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Summary

This technical report is an extended version of [1].

For undiscounted reinforcement learning in Markov decision processes (MDPs) we consider
the total regret of a learning algorithm with respect to an optimal policy. In order to describe the
transition structure of an MDP we propose a new parameter: An MDP has diameter D if for any
pair of states s, s′ there is a policy which moves from s to s′ in at most D steps (on average). We
present a reinforcement learning algorithm with total regret Õ(DS

√
AT ) after T steps for any

unknown MDP with S states, A actions per state, and diameter D. This bound holds with high
probability. We also present a corresponding lower bound of Ω(

√
DSAT ) on the total regret of any

learning algorithm.
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1 Introduction

In a Markov decision process (MDP) M with finite state space S and finite action space A, a learner
in state s ∈ S needs to choose an action a ∈ A. When executing action a in state s, the learner
receives a random reward r with mean r̄(s, a) according to some distribution on [0, 1]. Further,
according to the transition probabilities p (s′|s, a), a random transition to a state s′ ∈ S occurs.

Reinforcement learning of MDPs is a standard model for learning with delayed feedback. In contrast
to important other work on reinforcement learning — where the performance of the learned policy is
considered (see e.g. [2, 3] and also the discussion and references given in the introduction of [4]) —
we are interested in the performance of the learning algorithm during learning. For that, we compare
the rewards collected by the algorithm during learning with the rewards of an optimal policy.

In this paper we will consider undiscounted rewards. The accumulated reward of an algorithm A
after T steps in an MDP M is defined as

R(M,A, s, T ) :=
∑T

t=1 rt,

where s is the initial state and rt are the rewards received during the execution of algorithm A. The
average reward

ρ(M,A, s) := lim
T→∞

1
T E [R(M,A, s, T )]

can be maximized by an appropriate stationary policy π : S → A which defines an optimal action
for each state [5].

The difficulty of learning an MDP does not only depend on its size (given by the number of states
and actions), but also on its transition structure. In order to measure this transition structure we
propose a new parameter, the diameter D of an MDP. The diameter D is the time it takes to move
from any state s to any other state s′, using an appropriate policy for this pair of states s and s′:

Definition 1. Let T (s′|M,π, s) be the first (random) time step in which state s′ is reached when
policy π is executed on MDP M with initial state s. Then the diameter of M is given by

D(M) := max
s,s′∈S

min
π:S→A

E [T (s′|M,π, s)] .

A finite diameter seems necessary for interesting bounds on the regret of any algorithm with respect
to an optimal policy. When a learner explores suboptimal actions, this may take him into a “bad
part” of the MDP from which it may take about D steps to reach again a “good part” of the MDP.
Hence, the learner may suffer regret D for such exploration, and it is very plausible that the diameter
appears in the regret bound.

For MDPs with finite diameter (which usually are called communicating, see e.g. [5]) the optimal
average reward ρ∗ does not depend on the initial state (cf. [5], Section 8.3.3), and we set

ρ∗(M) := ρ∗(M, s) := max
π

ρ(M,π, s).

The optimal average reward is the natural benchmark for a learning algorithm A, and we define the
total regret of A after T steps as1

∆(M,A, s, T ) := Tρ∗(M)−R(M,A, s, T ).

In the following, we present our reinforcement learning algorithm UCRL2 (a variant of the UCRL
algorithm of [6]) which uses upper confidence bounds to choose an optimistic policy. We show
that the total regret of UCRL2 after T steps is Õ(D|S|

√
|A|T ). A corresponding lower bound of

Ω(
√

D|S||A|T ) on the total regret of any learning algorithm is given as well. These results establish
the diameter as an important parameter of an MDP. Further, the diameter seems to be more natural
than other parameters that have been proposed for various PAC and regret bounds, such as the mixing
time [4, 7] or the hitting time of an optimal policy [8] (cf. the discussion below).

1It can be shown that maxAE [R(M, A, s, T )] = Tρ∗(M) + O(D(M)) and maxA R(M, A, s, T ) =

Tρ∗(M) + Õ
(√

T
)

with high probability.
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1.1 Relation to previous Work

We first compare our results to the PAC bounds for the well-known algorithms E3 of Kearns,
Singh [4], and R-Max of Brafman, Tennenholtz [7] (see also Kakade [9]). These algorithms achieve
ε-optimal average reward with probability 1−δ after time polynomial in 1

δ , 1
ε , |S|, |A|, and the mix-

ing time Tmix
ε (see below). As the polynomial dependence on ε is of order 1/ε3, the PAC bounds

translate into T 2/3 regret bounds at the best. Moreover, both algorithms need the ε-return mixing
time Tmix

ε of an optimal policy π∗ as input parameter. This parameter Tmix
ε is the number of steps

until the average reward of π∗ over these Tmix
ε steps is ε-close to the optimal average reward ρ∗.

It is easy to construct MDPs of diameter D with Tmix
ε ≈ D/ε. This additional dependency on ε

further increases the exponent in the above mentioned regret bounds for E3 and R-max. Also, the
exponents of the parameters |S| and |A| in the PAC bounds of [4] and [7] are substantially larger
than in our bound.

The MBIE algorithm of Strehl and Littman [10, 11] — similarly to our approach — applies con-
fidence bounds to compute an optimistic policy. However, Strehl and Littman consider only a dis-
counted reward setting, which seems to be less natural when dealing with regret. Their definition
of regret measures the difference between the rewards2 of an optimal policy and the rewards of the
learning algorithm along the trajectory taken by the learning algorithm. In contrast, we are inter-
ested in the regret of the learning algorithm in respect to the rewards of the optimal policy along the
trajectory of the optimal policy.

Tewari and Bartlett [8] propose a generalization of the index policies of Burnetas and Katehakis [12].
These index policies choose actions optimistically by using confidence bounds only for the estimates
in the current state. The regret bounds for the index policies of [12] and the OLP algorithm of [8]
are asymptotically logarithmic in T . However, unlike our bounds, these bounds depend on the gap
between the “quality” of the best and the second best action, and these asymptotic bounds also hide
an additive term which is exponential in the number of states. Actually, it is possible to prove a
corresponding gap-dependent logarithmic bound for our UCRL2 algorithm as well (cf. Theorem 4
below). This bound holds uniformly over time and under weaker assumptions: While [8] and [12]
consider only ergodic MDPs in which any policy will reach every state after a sufficient number of
steps, we make only the more natural assumption of a finite diameter.

2 Results

We summarize the results achieved for our algorithm UCRL2 which is described in the next section,
and also state a corresponding lower bound. We assume an unknown MDP M to be learned, with
S := |S| states, A := |A| actions, and finite diameter D := D(M). Only S and A are known to the
learner, and UCRL2 is run with parameter δ.
Theorem 2. With probability 1−δ it holds that for any initial state s ∈ S and any T > 1, the regret
of UCRL2 is bounded by

∆(M, UCRL2, s, T ) ≤ c1 ·DS
√

TA log T
δ ,

for a constant c1 which is independent of M , T , and δ.

It is straightforward to obtain from Theorem 2 the following sample complexity bound.
Corollary 3. With probability 1− δ the average per-step regret is at most ε for any

T ≥ c2
D2S2A

ε2
log
(

DSA

δε

)
steps, where c2 is a constant independent of the MDP.
Theorem 4. For any initial state s ∈ S, any T ≥ 1 and any ε > 0 the expected regret of UCRL2
(with parameter δ := 1/(3T )) is

E [∆(M, UCRL2, s, T )] < c3
D2S2A log(T )

g
,

2Actually, the state values.



Near-optimal Regret Bounds for Reinforcement Learning 3

where g := ρ∗(M) − maxπ,s{ρ(M,π, s) : ρ(M,π, s) < ρ∗(M)} is the gap between the optimal
average reward and the second best average reward achievable in M , and c3 is an MDP independent
constant. Using the doubling trick to set the parameter δ, the same bound can be achieved without
knowledge of the horizon T .

These new bounds are improvements over the bounds that have been achieved in [6] for the original
UCRL algorithm in various respects: the exponents of the relevant parameters have been decreased
considerably, the parameter D we use here is substantially smaller than the corresponding mixing
time in [6], and finally, the ergodicity assumption is replaced by the much weaker and more natural
assumption that the MDP has finite diameter.

The following is an accompanying lower bound on the expected regret.

Theorem 5. For some c4 > 0, any algorithm A, and any natural numbers S, A ≥ 10, D ≥
20 logA S, and T ≥ DSA, there is an MDP 3 M with S states, A actions, and diameter D, such
that for any initial state s ∈ S the expected regret of A after T steps is

E [∆(M,A, s, T )] ≥ c4 ·
√

DSAT .

In a different setting, a modification of UCRL2 can also deal with changing MDPs.

Theorem 6. Assume that the MDP (i.e. its transition probabilities and reward distributions) is
allowed to change ` times up to step T , such that the diameter is always at most D (we assume
an initial change at time t = 1). Restarting UCRL2 with parameter δ/`2 at steps di3/`2e for
i = 1, 2, 3 . . ., the regret measured as the sum of missed rewards compared to the ` policies which
are optimal after the changes of the MDP is upper bounded by

c5 · `
1
3 T

2
3 DS

√
A log T

δ

with probability 1− δ for an MDP independent constant c5.

MDPs with a different model of changing rewards have already been considered in [13]. There, the
transition probabilities are assumed to be fixed and known to the learner, but the rewards are allowed
to change in every step. A best possible upper bound of O(

√
T ) on the regret against an optimal

stationary policy, given all the reward changes in advance, is derived.

3 The UCRL2 Algorithm

Our algorithm is a variant of the UCRL algorithm in [6]. As its predecessor, UCRL2 implements
the paradigm of “optimism in the face of uncertainty”. As such, it defines a set M of statistically
plausible MDPs given the observations so far, and chooses an optimistic MDP M̃ (with respect to
the achievable average reward) among these plausible MDPs. Then it executes a policy π̃ which is
(nearly) optimal for the optimistic MDP M̃ .

More precisely, UCRL2 (Figure 1) proceeds in episodes and computes a new policy π̃k only at the
beginning of each episode k. The lengths of the episodes are not fixed a priori, but depend on
the observations made. In Steps 2–3, UCRL2 computes estimates p̂k (s′|s, a) and r̂k (s, a) for the
transition probabilities and mean rewards from the observations made before episode k. In Step 4,
a set Mk of plausible MDPs is defined in terms of confidence regions around the estimated mean
rewards r̂k(s, a) and transition probabilities p̂k (s′|s, a). This guarantees that with high probability
the true MDP M is in Mk. In Step 5, extended value iteration (see below) is used to choose a near-
optimal policy π̃k on an optimistic MDP M̃k ∈Mk. This policy π̃k is executed throughout episode
k (Step 6). Episode k ends when a state s is visited in which the action a = π̃k(s) induced by the
current policy has been chosen in episode k equally often as before episode k. Thus, the total number
of occurrences of any state-action pair is at most doubled during an episode. The counts vk(s, a)
keep track of these occurrences in episode k.4

3 The diameter of any MDP with S states and A actions is at least logA S.
4 Since the policy π̃k is fixed for episode k, vk(s, a) 6= 0 only for a = π̃k(s). Nevertheless, we find it

convenient to use a notation which explicitly includes the action a in vk(s, a).
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Input: A confidence parameter δ ∈ (0, 1).
Initialization: Set t := 1, and observe the initial state s1.
For episodes k = 1, 2, . . . do

Initialize episode k:
1. Set the start time of episode k, tk := t.
2. For all (s, a) in S×A initialize the state-action counts for episode k, vk(s, a) := 0.

Further, set the state-action counts prior to episode k,

Nk (s, a) := # {τ < tk : sτ = s, aτ = a} .

3. For s, s′ ∈ S and a ∈ A set the observed accumulated rewards and the transition
counts prior to episode k,

Rk (s, a) :=
tk−1∑
τ=1

rτ1sτ=s,aτ=a,

Pk (s, a, s′) := # {τ < tk : sτ = s, aτ = a, sτ+1 = s′} ,

and compute estimates r̂k (s, a) := Rk(s,a)
max{1,Nk(s,a)} , p̂k (s′|s, a) := Pk(s,a,s′)

max{1,Nk(s,a)} .
Compute policy π̃k:

4. Let Mk be the set of all MDPs with states and actions as in M , and with transi-
tion probabilities p̃ (·|s, a) close to p̂k (·|s, a), and rewards r̃(s, a) ∈ [0, 1] close
to r̂k (s, a), that is,∣∣r̃(s, a)− r̂k

(
s, a
) ∣∣ ≤

√
7 log(2SAtk/δ)

2 max{1,Nk(s,a)} and (1)∥∥∥p̃ (·|s, a)− p̂k

(
·|s, a

) ∥∥∥
1

≤
√

14S log(2Atk/δ)
max{1,Nk(s,a)} . (2)

5. Use extended value iteration (Section 3.1) to find a policy π̃k and an optimistic
MDP M̃k ∈Mk such that

ρ̃k := min
s

ρ(M̃k, π̃k, s) ≥ max
M ′∈Mk,π,s′

ρ(M ′, π, s′)− 1√
tk

. (3)

Execute policy π̃k:
6. While vk(st, π̃k(st)) < max{1, Nk(st, π̃k(st))} do

(a) Choose action at := π̃k(st), obtain reward rt, and observe next state st+1.
(b) Update vk(st, at) := vk(st, at) + 1.
(c) Set t := t + 1.

Figure 1: The UCRL2 algorithm.

3.1 Extended Value Iteration

In Step 5 of the UCRL2 algorithm we need to find a near-optimal policy π̃k for an optimistic MDP.
While value iteration typically calculates a policy for a fixed MDP, we also need to select an op-
timistic MDP M̃k which gives almost maximal reward among all plausible MDPs. This can be
achieved by extending value iteration to search also among the plausible MDPs. Formally, this
can be seen as undiscounted value iteration [5] on an MDP with extended action set. Consider an
MDP M̃+ with continuous action space, where each action identifies the original action, an admis-
sible transition probability distribution and mean reward. For each policy π̃+ on M̃+ there is an
MDP M̃ ∈ M and a policy π̃ : S → A on M̃ such that the policies π̃+ and π̃ induce the same
transition probabilities and mean rewards on the respective MDP. (The other transition probabilities
in M̃ can be set to p̂ (·|s, a).) On the other hand, for any given MDP M̃ ∈ M and any policy
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π̃ : S → A there is a policy π̃+ on M̃+ so that again the same transition probabilities and rewards
are induced by π̃ on M̃ and π̃+ on M̃+. Thus, finding an MDP M̃ ∈ M and a policy π̃ on M̃

such that ρ(M̃, π̃, s) = maxM ′∈M,π,s′ ρ(M ′, π, s′) for all initial states s, corresponds to finding an
average reward optimal policy on M̃+.

We denote the state values of the i-th iteration by ui(s). Then we get for the undiscounted value
iteration on M̃+ for all s ∈ S:

u0(s) = 0,

ui+1(s) = max
a∈A

{
r̃k (s, a) + max

p(·)∈P(s,a)

{∑
s′∈S

p(s′) · ui(s′)
}}

, (4)

where r̃k (s, a) are the maximal rewards satisfying condition (1) in algorithm UCRL2, and P(s, a)
is the set of transition probabilities p̃

(
·|s, a

)
satisfying condition (2).

While (4) is a step of value iteration with an infinite action space, maxp p · ui is actually a linear
optimization problem over the convex polytope P(s, a). This implies that (4) is equivalent to value
iteration on an MDP M̃ ′ with finite action set, since only the finite number of vertices of the polytope
need to be considered as extended actions. Now, after computing a sequence of states sorted accord-
ing to the values ui in an iteration once, the inner maximum can be computed in O(S) computation
steps for each state-action pair (s, a) as follows.

The idea is to put as much transition probability as possible to the state with maximal value at
the expense of transition probabilities to states with small values. That is, we start with setting
p := p̂(·|s, a). Then we modify p by putting as much transition probability as possible from s to
the state s′ with maximal ui(s′), i.e. p(s′) := min{1, p̂(s′|s, a) + d(s, a)/2} where d(s, a) denotes
the confidence interval as given in (2). In order to make p correspond to a probability distribution
again, we have to reduce the transition probabilities from s to states s′′ with small ui(s′′) in sum
by d(s, a)/2 as well (so that ‖p− p̂ (·|s, a) ‖1 = d(s, a)). More precisely, this is done iteratively as
follows: We first choose the s′′ with minimal ui(s′′) among those with p(s′′) > 0. Then we reduce
the transition probability from s to s′′ by as much as possible or as much as necessary, respectively,
i.e. p(s′′) := max{0, 1 −

∑
s′ 6=s′′ p(s′|s, a)}. This is repeated until p is a probability distribution.

Updating
∑

s′∈S p(s′|s, a) with every change of p for the computation of
∑

s′ 6=s′′ p(s′|s, a), this
iterative procedure takes O(S) steps. Thus computing a sorting sequence once per iteration, each
iteration can be done with at most O

(
S2A

)
computation steps.

Further, by using a fixed sorting sequence throughout an iteration, in each iteration there is some
single fixed state s′ which is regarded as the “best” target state. Then for each state s, in the inner
maximum an action with positive transition probability to s′ will be chosen. Hence, the correspond-
ing policy is aperiodic and has state independent average reward. The aperiodicity of these policies,
together with the fact that M̃ ′ is communicating, guarantees convergence of ui. This can be seen by
inspecting Lemma 9.4.3 in [5], and noting that it can be restated with the set of policies E restricted
to contain only aperiodic policies. Then, even though not all optimal policies are guaranteed to be
aperiodic in our setting, Theorem 9.4.4. in [5] can be proved for our setting as well like in [5], since
only the aperiodicity of policies in E is required in the proof. Then also Theorem 9.4.5. and Corol-
lary 9.4.6 in [5] hold, which implies convergence of (4), since M̃ ′ is communicating. The value
iteration is stopped when

max
s∈S

{
ui+1(s)− ui(s)

}
−min

s∈S

{
ui+1(s)− ui(s)

}
<

1√
tk

, (5)

which means that by Theorem 8.5.6. in [5] the greedy policy with respect to ui is 1√
tk

-optimal.

4 Analysis of UCRL2 (Proof of Theorem 2)

We start with a rough outline of the proof. First, in Section 4.1, the random fluctuation of the rewards
is dealt with, and the regret is expressed as the sum of the regret accumulated in the individual
episodes. That is, setting the regret in episode k to be

∆k :=
∑
s,a

vk(s, a)(ρ∗ − r̄(s, a)),
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it is shown that the total regret can be bounded by∑
k

∆k +
√

5
2T log 8T

δ .

In Section 4.2 we consider the regret that is caused by failing confidence regions. We show that this
regret can be upper bounded by

√
T with high probability.

After this intermezzo, the regret of episodes for which M ∈ Mk is analyzed in Section 4.3. An-
alyzing the extended value iteration scheme in Section 4.3.1 and using vector notation, we show
that

∆k ≤ vk

(
P̃ k − I

)
wk + 2

∑
(s,a)

vk(s, a)
√

7 log(2SAtk/δ)
2 max{1,Nk(s,a)} + 2

∑
(s,a)

vk(s, a)√
tk

where P̃ k is the assumed transition matrix (in M̃k) of the applied policy in episode k, vk are the
visit counts in that episode, and wk is a vector with ‖wk‖∞ ≤ D(M). The last two terms in the
above expression stem from the reward confidence intervals and the approximation error of value
iteration. The first term on the right hand side is analyzed further in Section 4.3.2 and split into

vk(P̃ k − I)wk = vk(P̃ k − P k)wk + vk(P k − I)wk

≤
∥∥vk(P̃ k − P k)

∥∥
1
‖wk‖∞ + vk(P k − I)wk

where P k is the true transition matrix (in M ) of the policy in episode k. Substituting for P̃ k − P k

the lengths of the confidence intervals, the remaining term that needs analysis is vk(P k − I)wk.
For the sum of this term over all episodes a high probability bound of

∑
k vk(P k − I)wk ≤

D
√

5
2T log 8T

δ + Dm concludes Section 4.3.2, where m is the number of episodes, which is shown
to be logarithmic in T in Appendix A.2. Section 4.3.3 concludes the analysis of episodes with
M ∈Mk by summing the individual regret terms over all episode k with M ∈Mk.

In the final Section 4.4 we finish the proof by combining the results of Sections 4.1 to 4.3 and
employing some further simplifications.

4.1 Splitting into Episodes

Let rt be the (random) reward UCRL2 received at step t when started in state s1. For given state-
action counts N(s, a) after T steps, the rt are independent random variables, so that by Chernoff
bounds

P

{ T∑
t=1

rt ≤
∑
(s,a)

N(s, a)r̄(s, a)−
√

2T · 5
4 log 8T

δ

∣∣∣∣ (N(s, a)
)
s,a

}
<

δ

12T 5/4
. (6)

Thus we get for the regret of UCRL2 (omitting explicit references to M and UCRL2)

∆(s1, T ) = Tρ∗ −
T∑

t=1

rt < Tρ∗ −
∑
(s,a)

N(s, a)r̄(s, a) +
√

5
2T log 8T

δ

with probability 1− δ
12T 5/4 . Denoting the number of episodes started up to step T by m and writing

∆k :=
∑

(s,a) vk(s, a)
(
ρ∗ − r̄(s, a)

)
, we have

∆(s1, T ) ≤
m∑

k=1

∆k +
√

5
2T log 8T

δ (7)

with probability 1− δ
12T 5/4 , as

∑m
k=1 vk(s, a) = N(s, a) and

∑
(s,a) N(s, a) = T .

4.2 Dealing with Failing Confidence Regions

We consider the regret of episodes in which the set of plausible MDPs does not contain the true
MDP,

∑m
k=1 ∆k1M 6∈Mk

. By the stopping criterion for episode k we have (except for episodes
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where vk(s, a) = 1 and Nk(s, a) = 0)∑
s,a

vk(s, a) ≤
∑
s,a

Nk(s, a) = tk − 1.

Hence, since ρ∗ ≤ 1

m∑
k=1

∆k1M 6∈Mk
≤

m∑
k=1

tk1M 6∈Mk
=

T∑
t=1

t

m∑
k=1

1tk=t,M 6∈Mk
≤

T∑
t=1

t1M 6∈M(t)

≤
bT 1/4c∑

t=1

t1M 6∈M(t) +
T∑

t=bT 1/4c+1

t1M 6∈M(t) ≤
√

T +
T∑

t=bT 1/4c+1

t1M 6∈M(t),

where M(t) is the set of plausible MDPs as given by (1) and (2), using the estimates available at
step t. Now, P {M 6∈ M(t)} ≤ δ

15t6 (see Appendix A.1), and since

T∑
t=bT 1/4c+1

1
15t6

≤ 1
15T 6/4

+
∫ ∞

T 1/4

1
15t6

=
1

15T 6/4
+

1
75T 5/4

≤ 6
75T 5/4

<
1

12T 5/4

it follows that P{∃t : T 1/4 < t ≤ T : M 6∈ M(t)} ≤ δ
12T 5/4 ,

Thus, with probability at least 1− δ
12T 5/4 it holds that

m∑
k=1

∆k1M 6∈Mk
≤

√
T (8)

4.3 Episodes with M ∈Mk

We assume M ∈ Mk and start by considering the regret in a single episode k. The optimistic
average reward ρ̃k of the optimistically chosen policy π̃k is essentially larger than the true optimal
average reward ρ∗, and thus it is sufficient to calculate by how much the optimistic average reward ρ̃k

overestimates the actual rewards of policy π̃k. Since M ∈ Mk, and by the choice of π̃k and M̃k in
Step 5 of UCRL2, ρ̃k ≥ ρ∗ − 1/

√
tk. Thus for the regret ∆k during episode k we get

∆k ≤
∑
(s,a)

vk(s, a)
(
ρ∗ − r̄(s, a)

)
≤
∑
(s,a)

vk(s, a)
(
ρ̃k − r̄(s, a)

)
+
∑
(s,a)

vk(s, a)√
tk

. (9)

4.3.1 Extended Value Iteration revisited

To proceed, we reconsider the extended value iteration in Section 3.1. As an important observation
for our analysis, we find that for any iteration i the range of the state values is bounded by the
diameter of the MDP M ,

max
s

ui(s)−min
s

ui(s) ≤ D. (10)

To see this, observe that ui(s) is the total expected reward after i steps of an optimal non-stationary
i-step policy starting in state s, on the MDP with extended action set as considered for the extended
value iteration. The diameter of this extended MDP is at most D as it contains the actions of the true
MDP M . If there were states with ui(s1) − ui(s0) > D, then an improved value for ui(s0) could
be achieved by the following policy: First follow a policy which moves from s0 to s1 most quickly,
which takes at most D steps on average. Then follow the optimal i-step policy for s1. Since only D
of the i rewards of the policy for s1 are missed, this policy gives ui(s0) ≥ ui(s1)−D, proving (10).

For the convergence criterion (5) it is a direct consequence of Theorem 8.5.6. in [5], that at the
corresponding iteration

|ui+1(s)− ui(s)− ρ̃k| ≤
1√
tk
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for all s ∈ S, where ρ̃k is the average reward of the policy π̃k chosen in this iteration on the
optimistic MDP M̃k.5 Expanding ui+1(s) according to (4), we get

ui+1(s) = r̃k(s, π̃k(s)) +
∑
s′

p̃k (s′|s, π̃k(s)) · ui(s′)

and hence ∣∣∣∣∣
(

ρ̃k − r̃k(s, π̃k(s))

)
−

(∑
s′

p̃k (s′|s, π̃k(s)) · ui(s′)− ui(s)

) ∣∣∣∣∣ ≤ 1√
tk

.

Defining rk :=
(
r̃k

(
s, π̃k(s)

))
s

as the (column) vector of rewards for policy π̃k, P̃ k :=(
p̃k (s′|s, π̃k(s))

)
s,s′

as the transition matrix of π̃k on M̃k, and vk :=
(
vk

(
s, π̃k(s)

))
s

as the (row)
vector of visit counts for each state and the corresponding action chosen by π̃k, we can rewrite (9)
as

∆k ≤
∑
(s,a)

vk(s, a)
(
ρ̃k − r̄(s, a)

)
+
∑
(s,a)

vk(s, a)√
tk

=
∑
(s,a)

vk(s, a)
(
ρ̃k − r̃k(s, a)

)
+
∑
(s,a)

vk(s, a)
(
r̃k(s, a)− r̄(s, a)

)
+
∑
(s,a)

vk(s, a)√
tk

≤ vk

(
P̃ k − I

)
ui +

∑
(s,a)

vk(s, a)
(
r̃k(s, a)− r̄(s, a)

)
+ 2

∑
(s,a)

vk(s, a)√
tk

(11)

recalling that vk(s, a) = 0 for a 6= π̃k(s). Since the rows of P̃ k sum to 1, we can replace ui by wk

with wk(s) = ui(s)−mins ui(s) (we again use the subscript k to reference the episode). Since we
consider M ∈Mk, r̃k(s, a)− r̄(s, a) is bounded according to (1) to yield

∆k ≤ vk

(
P̃ k − I

)
wk + 2

∑
(s,a)

vk(s, a)
√

7 log(2SAtk/δ)
2 max{1,Nk(s,a)} + 2

∑
(s,a)

vk(s, a)√
tk

, (12)

where ‖wk‖∞ ≤ D by (10). Noting that max{1, Nk(s, a)} ≤ tk we rewrite (12) as

∆k ≤ vk

(
P̃ k − I

)
wk +

(√
14 log

(
2SAT

δ

)
+ 2
)∑

(s,a)

vk(s,a)√
max{1,Nk(s,a)}

. (13)

4.3.2 The true Transition Matrix

Replacing the transition matrix P̃ k of the policy π̃k in the optimistic MDP M̃k by the transition
matrix P k of π̃k in the true MDP M , we get

vk

(
P̃ k − I

)
wk = vk

(
P̃ k − P k + P k − I

)
wk

= vk

(
P̃ k − P k

)
wk + vk

(
P k − I

)
wk. (14)

The first Term. Since by assumption M̃k and M are in the set of plausible MDPs Mk, the first
term in (14) can be bounded using condition (2) in algorithm UCRL2:

vk

(
P̃ k − P k

)
wk =

∑
s

∑
s′

vk

(
s, π̃k(s)

)
·
(
P̃ k(s, s′)− P k(s, s′)

)
· wk(s′)

≤
∑

s

vk

(
s, π̃k(s)

)
·
∥∥∥P̃ k(s, ·)− P k(s, ·)

∥∥∥
1
· ‖wk‖∞

≤
∑

s

vk

(
s, π̃k(s)

)
· 2
√

14S log(2AT/δ)
max{1,Nk(s,π̃k(s))} ·D

≤ 2D
√

14S log
(

2AT
δ

)∑
(s,a)

vk(s,a)√
max{1,Nk(s,a)}

. (15)

This term will turn out to mainly determine our regret bound, since it yields the dominating contri-
bution.

5 This is quite intuitive. We expect to receive average reward ρ̃k per step, such that the difference of the
state values after i + 1 and i steps should be about ρ̃k.
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The second Term. The intuition about the second term in (14) is that the counts of the state
visits vk are relatively close to the stationary distribution of the transition matrix P k, such that
vk

(
P k − I

)
should be small. For the proof we define a suitable martingale and make use of the

Azuma-Hoeffding inequality.

Lemma 7 (Azuma-Hoeffding inequality, [14]). Let X1, X2, . . . be a martingale difference sequence
with bounded coordinates, i.e. |Xi| ≤ c. Then for all ε > 0 and n ∈ N,

P
{∑n

i=1 Xi ≥ ε
}
≤ exp

(
− ε2

2nc2

)
.

Denote the unit vectors with i-th coordinate 1 and all other coordinates 0 by ei. Let
s1, a1, s2, . . . , aT , sT+1 be the sequence of states and actions, and let k(t) be the episode which con-
tains step t. Consider the sequence Xt :=

(
p (·|st, at)− est+1

)
wk(t)1M∈Mk(t) for t = 1, . . . , T .

Then for any episode k with M ∈Mk, since ‖wk‖∞ ≤ D, we have

vk(P k − I)wk =
tk+1−1∑

t=tk

(
p (·|st, at)− est

)
wk

=
( tk+1−1∑

t=tk

p (·|st, at)−
tk+1−1∑

t=tk

est+1 + estk+1
− estk

)
wk

=
tk+1−1∑

t=tk

Xt + wk(stk+1)− wk(stk
) ≤

tk+1−1∑
t=tk

Xt + 2D .

Also due to ‖wk‖∞ ≤ D, we have |Xt| ≤ (‖p (·|st, at) ‖1 + ‖est+1‖1)D ≤ 2D. Further,
E
[
Xt

∣∣s1, a1, . . . , st, at

]
= 0, so that Xt is a sequence of martingale differences, and application of

Lemma 7 gives

P

{
T∑

t=1

Xt ≥ D
√

2T · 5
4 log

(
8T
δ

)}
<

δ

12T 5/4
.

Since for the number of episodes we have m ≤ SA log2

(
8T
SA

)
as shown in Appendix A.2, summing

over all episodes yields

m∑
k=1

vk(P k − I)wk1M∈Mk
≤

T∑
t=1

Xt + mD ≤ D
√

5
2T log 8T

δ + DSA log2

(
8T
SA

)
(16)

with probability 1− δ
12T 5/4 .

4.3.3 Summing over Episodes with M ∈Mk

To conclude Section 4.3, we sum (13) over all episodes with M ∈Mk, using (14), (15), and (16)
which yields that with probability 1− δ

12T 5/4

m∑
k=1

∆k1M∈Mk(t) ≤
m∑

k=1

vk

(
P̃ k − P k

)
wk1M∈Mk(t) +

m∑
k=1

vk

(
P k − I

)
wk1M∈Mk(t)

+
m∑

k=1

(√
14 log

(
2SAT

δ

)
+ 2
)∑

(s,a)

vk(s,a)√
max{1,Nk(s,a)}

≤ 2D
√

14S log
(

2AT
δ

)
·

m∑
k=1

∑
(s,a)

vk(s,a)√
max{1,Nk(s,a)}

+ D
√

5
2T log

(
8T
δ

)
+ DSA log2

(
8T
SA

)
+
(√

14 log
(

2SAT
δ

)
+ 2
) m∑

k=1

∑
(s,a)

vk(s,a)√
max{1,Nk(s,a)}

. (17)
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Recall that N(s, a) :=
∑

k vk(s, a) such that
∑

(s,a) N(s, a) = T , and that Nk(s, a) =∑
i<k vi(s, a). By the condition of the while-loop in Step 6 of algorithm UCRL2, we have that

vk(s, a) ≤ Nk(s, a). Using that (see Appendix A.3)
n∑

k=1

xk√
Xk−1

≤
(√

2 + 1
)√

Xn ,

where Xk = max
{

1,
∑k

i=1 xi

}
and 0 ≤ xk ≤ Xk−1, we get∑

(s,a)

∑
k

vk(s,a)√
max{1,Nk(s,a)}

≤
(√

2 + 1
)∑

(s,a)

√
N(s, a).

By Jensen’s inequality we thus have∑
(s,a)

∑
k

vk(s,a)√
max{1,Nk(s,a)}

≤
(√

2 + 1
)√

SAT , (18)

and get from (17) (after minor simplifications) that with probability 1− δ
12T 5/4

m∑
k=1

∆k1M∈Mk(t) ≤ D
√

5
2T log

(
8T
δ

)
+ DSA log2

(
8T
SA

)
+
(

3D
√

14S log
(

2AT
δ

)
+ 2
)(√

2 + 1
)√

SAT . (19)

4.4 Completing the Proof

Evaluating (7) by summing ∆k over all episodes, using (8), (13), and (19), we get

∆(s1, T ) ≤
√

5
2T log

(
8T
δ

)
+

m∑
k=1

∆k1M /∈Mk(t)
+

m∑
k=1

∆k1M∈Mk(t)

≤
√

5
2T log

(
8T
δ

)
+
√

T + D
√

5
2T log

(
8T
δ

)
+ DSA log2

(
8T
SA

)
+
(

3D
√

14S log
(

2AT
δ

)
+ 2
)(√

2 + 1
)√

SAT (20)

with probability 1− δ
12T 5/4 − δ

12T 5/4 − δ
12T 5/4 .

Simplifying (20) as given in Appendix A.4 yields that for any T > 1 with probability 1− δ
4T 5/4

∆(s1, T ) ≤ 49DS
√

AT log
(

T
δ

)
. (21)

Since
∑∞

T=2
δ

4T 5/4 < δ the statement of Theorem 2 follows by a union bound.

5 The logarithmic Bound (Proof of Theorem 4)

Our aim is to show a logarithmic upper bound on the expected regret. In order to achieve this, we
start with a bound on the number of steps in suboptimal episodes (in the spirit of sample complexity
bounds as given in [9]).

We say that an episode k is ε-bad if its average regret is more than ε, where the average regret of an
episode of length `k is ∆k

`k
with6 ∆k =

∑tk+1−1
t=tk

(ρ∗− rt). Then the following result gives an upper
bound on the number of steps taken in ε-bad episodes.
Theorem 8. For any initial state s ∈ S, any T > 1 and any ε > 0, with probability 1 − 3δ, the
number Lε of steps taken in ε-bad episodes is

Lε ≤ 482 D2S2A log(T/δ)
ε2

.

6In the following we use the same notation as in the proof of Theorem 2.
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Proof. The proof is an adaptation of the proof of Theorem 2 which gives an upper bound of
O
(
DS
√

LεA log(AT/δ)
)

on the regret ∆′
ε(s, T ) in ε-bad episodes in terms of Lε. The theorem

then follows due to εLε ≤ ∆′
ε(s, T ).

Let Kε and Jε be two random sets that contain the indices of the ε-bad episodes and the correspond-
ing time steps t taken in these episodes, respectively. Analyzing the random reward fluctuations and
the regret caused by failing confidence intervals we get with probability 1− 2δ

∆′
ε(s, T ) :=

∑
k∈Kε

∆k ≤ 1 +
√

2Lε log T
δ +

∑
k∈Kε

∑
s,a

vk(s, a)
(
ρ∗ − r̄(s, a)

)
1M∈Mk

, (22)

since analogously to (6) in Section 4.1, with probability 1− δ

∑
k∈Kε

tk+1−1∑
t=tk

rt ≥
∑

k∈Kε

∑
s,a

vk(s, a)r̄(s, a)−
√

2Lε log T
δ ,

and, similar to (8) in Section 4.2, one can show that

P

{∑
k∈Kε

∆k1M 6∈Mk
> 1

}
≤ δ .

To bound the regret of a single episode with M ∈ Mk we may follow the lines of the proof of
Theorem 2 in Section 4.3. By combining (13), (14), and (15) we arrive at

∆k ≤ vk

(
P k − I

)
wk +

(
3D
√

14S log
(

2AT
δ

)
+ 2
)∑

(s,a)

vk(s,a)√
max{1,Nk(s,a)}

. (23)

Using the observation in Appendix B.1, we get an analogon of (18), that is,∑
k∈Kε

∑
s,a

vk(s, a)√
max{1, Nk(s, a)}

≤
(√

2 + 1
)√

LεSA . (24)

From (22), (23), and (24) it follows that with probability 1− 2δ

∆′
ε(s, T ) ≤ 1 +

√
2Lε log T

δ +
(

3D
√

14S log
(

2AT
δ

)
+ 2
)
·
(√

2 + 1
)
·
√

LεSA (25)

+
∑

k∈Kε

vk(P k − I)wk1M∈Mk
. (26)

For the regret term of
∑

k∈Kε
vk(P k−I)wk1M∈Mk

we use an argument similar to the one applied
to obtain (16) in the original proof (Section 4.3.2). Here we have to consider a slightly modified
martingale difference sequence

Xt =
(
p (·|st, at)− est+1

)
wk(t)1M∈Mk(t)1t∈Jε

for t = 1, . . . , T to get

∑
k∈Kε

vk(P k − I)wk1M∈Mk
≤

T (Lε)∑
t=1

Xt + DSA log2
8T
SA , (27)

where T (L) := min
{
t : #{τ ≤ t, τ ∈ Jε} = L

}
.

The application of the Azuma-Hoeffding inequality in the original proof is replaced with the follow-
ing consequence of Bernstein’s inequality for martingales [15]:

Lemma 9. Let X1, X2, . . . be a martingale difference sequence. Then

P

{
n∑

i=1

Xi ≥ κ,

n∑
i=1

X2
i ≤ γ

}
≤ exp

(
− κ2

2γ + 2κ/3

)
.
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Application of Lemma 9 with κ = 2D
√

L log(T/δ) and γ = D2L yields that if L ≥
log(T/δ)/D2 we have

P


T (L)∑
t=1

Xt > 2D
√

L log T
δ

∣∣∣∣∣∣T (L) = min
{

t : #{τ ≤ t, τ ∈ Jε} = L
} <

δ

T
. (28)

On the other hand, if L < log(T/δ)/D2, we have

T (L)∑
t=1

Xt ≤ DL = D
√

L
√

L <
√

L
√

log T
δ =

√
L log T

δ < 2D
√

L log T
δ . (29)

Hence, (28) and (29) give by a union bound over all L that with probability 1− δ

T (Lε)∑
t=1

Xt ≤ 2D
√

Lε log T
δ ,

which together with (27) yields that with probability 1− δ∑
k∈Kε

vk(P k − I)wk1M∈Mk
≤ 2D

√
Lε log T

δ + DSA log2
8T
SA .

Thus (25) yields that with probability 1− 3δ

∆′
ε(s, T ) ≤ 1 +

√
2Lε log T

δ +
(

3D
√

14S log
(

2AT
δ

)
+ 2
)
·
(√

2 + 1
)
·
√

LεSA

+ 2D
√

Lε log T
δ + DSA log2

8T
SA . (30)

As the theorem also holds trivially for Lε ≤ 482A log
(

T
δ

)
and also for T ≤ 482A, by similar

arguments than those used in Section 4.4 we get

∆′
ε(s, T ) ≤ 48DS

√
LεA log T

δ (31)

with probability 1− 3δ. Since εLε ≤ ∆′
ε(s, T ) we get

Lε ≤ 482 D2S2A log T
δ

ε2
(32)

the theorem follows.

Theorem 8 can be used to obtain the claimed logarithmic upper bound on the expected regret.

Theorem 10. For any initial state s ∈ S, any T ≥ 1 and any ε > 0, with probability 1 − 3δ the
regret of UCRL2 (with parameter δ) is

∆(M, UCRL2, s, T ) = 482 D2S2A log(T/δ0)
ε

+ εT.

Moreover setting

g := ρ∗(M)−max
π,s

{ρ(M,π, s) : ρ(M,π, s) < ρ∗(M)}

to be the gap in average reward between best and second best policy in M , the expected regret of
UCRL2 (with parameter δ := 1/(3T )) for any initial state s ∈ S is

E [∆(M, UCRL2, s, T )] < c3
D2S2A log(T )

g
.

Using the doubling trick to set the parameter δ, the same bound can be achieved without knowledge
of the horizon T .
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Proof. Using (32) in (31) we we may bound the regret ∆′
ε(s, T ) accumulated in ε-bad episodes by

∆′
ε(s, T ) ≤ 482 D2S2A log T

δ

ε
(33)

with probability 1− 3δ. Noting that the regret accumulated outside of ε-bad episodes is at most εT
implies the first statement of the theorem.

For the bound on the expected regret, first note that the expected regret of each episode in which
an optimal policy is executed is at most D, whereas the expected regret in g

2 -bad episodes is upper
bounded by 482 · 2 · D2S2A log(AT )/g + 1, as δ = 1/(3T ). What remains to do is to consider
episodes k with average regret smaller than g/2 in which however a non-optimal policy π̃k was
chosen. Note that for sufficiently large episode length `k the expected `k-step return is g

2 -close
to the average reward, so that any policy applied in an episode that is not g

2 -bad will be optimal.
The regret accumulated until the episode lengths are sufficiently large will be an additive constant
depending on the MDP, subsumed by c3.

6 The Lower Bound (Proof of Theorem 5)

We first consider the two-state MDP depicted in Figure 2. That is, there are two states, s0 and s1,
and A′ = b(A− 1)/2c actions. For each action a, let the deterministic rewards be r(s0, a) = 0 and
r(s1, a) = 1, and p (s0|s1, a) = δ, where δ = 4/D. For the rest of the proof we assume7 δ ≤ 1/3.
For all but a single “good” action a∗ let p (s1|s0, a) = δ whereas p (s1|s0, a

∗) = δ + ε for some
0 < ε < δ specified later in the proof. The diameter of this MDP is D′ = 1/δ = D/4.

Figure 2: The MDP for the lower bound. The single action a∗ with higher transition probability
from state s0 to state s1 is shown as dashed line.

Consider k := bS/2c copies of this MDP where only one of the copies has such a “good” action a∗.
To complete the construction, we connect the k copies into a single MDP with diameter less than
D, using at most A − A′ additional actions. This can be done by introducing A′ + 1 additional
deterministic actions per state, which do not leave the s1-states but connect the s0-states of the k
copies by inducing an A′-ary tree structure on the s0-states (one action for going toward the root,
A′ actions to go toward the leaves). The reward for each of those actions in any state is zero. The
diameter of the resulting MDP is at most 2(D/4 + dlogA′ ke) which is twice the time to travel to or
from the root for any state in the MDP. Thus we have constructed an MDP M with ≤ S states, ≤ A
actions, and diameter ≤ D.

First note, that the problem of learning M gets easier when the additional actions (connecting the
s0 states and not leaving the s1 states) are removed, and instead the learning algorithm is allowed
to do the following: Before performing an action in any of the s0 states any of the s0 states may be
chosen for free, and before performing an action in any of the s1 states any of the s1 states may be
chosen for free. This is equivalent to a single MDP M ′ like the one in Figure 2 with kA′ actions.

We prove the theorem by applying the same techniques as in the proof of the lower bound for the
multi-armed bandit problem in [16]. The pair (s∗0, a

∗) identifying the copy with the better action and

7 Otherwise we have D < 12, and for this to be possible A > 2S. In this case we use a different
construction: Using S−1 actions, we connect all states to get an MDP with diameter 1, and with the remaining
A − S + 1 actions we set up a bandit problem in each state as in the proof of the lower bound in [16], where
only one state has a better action. This yields Ω

(√
SAT

)
regret, which is sufficient, since D is bounded in this

case.
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the better action are considered to be chosen uniformly at random from {1 . . . k} × {1 . . . A′}, and
we denote the expectation with respect to the random choice of (s∗0, a

∗) as E∗ [·]. We show that ε
can be chosen such that M ′ and thus M forces regret E∗ [∆(M,A, s, T )] ≥ E∗ [∆(M ′,A, s, T )] >

0.022
√

D′kA′T on any algorithm A.

We write Eunif [·] for the expectation when there is no special action (i.e. the transition probability
from s0 to s1 is δ for all actions), and Ea [·] for the expectation conditioned on a being the special
action a∗ in M ′. As argued in [16], it is sufficient to consider deterministic strategies for choosing
actions. That is, we assume that any algorithm A maps the sequence of observations up to step t to
an action at.

Now we follow the lines of the proof of Theorem A.2 in [16]. Let the random variables N1, N0 and
N0a denote the total number of visits to state s1, the total number of visits to state s0, and the number
of times action a∗ is chosen in state s0, respectively. Since the expected number of consecutive steps
spent in state s1 after reaching it from s0 is at most D′ = 1/δ (we might reach step T first), and
since choosing a∗ instead of any other action in s0 reduces the probability of staying in state s0, the
reward accumulated by any algorithm can be bounded as

Ea [R(M,A, s, T )] = Ea [N1] = Ea [N0 −N0a] δD′ + Ea [N0a] (δ + ε)D′

= Ea [N0 −N0a + N0a] + Ea [N0a] εD′

≤ T

2
+ Ea [N0a] εD′. (34)

As the actions are deterministically chosen by A based on the observed pairs of reward and next
state, N0a is a function of the observations up to step T . A slight difference to [16] is that in our
setting the sequence of observations consists not just of the rewards but also of the next state, i.e.
upon playing action at the algorithm observes st+1 and rt. Since the immediate reward is fully
determined by the current state, N0a is also a function of just the sequence of states, and we may
bound Ea [N0a] by the following lemma, adapted from [16].

Lemma 11. Let f : {s0, s1}T+1 → [0, B] be any function defined on state sequences s ∈
{s0, s1}T+1 observed in MDP M ′. Then for any 0 ≤ δ ≤ 1

2 , any 0 ≤ ε ≤ 1 − 2δ and any
a ∈ {1, . . . , kA′},

Ea [f(s)] ≤ Eunif [f(s)] +
B

2
· ε√

δ

√
2Eunif [N0a].

There are only minor modifications to the original proof in [16] to get a proof for Lemma 11, as
discussed in Appendix C. Now, since N0a is a function of the state sequence with N0a ∈ [0, T ], and
for ε ≤ δ we may apply Lemma 11 to get

Ea [N0a] ≤ Eunif [N0a] +
T

2
ε
√

D′
√

2Eunif [N0a]. (35)

Using
∑kA′

a=1Eunif [N0a] ≤ T
2 + D′

2 yields
∑kA′

a=1

√
2Eunif [N0a] ≤

√
kA′(T + D′) and thus

kA′∑
a=1

Ea [N0a] ≤ T

2
+

D′

2
+

εT

2

√
D′
√

kA′(T + D′) ≤ T

2
+

D′

2
+

εT

2

√
D′kA′T +

εTD′

2

√
kA′.

Therefore, combining with (34),

E∗ [R(M,A, s, T )] =
1

kA′

kA′∑
a=1

Ea [R(M,A, s, T )]

≤ T

2
+

εTD′

2kA′ +
εD′2

2kA′ +
ε2TD′

2kA′

√
D′kA′T +

ε2TD′2

2kA′

√
kA′.

By assumption we have T ≥ DSA ≥ 16D′kA′ and thus D′ ≤ T
16kA′ . Further, calculating the

stationary distribution, we find that the optimal average reward for the MDP M ′ is δ+ε
2δ+ε . Thus the
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expected regret with respect to the random choice of a∗ is at most

E∗ [∆(M,A, s, T )] =
δ + ε

2δ + ε
T − E∗ [R(M,A, s, T )]

≥ δ + ε

2δ + ε
T − T

2
− εTD′

2kA′ −
εD′2

2kA′ −
ε2TD′

2kA′

√
D′kA′T − ε2TD′2

2kA′

√
kA′

≥ ε

4δ + 2ε
T − εTD′

(
1

2kA′ +
1

32k2A′2

)
−

ε2TD′

kA′

√
D′kA′T

(
1
2

+
1

8
√

kA′

)
.

We choose ε = c
√

kA′

TD′ , where 0 < c < 1
4 . Then due to 1

δ = D′ ≤ T
16kA′ we have ε ≤ δ

16

(sufficient to get (35)), and further 1
4δ+2ε ≥

1
4+1/8D′. Hence we get

E∗ [∆(M,A, s, T )] ≥
(

c

4 + 1
8

− c

2kA′ −
c

32k2A′2
− c2

2
− c2

8
√

kA′

)√
D′kA′T .

Choosing c = 0.2 we have due to kA′ ≥ 20 that

E∗ [∆(M,A, s, T )] > 0.022
√

D′kA′T .

7 Proof of Regret Bounds for Changing MDPs (Theorem 6)

Consider the learner operates in a setting where the MDP is allowed to change ` times, such that the
diameter never exceeds D (we assume an initial change at time t = 1). For this task we define the
regret of an algorithm A up to step T with respect to the average reward ρ∗(t) of an optimal policy
at step t as

∆′(A, s, T ) :=
T∑

t=1

ρ∗(t)− rt,

where rt is the reward received by A in step t when starting in state s.

The intuition behind our approach is the following: When restarting UCRL2 every (T/`)
2
3 steps,

the regret is at most `
1
3 T

2
3 for periods in which the MDP changes. For each other period we have

regret of Õ
(
(T/`)

1
3

)
by Theorem 2. Since UCRL2 is restarted only T

1
3 `

2
3 times, the total regret is

Õ
(
`
1
3 T

2
3

)
.

Because the horizon T is usually unknown, we apply an alternative scheme for restarting which
exhibits similar properties: UCRL2′ restarts UCRL2 with parameter δ/`2 at steps τi =

⌈
i3

`2

⌉
for

i = 1, 2, 3, . . . . Now we prove Theorem 6, which states that the regret of UCRL2′ is bounded by

∆′(UCRL2′, s, T ) ≤ 92 · `
1
3 T

2
3 DS

√
A log T

δ

with probability 1− δ in the setting considered.

Proof of Theorem 6. Let n be the largest natural number such that
⌈

n3

`2

⌉
≤ T . Then n3

`2 ≤ τn ≤
T ≤ τn+1 − 1 < (n+1)3

`2 and thus

`
2
3 T

1
3 − 1 ≤ n ≤ `

2
3 T

1
3 . (36)

The regret ∆c incurred due to changes of the MDP can be bounded by the number of steps taken in
periods where the MDP changes. This is maximized when the changes occur during the ` longest
periods, which contain at most τn+1 − 1− τn−`+1 steps. We have

τn+1 − 1− τn−`+1 ≤ 1
`2 (n + 1)3 − 1

`2 −
1
`2 (n− ` + 1)3 = 3n2

` + 6n
` − 3n− 1

`2 + `− 3 + 3 1
` .
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For ` ≥ 2 we get

τn+1 − 1− τn−`+1 ≤ 3
n2

`
+ ` ≤ 3

`
4
3 T

2
3

`
+ ` = 3`

1
3 T

2
3 + `,

and for ` = 1 we have
τn+1 − 1− τn−`+1 ≤ 3T

2
3 + 3T

1
3 .

Thus the contribution to the regret from changes of the MDP is at most

∆c ≤ 3`
1
3 T

2
3 + 3T

1
3 + ` ≤ 6`

1
3 T

2
3 + `

1
3 `

2
3 ≤ 6`

1
3 T

2
3 + `

1
3 T

2
3 ≤ 7`

1
3 T

2
3 . (37)

On the other hand, if the MDP does not change between the steps τi and min{T, τi+1}, the re-
gret ∆(sτi

, Ti) for these Ti := min{T, τi+1}− τi steps is bounded according to (21) in the proof of
Theorem 2 by

∆(sτi , Ti) ≤ 49DS

√
TiA log `2Ti

δ ≤ 49
√

3DS
√

Ti

√
A log T

δ

with probability 1 − δ

4`2T
5/4
i

. By Jensen’s inequality we have
∑n

i=1

√
Ti ≤

√
n
√

T due to∑n
i=1 Ti = T . Thus, summing over all i = 1, . . . , n, the regret ∆f in periods in which the MDP

does not change is at most

∆f ≤
n∑

i=1

∆(sτi , Ti) ≤ 49
√

3DS
√

n
√

T
√

A log T
δ ≤ 49

√
3DS `

1
3 T

2
3

√
A log T

δ (38)

with probability at least 1−
∑n

i=1
δ

4`2T
5/4
i

. Using that for b `2

3 c < i < n

Ti =
⌈

(i + 1)3

`2

⌉
−
⌈

i3

`2

⌉
≥ (i + 1)3

`2
− i3

`2
− `2 − 1

`2
=

3i2

`2
+

3i + 2− `2

`2
>

3i2

`2
,

and Ti ≥ 1 we get

1−
n∑

i=1

δ

4`2T
5/4
i

≥ 1− δ

4`2
−

⌊
`2

3

⌋
∑
i=1

δ

4`2
−

n−1∑⌈
`2

3

⌉ δ

4i2

> 1− δ

4
− `2

12
δ

`2
− δ

4

∞∑
i=1

1
i2

= 1− δ

3
− δ

4
π2

6
> 1− δ.

As ∆′(UCRL2′, s, T ) ≤ ∆c + ∆f , using (37) and (38) yields

∆′(UCRL2′, s, T ) ≤ 7`
1
3 T

2
3 + 49

√
3DS `

1
3 T

2
3

√
A log T

δ

with probability 1− δ.
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Appendix

A Technical Details for the Proof of Theorem 2

A.1 Confidence Intervals

Lemma 12. For any t ≥ 1, the probability that the true MDP M is not contained in the set of
plausible MDPs M(t) as used by algorithm UCRL2 with input parameter δ is at most δ

15t6 , that is

P {M 6∈ M(t)} <
δ

15t6
.

Proof. Consider a fixed state-action pair (s, a) and assume some given number of visits n > 0
before step t. Denote the estimates for transition probabilities and rewards obtained from these n
observations made in steps 1, . . . , (t− 1) by p̂ (·|s, a) and r̂ (s, a), respectively. Let us first consider
for some fixed (s, a) the probability with which a confidence interval for the transition probabilities
fails. The random event observed for the transition probabilities estimates is the state to which the
transition occurs. Generally, the L1 deviation of the true distribution and the empirical distribution
over m distinct events from n samples is bounded by [weissman03].

P
{∥∥p̂ (·)− p (·)

∥∥
1
≥ ε
}
≤ (2m − 2) exp

(
−nε2

2

)
. (39)

Thus, in our case we have m = S (for each possible transition there is a respective event), and
setting

ε =

√
2
n

log (2S20SAt7/δ) ≤
√

14S

n
log (2At/δ),

we get from (39) for each state-action pair (s, a)

P

{∥∥∥p (·|s, a)− p̂ (·|s, a)
∥∥∥

1
≥
√

14S

n
log (2At/δ)

}
≤ 2S exp

(
−n

2
· 2
n

log
(
2S20SAt7/δ

))
=

δ

20t7SA
.

For the rewards we observe real valued, independent identically distributed (i.i.d.) random variables
with support in [0, 1]. Hoeffding’s inequality gives for the deviation between the true mean r̄ and
the empirical mean r̂ from n i.i.d. samples with support in [0, 1]

P
{ ∣∣r̂ − r̄

∣∣ ≥ εr

}
≤ 2 exp

(
− 2nε2

r

)
.

Setting

εr =

√
1
2n

log (120SAt7/δ) ≤
√

7
2n

log (2SAt/δ),

we get for state-action pair (s, a)

P

{∣∣r̂ (s, a)− r̄(s, a)
∣∣ ≥√ 7

2n
log (2SAt/δ)

}
≤ 2 exp

(
−2n

1
2n

log
(
120SAt7/δ

))
=

δ

60t7SA
.

Note that when there haven’t been any observations, then the confidence intervals trivially hold with
probability 1 (for transition probabilities as well as for rewards). Hence a union bound over all
possible values of N(s, a) gives

P

{∣∣r̂ (s, a)− r̄(s, a)
∣∣ ≥√ 7 log (2SAt/δ)

2 max{1, N(s, a)}

}
≤

t−1∑
n=1

δ

60t7SA
<

δ

60t6SA
and

P

{∥∥∥p (·|s, a)− p̂ (·|s, a)
∥∥∥

1
≥

√
14S log (2At/δ)
max{1, N(s, a)}

}
≤

t−1∑
n=1

δ

20t7SA
<

δ

20t6SA
.



Near-optimal Regret Bounds for Reinforcement Learning 19

Summing these error probabilities for all state-action pairs we get

P
{
M /∈M(t)

}
<

δ

15t6
.

A.2 A Bound on the Number of Episodes

Since in each episode the total number of visits to at least one state-action pair doubles, the number
of episodes m is logarithmic in T . Actually, the number of episodes becomes maximal when all
state-action pairs are visited equally often, which results in the following bound.
Proposition 13. The number m of episodes of UCRL2 up to step T ≥ SA is upper bounded as

m ≤ SA log2

(
8T
SA

)
.

Proof. Let N (s, a) := # {τ < T + 1 : sτ = s, aτ = a} be the total number of observations of the
state-action pair (s, a) up to step T . In each episode k < m there is a state-action pair (s, a) with
vk(s, a) = Nk(s, a) (or vk(s, a) = 1, Nk(s, a) = 0). Let K(s, a) be the number of episodes with
vk(s, a) = Nk(s, a) and Nk(s, a) > 0. Then if N(s, a) > 0 we have

N(s, a) =
m∑

k=1

vk(s, a) ≥ 1 +
∑

k:vk(s,a)=Nk(s,a)

Nk(s, a) ≥ 1 +
K(s,a)∑

i=1

2i−1 = 2K(s,a),

because vk(s, a) = Nk(s, a), Nk(s, a) > 0 implies Nk+1(s, a) = 2Nk(s, a). On the other hand,
if N(s, a) = 0, then obviously K(s, a) = 0, so that generally, N(s, a) ≥ 2K(s,a) − 1 for any
state-action pair (s, a). It follows that

T =
∑

(s,a)∈S×A

N(s, a) ≥
∑

(s,a)∈S×A

(
2K(s,a) − 1

)
. (40)

Now, in each episode a state-action pair (s, a) is visited for which either Nk(s, a) = 0 or Nk(s, a) =
vk(s, a). Hence, m ≤ 1 + SA +

∑
s,a K(s, a), or equivalently

∑
s,a K(s, a) ≥ m− 1− SA. This

implies ∑
(s,a)∈S×A

2K(s,a) ≥ SA 2
∑

s,a
K(s,a)/SA ≥ SA 2

m−1
SA −1.

Together with (40) this gives
T ≥ SA

(
2

m−1
SA −1 − 1

)
,

which implies
m ≤ 1 + 2SA + SA log2

T
SA ,

from which the claimed bound on m follows for T ≥ SA.

A.3 The Sum in (17)

Lemma 14. For any sequence of numbers x1, . . . , xn with 0 ≤ xk ≤ Xk−1 := max
{

1,
∑k−1

i=1 xi

}
n∑

k=1

xk√
Xk−1

≤
(√

2 + 1
)√

Xn .

Proof. We prove the statement by induction over n.

Base case, n = 1: We have X0 = 1, hence x1 ≤ 1 and X1 = 1. Thus
1∑

k=1

xk√
Xk−1

≤ 1 <
√

2 + 1 =
(√

2 + 1
)√

X1.
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Inductive step: By the induction hypothesis we have
n∑

k=1

xk√
Xk−1

≤
(√

2 + 1
)√

Xn−1 +
xn√
Xn−1

.

Since xn ≤ Xn−1 we thus have(√
2 + 1

)√
Xn−1 +

xn√
Xn−1

=

√(√
2 + 1

)2

Xn−1 + 2
(√

2 + 1
)

xn +
x2

n

Xn−1

≤
√(√

2 + 1
)2

Xn−1 +
(
2 + 2

√
2 + 1

)
xn

=

√(√
2 + 1

)2

Xn−1 +
(√

2 + 1
)2

xn

=
(√

2 + 1
)√

Xn−1 + xn =
(√

2 + 1
)√

Xn ,

which proves the lemma.

A.4 Simplifying (20)

Combining like terms, (20) yields that with probability 1− δ
4T 5/4

∆(s1, T ) ≤ DS
√

AT

(√
10 log

(
8T
δ

)
+ 3

(√
2 + 1

)√
14 log

(
2AT

δ

)
+
√

8 + 3
)

+ DSA log2

(
8T
SA

)
. (41)

For 1 < T ≤ 492A log
(

T
δ

)
we have ∆(s1, T ) ≤ 49

√
AT log

(
T
δ

)
trivially. Considering only

T > 492A log
(

T
δ

)
we have A < 1

49 log(T
δ )

√
AT log

(
T
δ

)
and since log2(8T ) < 2 log(T ) for the

values of T considered, we get

DSA log2

(
8T
SA

)
< 2

49DS
√

AT log T
δ .

Further, T > 492A log
(

T
δ

)
also implies log

(
2AT

δ

)
≤ 2 log

(
T
δ

)
and log

(
8T
δ

)
≤ 2 log

(
T
δ

)
. Thus,

we have by (41), that for any T > 1 with probability 1− δ
4T 5/4

∆(s1, T ) ≤ DS
√

AT log
(

T
δ

)(√
20 + 3

(√
2 + 1

)√
28 +

√
8 + 3 +

2
49

)
≤ 49DS

√
AT log

(
T
δ

)
.

B Technical Details for the Proof of Theorem 4

B.1 Proof of (24).

For a given index set Kε of episodes we want to bound the sum∑
k∈Kε

∑
s,a

vk(s, a)√
max{1, Nk(s, a)}

=
∑
s,a

m∑
k=1

vk(s, a)√
max{1, Nk(s, a)}

1k∈Kε .

The idea is, to “rearrange” the sum, so that Lemma 14 becomes applicable. Indeed, when counting
visits in earlier episodes than the one they actually occurred in, the inner sum can only increase (due
to the smaller denominator). Consequently we may redistribute the vk’s that occur after step Lε into
“gaps” of episodes /∈ Kε.

To evaluate the inner sum we use the following fact. Let `ε(s, a) :=
∑

k∈Kε
vk(s, a), so that∑

s,a `ε(s, a) = Lε. We consider a fixed state-action pair (s, a) and skip the reference to it for ease
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of reading, so that Nk refers to the number of visits to (s, a) up to episode k and N denotes the
total number of visits to (s, a). Further, we abbreviate dk :=

√
max{1, Nk(s, a)}, and let mε :=

max{k : Nk < `ε} be the episode containing the `ε-th visit to (s, a). Due to vk = Nk+1 −Nk we
have

vmε
= (Nmε+1 − `ε) + (`ε −Nmε

). (42)

By (42) and since Nmε =
∑mε−1

k=1 vk,

`ε− Nmε
+

mε−1∑
k=1

vk = `ε =
m∑

k=1

vk1k∈Kε

=
mε−1∑
k=1

vk1k∈Kε +
(
Nmε+1 − `ε

)
1mε∈Kε +

(
`ε −Nmε

)
1mε∈Kε +

m∑
k=mε+1

vk1k∈Kε ,

or equivalently,

(
`ε −Nmε

)
1mε /∈Kε

+
mε−1∑
k=1

vk1k/∈Kε
=
(
Nmε+1 − `ε

)
1mε∈Kε +

m∑
k=mε+1

vk1k∈Kε . (43)

By (42) and due to dk ≥ dmε for k ≥ mε we have

m∑
k=1

vk

dk
1k∈Kε

≤
mε−1∑
k=1

vk

dk
1k∈Kε

+
`ε −Nmε

dmε

1mε∈Kε

+
1

dmε

((
Nmε+1 − `ε

)
1mε∈Kε +

m∑
k=mε+1

vk1k∈Kε

)
.

Hence, we get together with (43), using that dk ≤ dmε
for k ≤ mε

m∑
k=1

vk

dk
1k∈Kε

≤
mε−1∑
k=1

vk

dk
1k∈Kε

+
`ε −Nmε

dmε

1mε∈Kε

+
1

dmε

((
`ε −Nmε

)
1mε /∈Kε

+
mε−1∑
k=1

vk1k/∈Kε

)

≤
mε−1∑
k=1

vk

dk
1k∈Kε

+
`ε −Nmε

dmε

1mε∈Kε
+

`ε −Nmε

dmε

1mε /∈Kε
+

mε−1∑
k=1

vk

dk
1k/∈Kε

=
mε−1∑
k=1

vk

dk
+

`ε −Nmε

dmε

.

Now define v′k as follows: let v′k := vk for k < mε and v′mε
= `ε −Nmε . Then we have just seen

that
m∑

k=1

vk

dk
1k∈Kε ≤

mε∑
k=1

v′k
dk

.

Since further
∑mε

k=1 v′k = `ε we get by Lemma 14 that

mε∑
k=1

v′k
dk

≤
(√

2 + 1
)√

`ε .

By Jensen’s inequality and as
∑

(s,a) `ε(s, a) = Lε we finally get the claimed∑
k∈Kε

∑
(s,a)∈S×A

vk(s, a)√
max{1, Nk(s, a)}

≤
(√

2 + 1
)√

LεSA .
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C Proof of Lemma 11

To denote the probability conditioned on a being the “good” action we write Pa [·]. The probability
with respect to a setting where all actions in state s0 are equivalent (i.e. ε = 0) is denoted byPunif [·].
For convenience we abbreviate S := {s0, s1}. We denote the state observed at step τ by Sτ , the
state-sequence up to step τ by sτ = 〈S1, . . . , Sτ 〉. We go into detail only where there are differences
to the proof of Lemma A.1 in [16]. The first difference is that our observations now consist of the
sequence of T + 1 states instead of a sequence of T observed rewards. Still it is straightforward to
get analogously to the proof in [16], using the notation of [16], that

Ea [f(s)]− Eunif [f(s)] ≤ B

2

√
2 log(2) KL

(
Punif

∥∥Pa

)
, (44)

and we also have

KL
(
Pa

∥∥Punif

)
=

T∑
t=1

KL
(
Punif

[
St+1

∣∣st
] ∥∥∥Pa

[
St+1

∣∣st
] )

. (45)

Like in [16] and by the Markov property we have

KL
(
Punif

[
St+1

∣∣st
] ∥∥∥Pa

[
St+1

∣∣st
] )

=
∑

st+1∈St+1

Punif

[
st+1

]
log2

Punif [St+1|st]
Pa [St+1|st]

=
∑

st−1∈St−1

Punif

[
st−1

] kA′∑
a′=1

∑
s′∈S

Punif

[
St = s′, at = a′|st−1

]
·
∑

s′′∈S
Punif [s′′|s′, a′] log2

Punif [s′′|s′, a′]
Pa [s′′|s′, a′]

.

Since for the transition probabilities in MDP M ′ we have log2

Punif [s′′|s′,a′]
Pa[s′′|s′,a′] 6= 0 only for s′ = s0

and a′ being the special action we get

KL
(
Punif

[
St+1

∣∣st
] ∥∥∥Pa

[
St+1

∣∣st
] )

=

=
∑

st−1∈St−1

Punif

[
st−1

]
Punif

[
St = s0, at = a|st−1

]
·
∑
s′∈S

Punif [s′|s0, a] log2

Punif [s′|s0, a]
Pa [s′|s0, a]

= Punif [St = s0, at = a]
∑
s′∈S

Punif [s′|s0, a] log2

Punif [s′|s0, a]
Pa [s′|s0, a]

= Punif [St = s0, at = a]
(

δ log2

δ

δ + ε
+ (1− δ) log2

1− δ

1− δ − ε

)
. (46)

To complete the proof we use the following Lemma (proved below).

Lemma 15. For any 0 ≤ δ ≤ 1
2 and ε ≤ 1− 2δ we have

δ log2

δ

δ + ε
+ (1− δ) log2

1− δ

1− δ − ε
≤ ε2

log(2)δ
.

Applying Lemma 15, by (45) and (46) we have that

KL
(
Pa

∥∥Punif

)
=

T∑
t=1

KL
(
Punif

[
St+1

∣∣st
] ∥∥∥Pa

[
St+1

∣∣st
] )

≤
T∑

t=1

Punif [St = s0, at = a]
ε2

δ log(2)
= Eunif [N0a]

ε2

δ log(2)
,
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which together with (44) yields

Ea [f(s)]− Eunif [f(s)] ≤ B

2
· ε√

δ

√
2Eunif [N0a],

as claimed by Lemma 11.

Proof of Lemma 15. Consider

fδ(ε) :=
ε2

δ
− δ log

δ

δ + ε
− (1− δ) log

1− δ

1− δ − ε

and note that fδ(0) = 0 for all δ. For the first derivative

f ′δ(ε) :=
∂

∂ε
fδ(ε) = 2

ε

δ
+

δ

δ + ε
− 1− δ

1− δ − ε

we have f ′δ(ε) ≥ 0 for δ ≤ 1
2 and 0 ≤ ε ≤ ε0, where

ε0 :=
1
2
− δ +

1
2

√
1− 2δ.

It is sufficient to show ε ≤ ε0 for δ < 1
2 and ε ≤ 1− 2δ. Then we have ε0 > 0,

(
ε0 − ε

)
· ε0 ≥

(
ε0 − (1− 2δ)

)
· ε0 = −

(
1
2
− δ

)2

+
1
4
(1− 2δ) =

1
2
δ − δ2 ≥ 0,

and thus ε ≤ ε0. This implies fδ(ε) ≥ 0 for all 0 ≤ δ ≤ 1
2 and 0 ≤ ε ≤ 1− 2δ.
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