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Abstract

A constant rebalanced portfolio is an investment strategy that keeps the same distribution
of wealth among a set of stocks from day to day. There has been much work on Cover’s
Universal algorithm, which is competitive with the best constant rebalanced portfolio de-
termined in hindsight (Cover, 1991, Helmbold et al, 1998, Blum and Kalai, 1999, Foster
and Vohra, 1999, Vovk, 1998, Cover and Ordentlich, 1996a, Cover, 1996c). While this al-
gorithm has good performance guarantees, all known implementations are exponential in
the number of stocks, restricting the number of stocks used in experiments (Helmbold et
al, 1998, Cover and Ordentlich, 1996a, Ordentlich and Cover, 1996b, Cover, 1996c, Blum
and Kalai, 1999). We present an efficient implementation of the Universal algorithm that is
based on non-uniform random walks that are rapidly mixing (Applegate and Kannan, 1991,
Lovasz and Simonovits, 1992, Frieze and Kannan, 1999). This same implementation also
works for non-financial applications of the Universal algorithm, such as data compression
(Cover, 1996c) and language modeling (Chen et al, 1999).

1. Introduction

A constant rebalanced portfolio (CRP) is an investment strategy which keeps the same
distribution of wealth among a set of stocks from day to day. That is, the proportion of total
wealth in a given stock is the same at the beginning of each day. Recently there has been
work on on-line investment strategies which are competitive with the best CRP determined
in hindsight (Cover, 1991, Helmbold et al, 1998, Blum and Kalai, 1999, Foster and Vohra,
1999, Vovk, 1998, Cover and Ordentlich, 1996a, Ordentlich and Cover, 1996b, Cover, 1996c).
Specifically, the daily performance of these algorithms on a market approaches that of the
best CRP for that market, chosen in hindsight, as the lengths of these markets increase
without bound.

As an example of a useful CRP, consider the following market with just two stocks
(Helmbold et al, 1998, Ordentlich and Cover, 1996b). The price of one stock remains
constant, and the price of the other stock alternately halves and doubles. Investing in a
single stock will not increase the wealth by more than a factor of two. However, a (1

2 , 1
2)

CRP will increase its wealth exponentially. At the end of each day it trades stock so that it
has an equal worth in each stock. On alternate days the total value will change by a factor
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of 1
2(1)+ 1

2(1
2) = 3

4 and 1
2(1)+ 1

2(2) = 3
2 , thus increasing total worth by a factor of 9/8 every

two days.
The main contribution of this paper is an efficient implementation of Cover’s UNIVER-

SAL algorithm for portfolios (Cover, 1991). It has been shown (Cover and Ordentlich,
1996a) that, in a market with n stocks, over t days,

performance of UNIVERSAL
performance of best CRP

≥ 1
(t + 1)n−1

.

By performance, we mean the return per dollar on an investment. The above ratio is a
decreasing function of t. However, the average per-day ratio, (1/(t + 1)n−1)1/t, increases to
1 as t increases without bound. For example, if the best CRP makes 1.5 times as much as we
do each day over a period of 22 years, it is only making a factor of 1.51/22 ≈ 1.02 as much as
we do per year. In this paper, we do not consider the Dirichlet(1/2, . . . , 1/2) UNIVERSAL
(Cover and Ordentlich, 1996a) which has the better guaranteed ratio of 2

√
1/(t + 1)n−1.

All previous implementations of Cover’s algorithm are exponential in the number of
stocks with worst-case run times of Θ(tn−1). In some sense, Cover’s algorithm divides its
money evenly among all CRPs. Unfortunately, for some market sequences, the number of
CRPs which perform near optimally can be as small as 1/Θ(tn−1). In these cases, Blum
and Kalai’s randomized approximation based on sampling from the uniform distribution,
requires Θ(tn−1) samples to perform nearly as well as UNIVERSAL, with high probability.

We show that by sampling portfolios from a non-uniform distribution, only polynomi-
ally many samples are required to have a high probability of performing nearly as well as
UNIVERSAL. This non-uniform sampling can be achieved by random walks on the simplex
of portfolios.

2. Notation and Definitions

A price relative for a given stock is the nonnegative ratio of closing price to opening price
during a given day. If the market has n stocks and trading takes place during T days, then
the market’s performance can be expressed by T price relative vectors, (~x1, ~x2, . . . , ~xT ), ~xi ∈
<n

+, where xj
i is the nonnegative price relative of the jth stock for the ith day.

A portfolio is simply a distribution of wealth among the stocks. As such, it is really an
n − 1 dimensional quantity where the last component can be determined from the other
n− 1. We view the set of portfolios as the (n− 1)-dimensional simplex,

∆ = {~b ∈ <n−1|
n−1∑
j=1

bj ≤ 1 ∧ bj ≥ 0}.

We also consider a portfolio also as an n-dimensional vector, where

bn = 1−
n−1∑

1

bj .

This abuse of notation allows us to view the portfolio as an n component vector and the
set of portfolios as an (n − 1)-dimensional set, wherever convenient. This is especially
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valuable, since the random walk result we will be using (Frieze and Kannan, 1999) is for a
full-dimensional set such as ∆.

The CRP investment strategy for a particular portfolio ~b, CRP~b
, redistributes its wealth

at the end of each day so that the proportion of money in the jth stock is bj . An investment
using a portfolio ~b during a day with price relatives ~x increases one’s wealth by a factor of
~b · ~x =

∑n
1 bjxj . Therefore, over t days, the wealth achieved by CRP~b

is,

Pt(~b) =
t∏

i=1

~b · ~xi. (1)

Finally, we let µ be the uniform distribution on ∆.

3. Universal Portfolios

Before we define the universal portfolio, consider the problem of being competitive with
respect to the best single stock. In other words, you want to maximize the worst-case ratio
of your wealth to that of the best stock. In this case, a good strategy is simply to divide
your money among the n stocks and let it sit. You will always have at least 1

n times as
much money as the best stock. Note that this deterministic strategy achieves the expected
wealth of the randomized strategy that just places all its money in a random stock.

Now consider the problem of competing with the best CRP. Cover’s universal portfolio
algorithm is similar to the above. It splits its money evenly among all CRPs and lets it sit
in these CRP strategies. (It does not transfer money between the strategies.) Likewise, it
always achieves the expected wealth of the randomized strategy which invests all its money
in a random CRP. In particular, the bookkeeping works as follows:

Definition 1 (UNIVERSAL) The universal portfolio algorithm at time t has portfolio
~ut, which for stock j is, on the first day uj

0 = 1/n, and on the end of the tth day,

uj
t =

∫
∆ vjPt(~v)dµ(~v)∫
∆ Pt(~v)dµ(~v)

, i = 1, 2, . . .

(Recall that µ is the uniform distribution over the (n−1)-dimensional simplex of portfolios,
∆.)

This is the form in which Cover defines the algorithm. He also notes (Cover and Or-
dentlich, 1996a) that UNIVERSAL achieves the average performance of all CRPs, i.e.,

Performance of UNIVERSAL =
T∏

t=1

~ut−1 · ~xt

=
∫

∆
PT (~v)dµ(~v)

4. Efficient Approximation

Unfortunately, the straightforward method of evaluating the integral in the definition of
UNIVERSAL takes time exponential in the number of stocks. Since UNIVERSAL is really
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just an average of CRP’s, it is natural to approximate the portfolio by sampling (Blum
and Kalai, 1999). Simply imagine dividing the wealth into many random portfolios and see
what distribution of wealth one would have. In particular, you would just take a weighted
average of the portfolios you’ve chosen, with weights proportional to their performance.
The problem is that there may be a very small set of portfolios that did well while most
portfolios did very poorly. In order to get a good sample, one would need to get a draw
from this set, which can require Ω(tn−1) samples in the worst case.

The key to our algorithm is sampling according to a biased distribution. Instead of
sampling according to µ, the uniform distribution on ∆, we sample according to ρt, which
weights portfolios in proportion to their performance, i.e.,

dρt(~b) =
Pt(~b)dµ(~b)∫

∆ Pt(~v)dµ(~v)

UNIVERSAL can be thought of as computing each component of the portfolio by taking
the expectation of draws from ρt, i.e., uj

t =
∫
∆ vjdρt(~v) = E~v∈ρt

[
vj

]
.

We use existing random walk theorems to show one can sample from ρt in time polyno-
mial in t and n. The current best provable bounds are for sampling on a discretization of
the simplex, although many other random walks might also work. For the purpose of this
random walk, we will need the following modification Qt of the wealth function Pt:

Qt(~b) = Pt(~b)min
{

exp
(

bn − 2δ0

nδ

)
, 1

}
. (2)

R-UNIVERSAL(δ0, δ, m, S)
// δ0 = minimum coordinate
// δ = spacing of grid
// m = number of samples
// S = number of steps in random walk

On each day, we take the average of m samples obtained as follows:

1. Start each one at the point ~r = ( 1
n , 1

n , . . . , 1
n).

2. From each of them, take S steps of the following random walk:

(a) Choose 1 ≤ j ≤ n− 1 at random
// We’ll try to increment or decrement rj with equal probability.

(b) Choose X ∈ {−1, +1} randomly. If δ0 ≤ ri + Xδ and δ0 ≤ rn −Xδ,

i. Let x := Qt(r1, r2, . . . , rn).
ii. Let y := Qt(r1, r2, . . . , rj + Xδ, . . . , rn−1, rn −Xδ).
iii. With probability Min(1, x/y),

• rj := rj + Xδ

• rn := rn −Xδ

The function Qt is a slightly “damped” version of Pt: it is equal to Pt on a slightly
smaller simplex, namely the set {~b ∈ ∆|bn ≥ 2δ0} and falls off rapidly outside this set. We
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introduce it for technical reasons; it is quite possible that the algorithm below works with
Pt in place of Qt (see Section 7). The parameter δ0 will be specified in Section 5.3. We also
only sample grid points whose coordinates are at least δ0 each (again for technical reasons).
We refer to the algorithm as R-UNIVERSAL because it’s a randomized approximation.

Also Qt can be evaluated in time O(nt). Thus the runtime of the algorithm on day
t is O(mSnt). In the analysis section, we will show that m and S can be chosen to be
polynomial in n and t.

5. Analysis

Here we show that, with non-uniform sampling, the algorithm approximates the portfolio
efficiently. With high probability (1−η), we can achieve performance of at least (1−ε) times
the performance of UNIVERSAL, with S (number of steps) polynomial in 1/ε, log(1/η), n
(the number of stocks), and T (the number of days). We will show the following:

Theorem 2 There is a constant A such that, for all ε, η, δ, and δ0 with

δ0 ≤ ε

8nT (n + T )2
, δ log

1
δ

=
εδ0

A(n + T )2
,

m ≥ 64T 2(n+T ) ln(nT/η)/ε2 samples on each day, and S ≥ An
δ2 log n+T

εδ steps of the random
walk per sample, R-UNIVERSAL performs at least (1 − ε) times as well as UNIVERSAL
with probability at least 1− η.

As will become clear in the next two sections, the random walk, which is the basis of
our sampling algorithm, tends to a stationary distribution proportional to the function Qt.
The key observation that leads to a polynomial-time implementation is the fact that Qt is
a log-concave function (as is Pt). Such functions can be sampled in polynomial-time, albeit
with several technical restrictions. It is the latter that force us to introduce the parameter
δ0 and also to use Qt instead of just Pt. Using Frieze and Kannan’s theorem (our Theorem
3), we show that the random walk quickly converges to its stationary distribution (Theorem
11) in Section 6.

It then remains to show that the approximation provided by the random walk is sufficient
for the algorithm. This is done in Section 5.3. The above theorem follows from Theorems
4 and 11. Let’s begin by describing what has been analyzed.

5.1 Analysis Overview

To compute ~ut, We would like to compute the expectation of random points drawn according
to the distribution Pt. As we will show, Pt is a log-concave function. This suggests using
existing technology based on random walks for sampling from log-concave distributions
(Frieze and Kannan, 1999) over an arbitrary convex set K. However, their algorithms work
by discretizing space into cubes and sampling from cube centers. One important parameter
of their algorithm is the total probability of cubes that are not completely contained in K.
In our application, the shape of our set is a simplex, so it is impossible to discretize it in
such a way that there are few such border cubes. However, we will show that the mean of
Pt is not near the border of the simplex. Then, we use a damped function Qt to reduce the
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probability of border cubes, in such a way that the mean of Qt is near to the mean of Pt

and Qt is log-concave while sufficiently small near the borders of the simplex.

5.2 Summary of Frieze-Kannan ’97 (Frieze and Kannan, 1999)

Suppose you have some nonnegative log-concave function f on <n, meaning simply that
log f is a concave function. The goal is to sample from f restricted to some convex set
K ⊂ <n. They first divide the space into cubes of side length δ. The spacing δ has to be

Figure 1: A convex set K and the set of all cubes that intersect K. The centers of these
cubes form the set C, while C1/2 is the set of centers of the cubes that have more
than half of their volume in the set. These cubes are the unshaded cubes.

small enough so that the function f varies by a factor of at most a constant factor within a
cube. Then they perform all future operations on the centers of the cubes which intersect
K, a set called C, as shown in the figure. Let C(~x) be the cube centered at ~x ∈ C of width
δ.

Consider the following walk.

• Start at some arbitrary cube center ~x ∈ C.

• Choose a random coordinate and add or subtract δ in that coordinate with equal
probability, to get another cube center ~y.

• If ~y ∈ C (haven’t stepped out of the set), then move to ~y with probability min(1, f(~y)/f(~x)).

They first observe that the stationary distribution of this walk is

π(~x) =
f(~x)∑

~x′∈C f(~x′)
∀~x ∈ C

This follows from the fact that the walk is time reversible. That is, when in the above
distribution, on a single step, the probability of being at ~x and moving to ~y is equal to the
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probability of being at ~y and going to ~x, i.e.,

f(~x)∑
~x′∈C f(~x′)

1
2n

min
(

1,
f(~y)
f(~x)

)
=

1∑
~x′∈C f(~x′)

1
2n

min(f(~y), f(~x))

=
f(~y)∑

~x′∈C f(~x′)
1
2n

min
(

1,
f(~x)
f(~y)

)
.

Now, there are several parameters for the analysis of this walk. The diameter of K is
d. The dimensionality is n. The stationary distribution is π, and π∗ = minπ. Let ps be
the distribution obtained after s steps of the walk. For any 0 ≤ θ ≤ 1, let Cθ = {~x ∈
C|vol(C(~x) ∩K) ≥ θδn} and πθ =

∑
~x/∈Cθ

π(~x). Finally, let M = max~x∈C
p0(~x)
π(~x) log p0(~x)

π(~x) .

Theorem 3 (Theorem 1 of Frieze and Kannan, 1999) Assume d ≥ δn1/2. Then there is
an absolute constant γ > 0 such that,

2

(∑
~x∈C

|ps(~x)− π(~x)|
)2

≤ e−
γsδ2

nd2 log
(

1
π∗

)
+

Mπ1/2nd2

γδ2
.

In our problem, the dimensionality is actually n − 1 if there are n stocks, but this can be
absorbed by γ. For us M can be very large, but we’ll choose parameters that make π1/2

small enough to compensate.

5.3 Approximation Suffices

To apply Theorem 3, we first need to ensure that π varies by at most a constant factor
within the δ-cube around any grid point. This is the technical reason why we use a slightly
smaller simplex ∆′. In the full simplex ∆, the function Pt (and hence ρt) can vary a lot
within a small distance. In this section, we show that this approximation is good enough
for the algorithm.

The random walk actually samples from the following simplex:

∆′ = {~v ∈ ∆|vj ≥ δ0 for j = 1, 2, . . . , n}.
Let C ′ denote the set of cube centers contained in ∆′. The stationary distribution of the
walk is proportional to Qt; let it be called πt. Note that for any ~x ∈ C ′,

πt(~x) =
Qt(~x)∑

~y∈C′ Qt(~y)
.

Let the actual distribution obtained on them (after some number of steps of the random
walk) be π̃t. The main theorem of this section shows that this suffices as long as π̃t is
sufficiently close to πt.

Theorem 4 Suppose that δ0 ≤ ε
8nT (n+T )2

, δ ≤ εδ0
8T (n+T ) , and we can sample grid points in

the simplex ∆′ according to a distribution π̃t where∑
x∈C′

|π̃t(x)− πt(x)| ≤ ε

4T (n + T )
.

Then with m ≥ 64T 2(n + T ) ln(nT/η)/ε2, the algorithm R-UNIVERSAL performs at least
(1− ε) as well as UNIVERSAL with probability at least 1− η.
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To prove the theorem, we will need several lemmas. First, we observe that subsets of
the simplex of sufficient size will have large volume under ρt.

Lemma 5 Let β be a subset of the simplex, shrunken by a factor of 1 − z for 0 ≤ z ≤ 1,
i.e., for some ~w ∈ ∆,

β = z ~w + (1− z)∆ = {~v ∈ ∆|~v = z ~w + (1− z)~v′, ~v′ ∈ ∆}. (3)

The probability that a random portfolio selected in proportion to its performance is in β is
at least,

ρt(β) ≥ (1− z)t+n−1

Proof. Geometrically, β is also a simplex, translated by ~w and shrunken by a factor of
(1− z). Since the simplex has dimension n− 1, this set has volume at least,

µ(β) = (1− z)n−1,

under the uniform measure µ on the simplex.
As indicated in (3), there is a simple bijection between ~v ∈ β and ~v′ ∈ ∆. Furthermore,

on any day the performance of ~v must be at least (1− z) times as good as the performance
of the corresponding ~v′ since a (1 − z) fraction of its holdings are distributed exactly like
~v′. Over t days, we see that

Pt(~v) ≥ (1− z)tPt(~v′)

Consequently, the performance of a uniformly random portfolio in β is at least (1− z)t as
good as a uniformly random portfolio in ∆. Since a (1− z)n−1 fraction of the portfolios are
in β,

ρt(β) ≥ (1− z)t(1− z)n−1 = (1− z)t+n−1

¤
A corollary, which we will use later is,

Corollary 6 For all j ≤ n and t,

uj
t ≥

1
n + t

Proof. WLOG j = 1. Using the lemma, it is easy to see that u1
t ≥ 1/(e(n + t)). This is

because u1
t = Eρt [v1] and the set of portfolios with v1 ≥ 1/(n + t) has volume at least 1/e ,

i.e.,

ρt

(
1

n + t
(1, 0, 0, . . . , 0) +

(
1− 1

n + t

)
∆

)
≥

(
1− 1

n + t

)t+n−1

≥ 1
e

To remove the 1/e factor, note that the expectation of a random variable 0 ≤ X ≤ 1 is
E[X] =

∫ 1
0 Prob(X ≥ z)dz.

u1
t = E~v∈ρt [v

1]

=
∫ 1

0
ρt({~v ∈ ∆|v1 ≥ z})dz
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=
∫ 1

0
ρt({~v ∈ ∆|~v = z(1, 0, 0, . . . , 0) + (1− z)~v′, ~v′ ∈ ∆})dz

≥
∫ 1

0
(1− z)t+n−1dz

=
1

n + t

¤

Lemma 7 For any grid point ~z in C ′, and any point ~v ∈ C(z), we have

(1− δ/δ0)T Pt(~z) ≤ Pt(~v) ≤ (1 + δ/δ0)T Pt(~z).

Proof. Since ~v ∈ C(z) and ~z ∈ ∆′,

vj ≤ zj + δ

≤ (1 + δ/δ0)zj

(The above holds for δ/2 as well.) Therefore, over t days,

Pt(~v) =
t∏

i=1

~v · ~xi

≤
t∏

i=1

(1 + δ/δ0)~z · ~xi

= (1 + δ/δ0)tPt(~z)

The RHS follows from t ≤ T , and the other inequality is similar. ¤
The main lemma of this section is the following. It says that the average over ∆′ is close

to the one computed by UNIVERSAL over ∆.

Lemma 8 Let δ0 ≤ ε
8nT (n+T )2

, δ ≤ εδ0
8T (n+T ) . Then for each stock j on any day t,

Eπt [v
j ] ≥

(
1− ε

2T

)
uj

t .

Proof. The universal portfolio is

ut
j =

∫
∆

vjdρt(~v)

=

∫
∆ Pt(~v)vjdµ(~v)∫
∆ Pt(~v)dµ(~v)

(4)

We are sampling the function Qt over cube centers contained in ∆′ rather than the set ∆.
What we have is,

Eπt [v
j ] =

∑
~v∈∆′

πt(~v)vj

=
∑

~v∈C′ Qt(~v)vj∑
~v∈C′ Qt(~v)

. (5)
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So, in order to prove the lemma, we have to show that in (5), the numerator is large enough
and the denominator is small enough compared to the quantities in (4).

Now, by Lemma 7, we can say that the integral over a cube is bounded by its value in
the center ~z, i.e.,

(1− δ/δ0)T Pt(~z) ≤ 1
δn−1

∫
~v∈C(~z)

Pt(~v)dµ(~v), and

(1 + δ/δ0)T+1Pt(~z)zj ≥ 1
δn−1

∫
~v∈C(~z)

Pt(~v)vjdµ(~v)

Also notice that the union of all cubes with centers in ∆′ is contained in ∆. To see this,
take any grid point ~z ∈ C ′ and ~v ∈ C(~z). Clearly the first n− 1 coordinates of ~v are all at
least δ0 − δ/2 > 0 and the nth coordinate is,

vn = zn +
n−1∑

1

zj − vj

≥ δ0 − nδ/2
≥ 0.

So ~v ∈ ∆. Since Qt(~v) ≤ Pt(~v) for all points, the denominator in (5) is at most,

∑
~v∈C′

Qt(~v) ≤ 1
(1− δ/δ0)T

1
δn−1

∫
~v∈∆

Pt(~v)dµ(~v)

In order to lower bound the numerator of (5), we consider the set ∆′′ which is entirely
contained in the union of cubes with centers in ∆′,

∆′′ = {~v ∈ ∆′|vn ≥ 2δ0}.

To see that ∆′′ is contained in this set, take any point ~v ∈ ∆′′ and let z be the center of the
cube that contains it. Since vj ≥ δ0 for 1 ≤ j ≤ n− 1, we also have1 zj ≥ δ0 + δ/2. Finally,
vn ≥ 2δ0 so

zn = vn +
n−1∑

1

vj − zj

≥ 2δ0 − nδ/2
≥ δ0.

This shows that ~z ∈ ∆′.
Since ∆′′ is entirely contained in the union of cubes with centers C ′ and Pt(~v) = Qt(~v)

for ~v ∈ ∆′′, ∑
~v∈C′

Qt(~v)vj ≥ 1
(1 + δ/δ0)T

1
δn−1

∫
~z∈∆′′

Pt(~v)vjdµ(~v)

1. We have chosen δ0 and placed the grid so that (δ0, δ0, . . . , δ0) ∈ <n−1 is a corner of a cube.
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Putting these together with (5), we get

Eπt [v
j ] =

∑
~v∈C′ Qt(~v)vj∑
~v∈C′ Qt(~v)

≥
(

1− δ/δ0

1 + δ/δ0

)T+1
∫
~v∈∆′′ Pt(~v)vjdµ(~v)∫

~v∈∆ Pt(~v)dµ(~v)

≥ (1− 2δ/δ0)T+1

∫
~v∈∆′′

vjdρt(~v)

≥ (1− 2(T + 1)δ/δ0)
∫

~v∈∆′′
vjdρt(~v)

We need to compare this to UNIVERSAL, which is an integral over all of ∆. Using Lemma
5 on the set,

β = (δ0, δ0, . . . , δ0, 2δ0) + (1− (n + 1)δ0)∆,

we get,

ρt(∆′′) ≥ (1− (n + 1)δ0)T+n−1

≥ 1− (T + n− 1)(n + 1)δ0

≥ 1− ε

4T (n + T )

Hence, ∫
∆′′

vjdρt(~v) =
∫

∆
vjdρt(~v)−

∫
∆\∆′′

vjdρt(~v)

≥ uj
t − ρt(∆ \∆′′)

≥ uj
t −

ε

4T (n + T )
≥ (1− ε

4T
)uj

t .

This finally implies that

Eπt [v
j ] ≥ (1− 2(T + 1)δ/δ0)(1− ε

4T
)uj

t

≥ (1− 2(T + 1)
ε

8T (n + T )
)(1− ε

4T
)uj

t

≥ (1− ε

4T
)(1− ε

4T
)uj

t

≥ (1− ε

2T
)uj

t .

¤
Proof (of Theorem 4).

We will first show that on each day, the expected value of each stock j as computed by
the algorithm is close to uj

t .

|Eπ̃t [v
j ]− Eπt [v

j ]| ≤
∑
v∈C′

|π̃t(v)− πt(v)|vj
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≤
∑
v∈C′

|π̃t(v)− πt(v)|

≤ ε

4T (n + T )

≤ ε

4T
uj

t .

Here we have used the assumption of the theorem that π̃t is close to πt and then Corollary
6 which states that each uj

t is at least 1/(n + t).
Next, using Lemma 8, we have that

Eπ̃t [v
j ] ≥ Eπt [v

j ]− ε

4T
uj

t

≥ (1− ε

2T
)uj

t −
ε

4T
uj

t

≥ (1− 3ε

4T
)uj

t .

Finally, we apply Chernoff bounds to show that with probability 1− η, the value aj
t of

each stock j on each day t satisfies

aj
t ≥ (1− ε

T
)uj

t .

Then, on any individual day, the performance of the ~at is at least (1− ε/T ) times as good
as the performance of ~ut. Thus, over T days, our approximation’s performance is at least
(1− ε/T )T ≥ 1− ε times the performance of UNIVERSAL.

The multiplicative Chernoff bound for approximating a random variable 0 ≤ X ≤ 1,
with mean X̄, by the sum S of m independent draws is,

Pr
[
S < (1− α)X̄m

] ≤ e−mX̄α2/2.

In our case, we are using m samples for each stock. In our case X̄ ≥ 1/2(n + T ) and we
want α = ε/4T . Since this must hold for nT different aj

t ’s, it suffices for,

e−mε2/(64T 2(n+T )) ≤ η

nT
,

which holds for the number of samples m chosen in the theorem. ¤

6. Time Per Sample

In this section we show that the random walk quickly produces samples from a distribution
π̃(x) satisfying the requirements of Theorem 4. The random walk has stationary distribution
proportional to Qt. We begin with the observation that Qt is log-concave.

Lemma 9 The function Qt(~b) is log-concave for nonnegative vectors.
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Proof. First, we prove that Pt is log-concave. This follows easily from the concavity of
the log function.

log Pt

(
~a +~b

2

)
= log

t∏
i=1

(
~a +~b

2

)
· ~xi

=
t∑

i=1

log
~a +~b

2
· ~xi

=
t∑

i=1

log
~a · ~xi +~b · ~xi

2

≥
t∑

i=1

log~a · ~xi + log~b · ~xi

2

=
log Pt(~a) + log Pt(~b)

2

Next we observe that exp( bn−2δ0
nδ ) is a log-concave function (its log is linear in bn = 1− b1−

· · · bn−1); finally we recall that the minimum of two log-concave functions is log-concave,
and so is their product. ¤

The main issue is how fast the random walk approaches its stationary distribution,
πt, which is proportional to Qt(x). To analyze this we will use the theorem of Frieze and
Kannan. To apply their theorem, we first need to ensure that πt varies by at most a constant
factor within the δ-cube around any grid point. In the full simplex ∆, the function Pt (and
hence ρt) can vary a lot within a small distance.2 With the smaller simplex however, the
variation can be bounded using Lemma 7.

Corollary 10 With δ ≤ δ0
T , for any grid point ~z ∈ C ′ and any ~v ∈ C(~z),

1
5
Qt(~z) ≤ Qt(~v) ≤ 5Qt(~z).

Proof. ¿From Lemma 7,

(1− 1/T )T Pt(~z) ≤ Pt(~v) ≤ (1 + 1/T )T Pt(~z).

This gives bounds of 1/e and e on the LHS and RHS, respectively. Also, we can bound the
maximum difference,

|zn − vn| =
∣∣∣∣∣
n−1∑

1

vj − zj

∣∣∣∣∣ < δn/2

Therefore Qt(~w)/Pt(~w) = min(1, exp(wn−2δ0
nδ )) differs by at most a factor of e1/2 at ~z and

~v. Finally, e3/2 < 5. ¤
2. For example, one CRP may have 0 performance Pt while the center of its cube may have nonzero

performance
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Consider any particular day t, and let the distribution attained by the random walk
after s steps be ps, i.e. ps(x) is the probability that the walk is at the grid point x after
s steps. The next theorem bounds the progress of the random walk towards its stationary
distribution.

Theorem 11 There is a constant A such that with δ0 < 1
(n+T )2

, δ log 1
δ = εδ0

A(n+T )2
, and

any ε > 0, after s ≥ An
δ2 log n+T

εδ steps,

∑
~x∈C′

|ps(~x)− πt(~x)| ≤ ε

4T (n + T )
.

Proof. The diameter of our set is
√

2. Applying the theorem of Frieze and Kannan we
get that

2

( ∑
~x∈C′

|ps(~x)− πt(~x)|
)2

≤ e−
sγδ2

2n log
(

1
π∗

)
+

2Mπ1/2n

γδ2
(6)

where γ > 0 is a constant, π∗ is minz∈C′ π(z), and

π 1
2

=
∑

x∈C′: vol(C(x)∩∆′)
vol(C(x))

≤ 1
2

π(x).

In words, π1/2 is the probability of the grid points whose cubes intersect the simplex in less
than 1

2 fraction of their volume. The parameter M is max~z∈C′ p0(~z)
πt(~z) log p0(~z)

πt(~z) .
There are two terms in (6). If the set K we’re sampling from were a perfect cube, then

we would have no cubes that were only partly in K, and π1/2 in the second term would be
0. While it would probably be possible to reprove their theorem with simplexes rather than
cubes, instead we chose to modify the walk to make π1/2 very small. As we will show, the

damping term in Qt does exactly that, reducing border cubes by a factor of e−
δ0
nδ . With

the value of δ0 we have chosen,

e−
δ0
nδ = δ

A(n+T )2

nε , (7)

a quantity that is smaller than basically any other quantity we are dealing with, for suffi-
ciently large A.

First we bound π∗. For any ~v, ~w ∈ ∆, we see that vj ≥ δ0w
j , for 1 ≤ j ≤ n, so that

each day CRP~v does at least δ0 as well as CRP~w. This implies that

Pt(~v) ≥ δT
0 Pt(~w)

Qt(~v) ≥ δT
0 e−

δ0
nδ Qt(~w)

πt(~v) =
Qt(~v)∑

~w∈C′ Qt(~w)

≥ δT
0 e−

δ0
nδ /(# cubes)
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Because δ−n is an upper bound on the number of cubes (they all fit inside the unit cube)
and (7),

1
π∗

≤ δ−nδ−T
0 e

δ0
nδ

≤ δ−2
A(n+T )2

nε (8)

Next we bound M . Let ~o = (1/n, 1/n, . . . , 1/n). Since we are starting with p0(~o) = 1,
we have M = log(1/πt(~o))/πt(~o). Following logic similar to above, if ~v is any portfolio, then
each day CRP~o does at least 1/n as well as CRP~v. So, over t days,

Pt(~o) ≥ n−T Pt(~v)
πt(~o) ≥ n−T /(# cubes)

≥ n−T δn

M ≤ nT δ−n log(nT δ−n)
≤ δ−2n−2T (9)

To bound π 1
2
, we define K to the be the following set:

K = {~y ∈ ∆′|yn ≥ δ0 + (n− 1)δ/2}.
With this definition of K, Frieze and Kannan’s walk becomes exactly the walk in R-
UNIVERSAL. To show this, we must show that the set of centers of cubes that intersect
K is exactly C ′. Recall that (δ0, δ0, . . . , δ0) ∈ <n−1 was chosen as a corner of a cube. First,
suppose ~v ∈ K and ~v ∈ C(~z) for grid point ~z. Now, because of our grid position, zj ≥ δ0 for
j = 1, 2, . . . , n− 1. Further, zn = vn +

∑n−1
1 vj − zj so zn ≥ vn − (n− 1)δ/2, which means

that z ∈ ∆′. Conversely, suppose ~z ∈ C ′, so zj ≥ δ0 + δ/2 for j < n and zn ≥ δ0. The
point ~v = ~z − (δ/2, δ, 2, . . . , δ/2) ∈ <n−1 has vj ≥ δ0 for j < n and vn ≥ δ0 + (n− 1)δ/2, so
~v ∈ C(~z) ∩K. Recall that the vectors here are n− 1 dimensional, and vn is shorthand for
1− v1 − · · · vn−1.

Further, the only grid points whose cubes have less than half their volume inside K are
those points ~z such that ~z ∈ C ′ but ~z /∈ K, i.e., δ0 ≤ zn < δ0 + (n− 1)δ/2. That is because
any cut through the center of a cube divides it into two congruent pieces, so any cut that
does not pass through the center divides it into a larger and smaller piece, with the center
in the larger piece. Let this set of grid points be denoted by F . For any ~z ∈ F ,

Qt(~z) ≤ exp
(−δ0 + nδ/2

nδ

)
Pt(~z)

≤ e−
δ0
nδ e1/2Pt(~z).

Moreover, if δ0 were 1/(n + T ) then at most a 1 − 1/e fraction of Pt would be in ∆′ \∆′′,
by Lemma 5. The δ0 we are using is much smaller,3 so we can easily say,∑

~v∈F

Pt(~v) ≤
∑

~v∈C′′
Pt(~v),

3. This is the only reason we have required δ0 < 1
(n+T )2

, which is probably smaller than necessary at this

point. But the final δ0 will be much smaller anyway.
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and thus, ∑
~v∈F

Qt(~v) ≤ e−
δ0
nδ e1/2

∑
~v∈C′′

Pt(~v).

Since Pt = Qt for ~v ∈ C ′′,

π1/2 ≤ e−
δ0
nδ e1/2

= δ
A(n+t)2

nε e1/2 (10)

Substituting (8), (9), and (10) into (6) and using s ≥ An
δ2 log n+T

εδ ,

2

(∑
~x∈C

|ps(~x)− πt(~x)|
)2

≤
(

εδ

n + T

)Aγ/2 2A(n + T )2

nε
log

1
δ

+
2δ−2n−2T δ

A(n+t)2

nε e1/2n

γδ2
.

Since δ1/ε < ε, both terms on the right hand side become smaller than ε/(n + T ) to any
constant power for sufficiently large A. ¤

7. Practical Considerations

In this section, we give some suggestions which may help speed things up in practice.
Our algorithm has an unnatural asymmetry in that we treat coordinate n differently than
the rest. If it were not for the tapering function Qt, then one could pick two arbitrary
coordinates i 6= j, increase vi, and decrease vj . Alternatively, one could do tapering in any
direction. The tapering seems to be an artifact of our analysis and the fact that we are
trying to analyze a walk on a simplex by a grid. This is like fitting a triangular peg into a
square hole. It seems more natural to implement it without any tapering.

Evaluating Pt can be costly for long market sequences. We can save some evaluations
as follows. Imagine that the way we branch in step (iii) is by choosing a random α ∈ [0, 1]
and checking if α < x/y. Now, by various means, one can calculate a lower bound on x/y
for two neighboring portfolios. For small δ, this will be near 1. By doing this, one can then
avoid many evaluations by first choosing α in step (i). Only if α is larger than the lower
bound, then compute x and y. Otherwise we know α < x/y without computing x and y.
This saves many evaluations of Pt. Another natural idea is to vary the step size from 1 to
larger numbers or use random step sizes. Theoretically, speaking, it is easy to show that
the stationary distribution remains the same with varying step sizes, but we do not know
how to show that the walk will converge faster.

We also believe that the algorithm may be sped up by starting near the maximum of
the Pt function rather than at the center. Although we have no theoretical guarantee of
this, the idea behind the random walk is to spend most of its time in places with high Pt.
Thus, it could be helpful to start there, and there are known simple, practical techniques
such as the EM algorithm for efficiently finding the best portfolio in hindsight (Helmbold
et al, 1997).

The naive sampling approach described earlier, i.e. pick random portfolios and average
them weighted by their performance, has been shown to require a number of samples that
is on the order of the ratio of the performance of the average CRP to the best CRP. For
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many markets or for short periods of time, this ratio may be small. Thus, for calm markets
with small changes, random walks are probably not necessary. In any case, it would be
interesting to find the situations and improvements to the algorithm which make random
walks do better than the naive sampling approach.

8. Conclusions

We have presented an efficient randomized approximation of the UNIVERSAL algorithm.
With high probability (1−η) it is within (1−ε) times the performance of universal, and runs
in time polynomial in log(1/η), 1/ε, the number of days, and the number of stocks. With
money, it is especially important to achieve this expectation. For example, a 50% chance at
10 million dollars may not be as valuable to most people as a guaranteed 5 million dollars.

While our implementation can be used for other applications of UNIVERSAL, such
as data compression (Cover, 1996c) and language modeling (Chen et al, 1999), we do not
know an implementation for the case of transaction costs (Blum and Kalai, 1999) or for the
Dirichlet (1/2, . . . , 1/2) UNIVERSAL (Cover and Ordentlich, 1996a).
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