen-
sion due to the presence of strong correlations among
the particle positions [15, 16]. Whereas in higher dimen-
sion (or in the small coupling regime �J�1/2D�1/2 ⌧ 1)
the mean field approximation habi = haihbi is quite accu-
rate, in one dimension and in the large coupling regime
�J�1/2D�1/2 � 1 (which is relevant here), interactions
are too strong for the mean-field prediction to be even
qualitatively correct [15, 16]. In that case, even in the
simpler case p = 0, it is necessary to rely on approximate
results obtained by using sophisticated renormalization
group techniques [17, 18] or to resort to numerical simu-
lations [19, 20].
In our setting, the symmetric case p = 0 corresponds

to the case in which the flux of the market is balanced,
i.e., no meta-order is being executed. Hence, it repre-
sents the market unperturbed state, and it is then worth
to discuss its main features. First, we remark that in
the symmetric case uA = uB , due to the conservation
law for the di↵erence of A and B particles, the com-
bination ' = b � a follows a di↵usion equation of the
type @t' = D@2xx', subject to the boundary condition
�D@x'|x=0,L = J . The stationary state is immediate to
compute and results in a linear density profile:

'st(x) = �(J/D)(x� L/2). (9)

Second, the interface of the model x⇤
t (corresponding to

the traded price) di↵uses anomalously: while at large
times the boundaries obviously confine the system be-
tween x = 0 and x = L, in the small time regime
tD/L2 ⌧ 1 the interface di↵uses very slowly, as we nu-
merically find the law of |x⇤

t � x⇤
0| to be compatible with

⇠ log t (as opposed to the case J = 0 considered in [17]
for which |x⇤

t � x⇤
0| ⇠ t1/4). In particular for L ! 1

the interface – and hence the mid-price – is sub-di↵usive.
Despite being at odds with empirical observations of ac-
tual financial markets, sub-di↵usion of the price within
the model is expected from the confining e↵ect of the
order book itself. Reproducing the di↵usion behaviour
of prices in financial markets (namely, the fact that for
times larger than a few trades one has |x⇤

t � x⇤
0| ⇠ t1/2)

would require additional terms in our model, accounting
for the strategic interactions of the traders (see [4, 5] for a
detailed discussion of this point). Summarizing, Eq. (5)
alone provides an appropriate description for the linear
dynamics of price, but fails to describe its quadratic vari-
ations.
The goal of the present discussion is to investigate the

change in the interface position due to an imbalance in
the order flux, i.e. the case p 6= 0, m 6= 0. We model
such imbalance by supposing that the system, after being
prepared in the symmetric stationary state at time t = 0,
is subject to a sudden change of the values p and/or m
controlling the imbalance parameters uA, uB until a time
t = T . In that case, it is convenient to study the evolution
of the linear combination  = uBb � uAa, which again

for p=0 we get the old model, while for p ≠ 0 we get a bias governed by m

@hb(x, t)i
@t

= D

@

2hb(x, t)i
@x

2
� �uAha(x, t)b(x, t)i

@ha(x, t)i
@t

= D

@

2ha(x, t)i
@x

2
� �uBha(x, t)b(x, t)i

uA = 1� p

✓
1 +m

2

◆

uB = 1� p

✓
1�m

2

◆

and the new conserved field is  = uBb� uAa



Perturbed model (II)
The system hasn’t a stationary state anymore!

x

h (x, t = 0)i

x

h (x, t)i

�pt

J
in

= Ju
B

6= J
out

= Ju
A

�pt = 2↵(uB/uA)
p
Dt

In fact, the interface drifts as

with ↵(z)

✓
z + 1

z � 1
� erf[↵(z)]

◆
� 1p

⇡
e�↵2(z)



Y-ratio: executed volumes
As one would like to determine the relation with respect to the volume,!

one can calculate:

hQi = �(uB/uA)(JT )

hV i = �(uB/uA)(JT )

Executed volume:
Market volume:

so that finally

�pt = 2↵(QD/�J)1/2

While the value of Y=2α /(D/β J)1/2 is fixed by the participation ratio 

�(z) =
(trader volume)

(market volume)

=

2�(z)

�(z) + �(z)



Generalizations

Any generalization preserving the 
asymmetric part of the dynamics yields 
the same impact relation.

The variance of the price pt can be!
tuned

4

the mid-price hx⇤
T i to the executed volume Q. Accord-

ing to the financial interpretation suggested above, p > 0
represents the action of an additional agent which for
m 6= 0 is introducing a bias in the volume imbalance.
Hence it is natural to identify such bias as the volume
Q executed by the agent. Its average is equal to hQi =R
dx h(b� a)i = D

R
dt (h@xaix=x⇤,+ + h@xbix=x⇤,�), the

average number of A particles that reached the interface
minus the number of B particles that touched the reac-
tion zone within t = 0 and t = T . Another quantity
of interest is hV i = D

R
dt (h@xaix=x⇤,+ � h@xbix=x⇤,�),

which is equal to the total number of particles that re-
acted within that same time interval. An accurate ap-
proximation of hQi and hV i can be obtained by mapping
Eq. (17) on the original coordinate system, so to integrate
in time the fluxes through the interface. Exploiting again
the properties of the Jacobi theta function of the third
kind, one finds that

hQi = �(uB/uA)(JT ) (20)

hV i = �(uB/uA)(JT ) , (21)

where the functions �(z) and �(z) are given by

�(z) =
1

2z

⇥
(z2 � 1)� erf[↵(z)](z � 1)2

⇤
(22)

�(z) =
1

2z

⇥
(z + 1)2 � erf[↵(z)](z2 � 1)

⇤
. (23)

Eq. (20) leads to an approximate estimate of the impact
of the type I = 2↵(QD/�J)1/2, which is in very good
agreement with the simulation results shown in the inset
of Fig. 1. Eq. (23) can be used to characterize the im-
balance parameter z = uB/uA as a function of the local
participation rate of the additional agent � = 2Q/(Q+V )
during the trade, whose average is equal in mean-field ap-
proximation to

h�(z)i = 2�(z)

�(z) + �(z)
. (24)

Eqs. (22) and (23) can also be used to identify the Y
term appearing in Eq. (1) with the combination Y (z) =
↵(z)��1/2(z). For small � this is approximately equal to
Y ⇡ (�/4⇡)1/2, whereas empirical observations suggest
that Y is roughly independent of �.

All the above results hold in an extremely broad con-
text: (i) if drifts term of the type µh@xai, µh@xbi, or if
decay terms �⌫hai,�⌫hbi are added to Eq. (5), then an
additional timescale will appear in the model. In this
case Eqs. (18), (22) and (23) will still provide a correct
description of the system in regime of small times. Sec-
ond, (ii) when changing the reaction term �uA/B a b to
any other symmetric combination of a and b, the equa-
tion for  will be unaltered. This implies the very same
equation for x⇤

t , as in the regime of infinite � the zeroes of
' and  will still coincide. Hence, by appropriately tun-
ing the reaction term (see Fig. 2) it is possible to change
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FIG. 2: Fluctuations in the interface position for a modified
model in which the terms uA and uB are random variables. In
particular we change Eq. (2) by choosing with probability 1�p

the sign of the reaction (A+B ! either A or B) according to
a zero-mean, long range correlated process with tail exponent
�. We find that the di↵usion properties of the model change
even though the impact properties are una↵ected. We plot
the variance of the interface position for di↵erent values of �
for the set of parameters L = 400, J = D = 1, � = 1000 and
p = m = 0.

the di↵usion properties of the system all the way from
log t to t1/2 without a↵ecting the square-root impact law,
Eq. (18).

In this paper, we have provided an analytically
tractable implementation of the type of system proposed
in [4]: in our model market clearing indeed induces a
locally linear (V-shaped) liquidity profile close to the
traded price, which in turn induces a square root impact
shape, as suggested by the mean-field argument in [4].
However, it is highly non-trivial that such a mean-field
argument gives the correct answer since the fluctuations
in the interface position are in fact found to be much
larger than the impact itself. It is therefore very impor-
tant to exhibit a model where the “square-root” impact
can be established analytically (rather than numerically,
as in previous papers [4, 5]). Even though the exact pre-
dictions of our stylized model might depend on the actual
choice of the reaction parameters, our results suggest that
in a one-dimensional system of annihilating particles, a
concave dependence of the interface position on the flux
imbalance should be regarded as the rule, rather than

T

hmtmt+⌧ i ⇠ ⌧��

h�pti2

Diffusion constant by varying the order persistenceso to enforce consistency with!
empirical data



ε-intelligence model
Different type of models sharing the same ingredients (dimensionality!
and vanishing liquidity at the mid-price) yield qualitatively similar results

Gain:
Lose:

Closer to empirical data (faithfully describes market, limits!
and cancellations)

Analytical tractability

[Mastromatteo, I., et al. (2014) Physical Review E, 89(4), 042805.!
Tóth, B., et al. (2011). Physical Review X, 1(2), 021006]

This are the empirically 
grounded models!
which inspired the 
stylized one which has!
been illustrated.
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FIG. 6. (Top) Temporary impact for the execution of a metaorder in the case � = 0.5, ⇣0 = ⇣ = 0.95, for the set of parameters
µ = 0.1 s�1, �w = 5 ⇥ 10�3 s�1, ⌫ = 10�7 s�1. The right plot shows the fitted exponent for the impact function under this
particular execution schedule (solid line), compared with the ones corresponding to di↵erent execution protocols (dashed lines).
Note that except for unit execution where concavity is weaker, the value of the impact exponent � is compatible with empirical
data. (Bottom) Temporary impact for the modified model in which the  parameter controls the order consumption mechanism.
We considered the case  0 =  = 0.75 and � = 0.4 for which the model is approximately di↵usive. The other parameters are
set to µ = 0.1 s�1, �w = 5 ⇥ 10�3 s�1, ⌫ = 10�7 s�1. The right plot shows the fitted impact exponent. The results that we
obtain for this model are very close to the ones reported above for the "-intelligence model. The soft dashed lines in the top
and bottom left panel are plotted for reference, and indicate the scalings I / Q

1/2 and I / Q.

impact is described by a concave law, its permanent com-
ponent is linear, and hence dominates the total impact
for long enough trades. This behavior can be understood
on the basis of the arguments that will be presented in
section V, where we show how the linear component of
the impact is initially hidden by a concave transient ef-
fect due to the partial adaptation of the order book to
the modified order flux. Overall, we confirm again the
results presented in [2], see their Fig. 5 (right). We do
also confirm that the initial part of the decay, just after
the meta-order is completed, is very steep, of the type:
IT+t � IT / �t✓, with ✓ < 1. Fig. 7 shows four typical
decay curves for market impact for di↵erent participation
rates.

B. Plasticity of the order book

The shape of the latent order book plays an important
role in determining the properties of the model, namely
the di↵usion behaviour and the price impact function dis-
cussed above. This will be substantiated more precisely
in the last section of this paper (see Eqs. (18) and (23)).
The stationary shape of the latent order book when no
meta-order is present is represented in Fig. 8, for a choice
of parameters such that the price dynamics is approxi-
mately di↵usive (� = 0.5 and ⇣ = 0.95, while µ = 0.1 s�1,
�w = 5 ⇥ 10�3 s�1, ⌫ = 10�4 s�1). More generally, we
always find that the average book volume is an increasing
function of the price level p� p

0

(where p
0

is the current
price). The book profile ⇢(p) increases from ⇢(p

0

) = 0
at the mid-price, to the asymptotic value ⇢(±1) = �/⌫.
The size of the “liquidity hole” around p

0

is determined



Conclusions
❖ Anomalous market impact arises from the anomalous 

properties of a market as an information processing 
system!

❖ Empirically, impact is universal and concave!

❖ A simple model reproducing the minimal ingredients 
(dimensionality and locally linear book) is able to 
reproduce a square root impact !

❖ Generalizations of these ideas still yield concave impact



Thank you
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